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Abstract: Background and Objectives: This review systematically evaluates the potential of electrical
neuromodulation techniques—vagus nerve stimulation (VNS), sacral nerve stimulation (SNS), and
tibial nerve stimulation (TNS)—as alternative treatments for inflammatory bowel disease (IBD),
including ulcerative colitis (UC) and Crohn’s Disease (CD). It aims to synthesize current evidence
on the efficacy and safety of these modalities, addressing the significant burden of IBD on patient
quality of life and the limitations of existing pharmacological therapies. Materials and Methods:
We conducted a comprehensive analysis of studies from PubMed, focusing on research published
between 1978 and 2024. The review included animal models and clinical trials investigating the
mechanisms, effectiveness, and safety of VNS, SNS, and TNS in IBD management. Special attention
was given to the modulation of inflammatory responses and its impact on gastrointestinal motility and
functional gastrointestinal disorders associated with IBD. Results: Preliminary findings suggest that
VNS, SNS, and TNS can significantly reduce inflammatory markers and improve symptoms in IBD
patients. These techniques also show potential in treating related gastrointestinal disorders during
IBD remission phases. However, the specific mechanisms underlying these benefits remain to be
fully elucidated, and there is considerable variability in treatment parameters. Conclusions: Electrical
neuromodulation holds promise as a novel therapeutic avenue for IBD, offering an alternative to
patients who do not respond to traditional treatments or experience adverse effects. The review
highlights the need for further rigorous studies to optimize stimulation parameters, understand
long-term outcomes, and integrate neuromodulation effectively into IBD treatment protocols.

Keywords: inflammatory bowel disease (IBD); ulcerative colitis (UC); Crohn’s Disease (CD);
electrical neuromodulation

1. Introduction

Inflammatory bowel disease (IBD), including Crohn’s Disease (CD) and ulcerative
colitis (UC), represents a spectrum of chronic inflammatory disorders that predominantly
disrupt the gastrointestinal (GI) system. Characterized by overlapping clinical features such
as diarrhea, abdominal pain, and rectal bleeding, CD and UC differ significantly in their
pathophysiological foundations [1]. The genesis of IBD intertwines genetic predispositions
with environmental triggers, including shifts in the gut microbiota landscape and enhanced
intestinal permeability, orchestrating a dysregulated immune response that ultimately leads
to the tissue damage observed in these conditions [2].

Traditionally, the medical management of IBD has been focused on anti-inflammatory
therapies, from aminosalicylates to biological agents [3,4]. Although these treatments
have been effective for many of the patient population, a significant number either do
not achieve adequate symptom control or experience negative side effects, highlighting
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the imperative for a broader range of treatment options. The increasing incidence of IBD
in developing countries introduces further complexities as disparities in access to these
advanced therapeutic modalities grow, necessitating the development of effective and
accessible care solutions that can be globally implemented [5].

IBD’s relapsing–remitting nature, marked by cycles of flare-ups and quiescence, signifi-
cantly erodes the quality of life for affected individuals. Despite a plateau in hospitalization
rates within developed territories, attributed to therapeutic advancements and enhanced
disease surveillance, the escalating global incidence of IBD—potentially fueled by dietary
westernization—demands a pivot towards innovative care approaches [6–9].

Neuromodulation: a frontier in IBD therapy leveraging electrical impulses to recali-
brate the nervous system’s regulatory influence over immune activity and GI functionality
(Figure 1). In the evolving landscape of neuromodulation, we find a promising avenue
for confronting the intricate challenges posed by IBD, integrating symptom relief with
potential disease modification strategies. This review examined literature sourced from
PubMed, encompassing publications from 1978 through 2024, embarking on an in-depth
examination of the current state of neuromodulation in the context of IBD therapy in
both animal models and clinical studies. It aims to highlight its potential as a therapeutic
tool, clarify the mechanisms by which it exerts its effects, and outline future directions for
research in this dynamic field.
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2. Fundamental Pathophysiological Mechanisms for the Anti-Inflammatory Property
of Electrical Neuromodulation

The GI tract engages in a bidirectional dialogue with the central nervous system
(CNS), primarily mediated by the vagus nerve (VN), thoracolumbar connections, and
the sacral nerve (SN), thus presenting an optimal target for bioelectric neuromodulation
therapy [10]. The enteric nervous system (ENS) consists of a vast ensemble of neurons that
exert regulatory control over gut immune cells. This ensemble includes intrinsic primary
afferent neurons, vasoactive intestinal peptide-secreting neurons, and cholinergic neurons,
which are pivotal in the modulation of inflammation-associated signals within the GI
milieu [11].

Embedded within the gut–brain axis, the ENS contributes to a functionally interwoven
network that encompasses the GI tract, CNS, and the peripheral nervous system (PNS).
This network is instrumental in monitoring and modulating the functionality of the GI
system. ENS dysfunctions are implicated in the etiology of various functional GI and
metabolic disorders, characterized by symptoms such as dysmotility, visceral hypersensi-
tivity, compromised mucosal integrity and immune function, dysbiosis, and altered CNS
processing [12].

The VN’s bidirectional pathways—efferent, innervating the ENS and gut immune cells,
and afferent, signaling to the CNS—are integral to the systemic anti-inflammatory response.
Such pathways are fundamental to the mechanisms by which electrical neuromodulation
exerts anti-inflammatory effects within the GI domain [11].

IBD pathogenesis is significantly influenced by the intricate interactions within the
gut–brain axis. Disruptions or dysregulations in this nexus of neural networks, along
with psycho–neuro–endocrine–immune factors, may precipitate or exacerbate the disease
process [13,14]. Functional magnetic resonance imaging studies have revealed distinct
patterns of resting-state brain activity in IBD patients, providing insights into the potential
correlation between CNS structures, activities, and GI disease manifestations [15].

Notably, the autonomy of the ENS allows for the regulation of key GI functions inde-
pendently from CNS oversight. This includes the orchestration of peristalsis throughout the
intestinal tract, local blood flow regulation, and fluid transmucosal movement. Disorders
within the ENS can significantly alter GI motility, leading to complications that intersect
with the symptomatology of IBD [16]. Additionally, the ENS plays a role in regulating the
proliferation of intestinal epithelial cells and in maintaining the integrity of the intestinal
barrier, further influencing the pathophysiological landscape of IBD [17].

The detailed exploration of these neuroimmune interactions and their implications
within IBD pathophysiology provides a compelling rationale for the utilization of electrical
neuromodulation as a therapeutic strategy, necessitating continued research to fully unravel
the nuances of this promising treatment modality.

2.1. Central Nervous System Involvement in the Pathophysiology of IBD

The CNS is implicated in the IBD pathophysiology through intricate mechanisms of
systemic inflammation originating from the gut [18]. Chronic intestinal inflammation is
known to compromise the intestinal barrier, leading to dysbiosis and microbial translocation
that, in turn, trigger immune responses with reciprocal CNS effects [19]. This dynamic
interplay underscores the relevance of the CNS in the etiopathogenesis of IBD.

The CNS modulates GI function via a network of bidirectional pathways. The vagal
afferents relay sensory information from the enteric milieu to the CNS, while the efferents
allow CNS-directed modulation of gut motility and secretion. The sympathetic thoracolum-
bar outflow and sacral nerve innervation are pivotal in their respective excitatory and
inhibitory effects on GI activity [20].

Neuroimaging studies have highlighted neurokinin-1 receptor binding potential
deficits in IBD patients, akin to those observed in chronic pain conditions, suggesting
a neural correlate for the nociceptive and emotional dimensions of IBD [21]. Furthermore,
alterations in cortical thickness and neuroplastic changes have been observed, indicative of
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the CNS’s adaptive response to chronic gut inflammation [22]. The cingulate and insular
cortex, areas associated with pain processing, show changes correlating with abdominal
pain and depression, prevalent among IBD patients [23–25].

These neural processing changes, especially in pain perception, suggest that sen-
sory pathway alterations might contribute to IBD pathophysiology. Dysregulation in
brain activity could potentially influence the hypothalamic-pituitary-adrenal (HPA) axis
and the ANS, impacting pro-inflammatory mediator production and homeostasis [13].
Research links psychological stress with IBD symptom exacerbation, emphasizing the
neuro-immunological connections mediated by the CNS through neurotransmitter and
hormonal pathways [26–28].

The high prevalence of anxiety disorder has been linked to IBD flares but can per-
sist during remission periods [29]. A combined multidisciplinary approach involving GI
physicians and psychologists for anxiety treatment as an adjuvant therapy might benefit
disease management [30]. Preliminary studies show promising results of using antide-
pressants, a subtype of central neuromodulators, as a treatment for IBD in the context of
gut–brain dysregulation. Antidepressant therapy may improve sleep and reduce pain, man-
age chronic diarrhea during IBD remission, and potentially reduce inflammation, thereby
reducing disease activity, highlighting the interconnected nature between the neural and
GI systems [31].

2.2. Enteric Nervous System Involvement in the Pathophysiology of IBD

The ENS is a complex, often described as the “second brain”, a sophisticated network
of neurons and glial cells embedded within the GI tract wall. It autonomously orchestrates
a wide range of GI functions, including motor activity, local blood flow, and mucosal trans-
port, thereby ensuring the proper functioning of the digestive system [20,32]. This intricate
system operates independently but maintains a dynamic, bidirectional communication
with CNS, thereby playing a pivotal role in the gut–brain axis—a fundamental concept in
understanding IBD pathogenesis.

Recent research underscores the ENS’s susceptibility to chronic psychological stress
and systemic inflammatory responses, which can exacerbate IBD symptoms through mecha-
nisms involving neurogenic inflammation and altered neural plasticity [33]. These findings
indicate that stress-related neuroendocrine responses can lead to a pro-inflammatory state
in the GI tract, further destabilizing gut homeostasis and contributing to the progression
of IBD.

The ENS shares many structural and neurochemical characteristics with the CNS,
thus their similarity in their susceptibility to certain pathophysiological processes. Dis-
eases typically associated with CNS dysfunction, such as autism spectrum disorder and
Parkinson’s disease, often manifest significant enteric symptoms, highlighting the intercon-
nected nature of ENS and CNS [34]. Significant neurochemical remodeling in the myenteric
neurons, marked by a shift from cholinergic to peptidergic innervation, was observed in
UC patients, suggesting a systemic alteration in the neurochemical coding rather than
a localized response to inflammation [35]. Akin to astrocytes in the CNS, enteric glial
cells (EGCs) are part of the ENS, and they are integral in maintaining GI track integrity
and modulating neuronal activities. EGCs are actively involved in inflammatory and
immune processes within the ENS, suggesting a link between EGC dysfunction and the
IBD pathophysiology [36]. Another study highlights the therapeutic potential of targeting
the ENS in managing IBD. It shows that modulating ENS components, particularly EGCs,
can influence immune cell activation and infiltration, reduce inflammation, and reduce the
production of ENS-derived pro-inflammatory neuropeptides [37].

The exploration of the ENS involvement in IBD pathophysiology, coupled with emerg-
ing evidence on the efficacy of neuromodulatory interventions, underscores the ENS’s
significance as a pivotal therapeutic target. This focus not only enhances our understanding
of IBD’s complex mechanisms but also positions neuromodulation as a promising strategy
for advancing IBD treatment.
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2.3. Autonomic Nervous System Involvement in the Pathophysiology of IBD

The ANS is a part of the peripheral nervous system (PNS) that regulates involuntary
physiological processes. The ANS includes sympathetic and parasympathetic nervous
systems, containing afferent and efferent nerve fibers that relay information from the CNS,
bridging the CNS and the body’s involuntary functions [38]. The ANS is responsible for
maintaining hemostasis, including regulating the cardiovascular system, GI motility and
secretion, and other visceral activities [39,40]. The sympathetic branch has been associated
with primary and secondary lymphoid organs, establishing a direct pathway for the brain
to influence immune activity. By modulating clonal expansion, cytokine production, and
receptor expression, the sympathetic nervous system can either enhance or inhibit the
immune response, indicating its role in the overall inflammatory response [41]. The ANS
can influence both innate and adaptive immunity. Dysfunctions in the ANS, characterized
by imbalances in sympathetic and parasympathetic activities, contribute to the pathology
of chronic inflammation and autoimmune conditions [42]. In IBD patients, the ANS,
particularly the ENS, undergoes substantial alternations, including changes in neuronal
signaling, morphology, and neurotransmitter levels. Those alternations impact intestinal
function, contributing to IBD’s pathogenesis [43]. Disorders of the ANS, such as autonomic
dysfunction, can result in multisystemic manifestation, including widespread dysmotility
throughout the GI tract [44]. The high prevalence of clinically manifested autonomic
dysfunction within the IBD population indicates a significant intersection between ANS and
IBD. Further, this ANS dysregulation, manifesting as prolonged small bowel transit times,
established a direct connection between ANS dysfunction and GI motility symptoms in
IBD [45]. Even during clinical remission, IBD patients exhibit significant ANS dysfunction.
Notably, UC patients showed reduced parasympathetic activity compared to CD patients
and controls, suggesting ANS dysfunction’s role in the pathogenesis of IBD [46].

2.4. Vagus Nerve System Involvement in the Pathophysiology of IBD

The VN is integral to the parasympathetic branch of ANS, influencing the neuro-
immune axis and demonstrating anti-inflammatory effects in IBS through afferent and
efferent pathways. VNS has been shown to reduce IBD activity by attenuating systemic
inflammation [47,48]. The VN’s anti-inflammatory mechanisms include the Cholinergic
Anti-Inflammatory Pathway (CAIP), where acetylcholine release modulates the immune
system. VN’s efferent fibers stimulate glucocorticoid release via the HPA axis, decreasing
inflammation. Additionally, the VN also suppresses pro-inflammatory cytokines in the
spleen and mesenteric lymph nodes [49–52].

The VN regulates the HPA axis through vagal afferent pathways that respond to pe-
ripheral pro-inflammatory factors like IL-1β and TNF-α, activating the HPA axis. This leads
to a cascade involving the release of corticotrophin-releasing factors and adrenocorticotropic
hormones, culminating in the release of cortisol, which suppresses inflammation [53–56].
Thus, the VN’s interaction with the HPA axis is crucial in coordinating the inflammation
response, underlining its therapeutic potential in chronic inflammatory diseases like IBD.

CAIP is critical for systemic inflammatory response regulation and functions through
acetylcholine released by the VN. The released acetylcholine then acts on macrophages,
particularly through the α7 nicotinic acetylcholine receptor (α7 nAChR), reducing pro-
inflammatory cytokine production, such as TNFs, IL-1b, IL-6, and IL-18. Notably, VN
efferent fibers reduce pro-inflammatory cytokines without boosting anti-inflammatory
factors [57–60]. Nicotine, a cholinergic agonist, shows variable effects on intestinal inflam-
mation [61]. VNS directly stimulates the VN’s efferent branch, triggering acetylcholine
release to downregulate inflammation and cytokine secretion, contrasting the slower re-
sponse of the HPA axis due to its complex neuroendocrine mechanisms [62–64].

Additionally, the splenic sympathetic anti-inflammatory pathway, part of CAIP, in-
volves the VN stimulating the splenic sympathetic nerve. This leads to acetylcholine release
by lymphocytes, inhibiting TNF-α production by spleen macrophages [65,66]. The sympa-
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thetic system also regulates intestinal immunity via the superior mesenteric nerve (MSN),
reducing colitis severity [49].

Despite the debate over the VN’s direct interaction with sympathetic innervation in
the spleen, recent studies indicate a complex interaction network, including the superior
mesenteric ganglion (SMG), in anti-inflammatory processes [67].

3. Vagus Nerve Stimulation in IBD Therapy

Decreased parasympathetic activity and reduction in vagal tone were observed in
CD patients compared to healthy individuals, with a noted correlation between reduced
vagal tone and extended duration of the disease [68]. In patients with newly diagnosed UC,
higher parasympathetic activity after the remission of the initial flare was associated with
decreased systemic inflammation [69]. These findings provide a robust theoretical basis for
employing VNS as a therapeutic strategy aimed at augmenting vagal tone, thereby poten-
tially easing the symptomatic burden of IBD. Recent research has increasingly investigated
the effect and therapeutic potential of VNS in managing IBD, highlighting its ability to mod-
ulate immune responses and gastrointestinal functionality, potentially offering significant
relief from IBD symptoms.

3.1. Devices and Mechanisms of VNS

VNS devices have evolved significantly in recent years, with applications now extend-
ing beyond refractory epilepsy and depression. Traditional VNS devices require surgical
implantation near the neck, linking to a chest-placed pulse generator. Those devices,
although increasingly sophisticated, have surgery-related risks. Noninvasive VNS op-
tions, like transcutaneous stimulation at the ear or neck, are emerging, offering potential
benefits without the risks associated with surgery [70]. Transcutaneous cervical vagal
nerve stimulation (tcVNS) was used to treat gastroparesis through self-administered neck
stimulation, demonstrating the diversity of VNS applications. However, variations in
patient compliance and inconclusive efficacy findings necessitate further research [71,72].
Transcutaneous auricular vagus nerve stimulators (taVNS) target specific ear regions, with
a preference for the left ear to avoid potential heart rate effects associated with stimulating
the right ear’s auricular branch of the VN [73]. While VNS can induce side effects like
hoarseness and throat pain, these can be managed by adjusting stimulation settings. The
precise mechanisms underlying VNS therapeutic effects are still being unraveled, but it
is hypothesized that VNS may enhance neural activity and blood flow in certain brain
areas [74].

VNS parameters, such as stimulation intensity, frequency, pulse width, and pulse
number, significantly influence treatment outcomes. Research indicates lower intensity
(400 µA) and fewer stimulations (50 pulses) can effectively drive plasticity. Additionally,
the interactions between current amplitude and pulse width are crucial, having a more
significant impact than changes in pulse number alone. A lower frequency is supposed
to show anti-inflammatory potential through efferent branches of VN and CAIP. This
supports the use of lower-frequency VNS (1–10 Hz) in treatments like IBD due to its
potential anti-inflammatory effects [75–77].

3.2. VNS Efficacy in Animal Models

The exploration of VNS as a potential treatment for IBD has been extensively in-
vestigated in animal models. These studies employ various models, including 2,4,6-
trinitrobenzene sulfonic acid (TNBS)-induced colitis, to replicate key IBD symptoms such
as bloody diarrhea, weight loss, and mucosal inflammation. These models are crucial for
exploring IBD pathogenesis and assessing the efficacy of novel treatments [78,79]. In the
VNS experiments, rats underwent surgery to place electrodes around the left cervical vagus
nerve. Stimulation parameters, including amplitude (0.25 mA to 3 mA) and frequency
(5 Hz to 40 Hz), varied across studies to optimize outcomes. Following VNS, colitis severity
was evaluated through clinical signs such as weight loss and changes in stool consistency,
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alongside direct inflammation measures, including colonic damage assessments, histo-
logical examinations, and biochemical analyses for inflammatory markers. Additionally,
heart rate variability (HRV) analysis was frequently employed to gauge the ANS response
to VNS.

A few animal studies have investigated the therapeutic potential of VNS in a colitis
model, specifically in TNBS-induced colitis rat models (Table 1). VNS significantly impacts
the modulation of cytokine mRNA levels and substantially affects the multivariate index
of colitis. Those findings suggest a more pronounced beneficial effect of VNS on less
damaged tissues, indicating its potential utility in preventing the progression of lesions
in cases of mild colitis [80]. Furthermore, one of the studies shows VNS’s role in the
activation of mitogen-activated protein kinase (MAPK) and the nuclear translocation of
NF-κB, both critical pathways in the inflammatory process [81]. Interestingly, another study
revealed that while VNS and electroacupuncture independently reduce inflammation,
their combination does not significantly improve these anti-inflammatory effects beyond a
single treatment [82]. All these studies consistently demonstrated that VNS significantly
reduced inflammatory responses in TNBS-induced colitis, evidenced by decreased levels of
pro-inflammatory cytokines, improved histological scores, and reduced colitis symptoms.
They also noted a significant influence of VNS on autonomic functions, primarily by
increasing vagal activity and decreasing sympathetic activity, correlating with reduced
inflammation. Collectively, these findings affirm the potential of VNS as a therapeutic
strategy in IBD treatment [80–82]. While these animal studies provide valuable insights,
translating their findings to human IBD treatment involves complexities due to differences
in human physiology and IBD pathophysiology. Optimizing VNS parameters for humans
remains a challenge, as rodent model parameters do not directly apply due to physiological
differences. Furthermore, individual variability in response to VNS in humans highlights
the need for careful consideration before applying these findings to clinical settings.

3.3. VNS Clinical Trials in IBD

VNS, aimed at modulating the inflammatory reflex pathway, has demonstrated encour-
aging results in alleviating patients with IBD. A review of the clinical trial landscape reveals
a growing body of evidence supporting VNS’s efficacy, with six identified studies—five
focusing on CD and one encompassing both CD and UC patients (Table 2). The initial case
study in 2014 marked a significant milestone, reporting substantial clinical improvements
and EEG alterations. This was followed by a series of pilot studies conducted over dura-
tions ranging from 6 to 12 months, consistently indicating reductions in disease activity
and inflammation markers. The progression in research culminated in a 2023 multi-center
trial spanning 16 weeks, further validating VNS’s role as a viable therapeutic strategy for
addressing refractory IBD cases.



Medicina 2024, 60, 729 8 of 20

Table 1. Summary of electrical neuromodulation studies in animal models.

Animal
Models Disease Models Stimulation Type Electrodes Locations Pulse Features

Stimulation and
Treatment
Durations

Major Findings References

Adult male
Sprague-Dawley rats TNBS-induced colitis VNS Wrapped around the left cervical

vagus nerve and carotid

1 mA, 5Hz, 500 us interval,
10 s ON, 90 s OFF;
continuous cycle

3 h per day;
5 consecutive days

Reduced weight loss,
improved histology,

lessened colitis
and inflammation

[80]

Adult male and female
Sprague-Dawley rats TNBS-induced colitis VNS

Bipolar coil electrodes were placed
around the left cervical vagus nerve

and left carotid artery

0.25 mA, 20 Hz, 500 ms
pulse width, 30 s ON,

5 min OFF continuously

3 h per day;
6 consecutive days

Lowered disease activity,
reduced colonic damage,

decreased
myeloperoxidase, NO
synthase, TNF-α, IL-6;

inhibited MAPKs
phosphorylation and

NF-kB p65 translocation

[81]

Adult male
Sprague-Dawley rats TNBS-induced colitis VNS

One pair of electrodes implanted
around the left cervical vagal nerve,

3–5 mm apart

VNS1: 1.0–3.0 mA, 25 Hz,
0.5 ms pulse width, 2 s ON,

3 s OFF
VNS2: 1.0–3.0 mA. 40 Hz,

0.5 ms pulse width, 2 s ON,
3 s OFF

VNS3: 1.0–3.0 mA, 5 Hz,
0.5 ms pulse width, 10 s

ON, 90 s OFF

3 h daily;
21 consecutive days

Reduced DAI, improved
macroscopic and

histological scores,
decreased

pro-inflammatory
cytokines, increased vagal

and decreased
sympathetic activity

[82]

Adult male
Sprague-Dawley rats TNBS-induced colitis SNS One pair of electrodes placed around

the S3 nerve behind the sacral foramen

N/A mA, 5 Hz, 0.5 ms
pulse width, 10 s ON,

90 s OFF

1 h daily;
10 consecutive days

Lowered DAI, normalized
colon length, increased

acetylcholine and
anti-inflammatory

cytokines, decreased
pro-inflammatory

cytokines

[83]

Adult male
Sprague-Dawley rats Colitis induced by 5% DSS SNS One pair of electrodes placed around

S3 right sacral nerve

N/A mA, 5 Hz, 0.5 ms
pulse width, 10 s ON,

90 s OFF

1 h daily;
10 consecutive days

Reduced DAI and colonic
damage, improved

histology, lowered TNF-α,
altered

neurotransmitter levels

[84]

Adult male
Sprague-Dawley rats TNBS-induced colitis SNS

Bipolar: one pair of electrodes placed
circumferentially around the nerve

behind the right S3 sacral nerve,
3–4 mm apart;

Unipolar: one electrode placed
circumferentially around the nerve

behind the right S3 sacral root; second
electrode sutured on the muscle

10 mm apart;
Bilateral: two electrodes in pair placed
circumferentially around the right and

left sacral roots

Optimized: N/A mA, 5
Hz, 0.5 ms pulse width,

10 s ON, 90 s OFF;
Alternative: N/A mA,

14 Hz, 0.21 ms pulse width,
continuous stimulation

0.5 h, 1 h, and 3 h daily,
with 1 h being the most

effective;
10 consecutive days

1h daily, 5 Hz bipolar SNS
most effective; lowered

DAI, reduced
inflammation, balanced

cytokine levels

[85]

Please note: trinitrobenzene sulfonic acid (TNBS).
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Clinical trials of utilizing VNS as an experimental therapeutic treatment for IBD
began with a case study of a 49-year-old male with a long-standing history of ileal CD
(Crohn’s Disease Activity Index (CDAI) score of 330). After 12 months of VNS (initiated at
0.5 mA, increased to 1 mA, with a frequency of 10 Hz), significant electroencephalogram
(EEG) changes were observed across various frequency bands, especially in the theta and
gamma bands. Most notably, the patient’s CDAI score decreased to remission levels, and
endoscopic remission was achieved. An increase in high-frequency power in heart rate
variability (HRV) analysis indicated the enhanced parasympathetic tone. In addition,
the patient remained in remission for an extended period (27 months) after the VNS
treatment, indicating long-term benefits and the potential for sustained improvement. The
study is based on a single patient, which significantly limits the generalizability of the
findings. In addition, as the study acknowledges, the possibility of a placebo effect or
improvement unrelated to VNS treatment cannot be completely ruled out. The long-term
safety and efficacy, particularly in a larger population, remain to be established. Despite
those limitations, these promising results open possibilities for further research [86].

Building on these initial findings, subsequent investigations, including an open-label
study recruiting seven active CD patients, were conducted. Over six months of VNS
therapy, a majority exhibited improvements in their CDAI scores, with a significant number
reaching clinical remission. A noteworthy reduction in fecal calprotectin (FC) levels further
corroborated these findings. Despite the absence of a control group, raising concerns
about potential placebo effects and the inherent bias of open-label designs, these studies
underscore the therapeutic promise of VNS in IBD management [87].

Extended observation revealed neurophysiological impacts of VNS, such as acute and
chronic shifts in EEG power spectra and modifications in HRV, indicative of reduced stress
levels among participants. A subsequent 12-month clinical evaluation demonstrated that a
significant proportion of patients with moderate CD achieved clinical remission, further
validating VNS’s role in IBD therapy. Despite the absence of a control group and blinding,
variability in neurological responses was noted, suggesting differential VNS effects among
individuals. While EEG modifications correlate with clinical improvements, elucidating
the precise mechanisms by which VNS influences brain activity and symptomatology in
IBD remains an area for future investigation [88].

In another study, 71% of patients with moderately active CD achieved clinical remis-
sion, with CDEIS scores significantly reduced, indicating both clinical and endoscopic re-
mission. This outcome, alongside decreased CRP and fecal calprotectin levels, underscores
VNS’s potential for managing moderate CD. Nevertheless, the exclusion of two patients
due to deteriorating conditions and the study’s acknowledgment of VNS’s gradual effect
highlight its possible limitations for only mild to moderate CD cases [89].
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Table 2. Summary of clinical trials on electrical neurostimulation in inflammatory bowel disease (IBD) and other conditions.

Diseases Population Size Stimulation Sites Pulse Features Stimulation and
Treatment Durations Major Findings Year References

CD and UC
23 patients (1 withdraw
due to infection); 10 CD,

12 UC

Ta-VNS at Cymba conchae of the
external left ear

20 Hz, 0.3 ms pulse width, 300 s
continuous ON

5 min once daily (first 2 weeks);
5 min twice daily (Week 4 to 16)

Achieved clinical remission;
reduced fecal calprotectin; improved

quality of life
2023 [90]

CD 17 patients (16 analyzed) VNS at left cervical vagus nerve 0.25–2.0 mA, in 0.25 mA
increments, 0.25 ms pulse width

1 min once per day, gradually
increased to 5 min; 16 weeks

Reduced CDAI; reduced fecal
calprotectin; decreased mucosal

inflammation; reduced serum levels
of inflammatory cytokines;

improved quality of life

2023 [91]

CD 9 patients VNS at left cervical vagus nerve 0.25 mA, 10 Hz, 0.25 or 0.5 ms
pulse width, 30 s ON, 300 s OFF 12 months

Achieved clinical and endoscopic
remission; decreased C-reactive
protein and fecal calprotectin;

restored vagal tone and reduced
digestive pain; changed

cytokine profile

2020 [89]

CD 9 patients VNS 0.5–1.25 mA, 10 Hz, 0.5 ms
pulse width, 30 s ON, 300 s OFF 12 months

Reduced alpha activity was
associated with improved clinical
outcomes, reduced anxiety, and

decreased fecal calprotectin

2018 [88]

CD 7 patients VNS at left cervical vagus nerve 0.25–1.25 mA, 10 Hz, 0.5 ms
pulse width, 30 s ON, 300 s OFF 6 months

Achieved clinical, biological, and
endoscopic remission, with restored

vagal tone; decreased CDAI,
C-reactive protein, and

fecal calprotectin

2016 [87]

CD A 49-year-old male VNS at left cervical vagus nerve
0.5–1 mA in 0.25 mA

increments, 10 Hz, 0.5 ms pulse
width, 30 s ON, 300 s OFF

12 months
Achieved endoscopic remission;
decreased CDAI, with increased

parasympathetic tone
2014 [86]

FI; OAB; UR; BPS/IC;
FI; DI

Patients receiving
implantable pulse

generator:
20 OAB, 21 UR, 12 BPS/IC,

7 FI, 4 DI.

SNS at S3 sacral nerve root N/A 14–220 months Improved clinical symptoms,
quality of life, and satisfaction 2021 [92]

FI;
Low Anterior

Resection Syndrome
10 patients SNS at S3 and S4 of sacral nerve N/A 14.7 days mean test stimulation

Significantly improved low anterior
resection syndrome and fecal

incontinence quality of life score;
avoided permanent colostomy

2021 [93]

UP in UC Patients A 58-year-old female SNS 0.5–1.5 V, 14 Hz, 210 ms pulse
width

3-week temporary stimulation;
18 months

permanent stimulation

Improved endoscopic and histologic
scores; decreased rectal

barrier permeability
2015 [94]

FI in CD 5 patients SNS at S3 sacral nerve 5 Hz, 0.1 ms pulse width
3-week initial stimulation;

3–36 months
permanent stimulation

Improved continence, with
significant decrease in the Wexner

scores; improved quality of life
2008 [95]

CD, UC, and
Undetermined Colitis

12 patients (7 CD, 3 UC,
2 Undermined Colitis) Posterior TNS (PTNS) 10–30 mA, 10Hz, 0.2 ms

pulse width
Several minutes per day;

3 months
Improved continence; improved

quality of life 2009 [96]

Please note: mixed conditions include overactive bladder (OAB), urinary retention (UR), bladder pain syndrome/interstitial cystitis (BPS/IC), double incontinence (DI), and fecal
incontinence (FI).
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In a more recent open-label clinical trial involving 17 patients with treatment-refractory
CD, VNS demonstrated significant therapeutic benefits. A notable average reduction in
CDAI of −86.2 ± 92.8 in the entire cohort and −114.5 ± 23.9 in the stimulation monotherapy
group was observed at Week 16. Additionally, there was a significant reduction in fecal
calprotectin levels from 5054 ± 1266 to 1969 ± 625.5 µg/g in all patient groups and from
4705 ± 1295 to 1496 ± 579 µg/g in the monotherapy group. Serum cytokines also showed
notable reductions, with tumor necrosis factor and interferon-γ decreasing by 46 and 52%,
respectively, while mean total IL-17 levels were 54% higher at Week 16 than baseline.
Additionally, 27% of all patients (co-treatment with biologics) and 36% of those on VNS
mono treatment achieved clinical remission (CDAI < 150) at Week 16. Quality of life
improvements were reported in the Inflammatory Bowel Disease Questionnaire (IBDQ)
and the Simple Health Score (SHS). Among patients in the monotherapy group, 54% (6 out
of 11) exceeded the “minimal important difference” in the IBDQ, and a majority of patients
reported improvements in their SHS. The treatment was generally safe and well tolerated,
with only one severe adverse event related to a postoperative infection requiring device
explanation being reported, representing 5% of the study population. The applicability of
the findings to a broader IBD patient population might be limited because the participants
included were all refractory to biologic treatments. In addition to the small sample size,
lack of blinding, and placebo control, the short duration of the study may overlook the
long-term efficacy and safety of VNS [91].

Owing to the risks associated with surgically implanting electrodes on the VN, alter-
native stimulation methods are highly anticipated, especially for vulnerable populations.
A partial blinding study conducted in 2023 evaluated the efficacy and safety of ta-VNS in
pediatric patients with CD and UC. Clinical remission was achieved in 50% (3 out of 6)
with CD and 33% (2 out of 6) UC patients who had mild to moderate symptoms activity
(6 out of 10 CD and 6 out of 12 UC patients). Meanwhile, 64.7% (11 out of 17) of subjects
with baseline fecal calprotectin levels over 200 µg/g showed a greater than 50% reduction
in fecal calprotectin level at week 16, with UC subjects showing 81% median reduction and
CD subjects showing a 51% median reduction comparing to baseline. Reduced anxiety
among patients was also reported. ta-VNS treatment was well-tolerated, and no serious
adverse events were reported, highlighting its potential suitability for pediatric patients.
The study validates that ta-VNS is a low-risk intervention and effective noninvasive treat-
ment for mild to moderate IBD in a pediatric population, showing significant symptom
improvement and inflammation reduction, warranting further investigation with larger,
placebo-controlled trials in a broader patient population [90].

The limitations of small sample sizes and the variability in disease severity and
individual responses limit the generalizability of these studies, highlighting the need for
more rigorous, controlled research to firmly establish VNS’s efficacy in IBD treatment.

4. Other Methods of Electrical Neuromodulation

As the exploration of electrical neuromodulation expands beyond VNS for IBD treatment,
interest has grown in the potential of sacral and tibial nerve stimulation. These methods,
while less researched, offer intriguing possibilities for management in IBD patients.

4.1. Sacral Nerve Stimulation in IBD Therapy

The sacral nerve (SN), specifically the anterior sacral roots S2, S3, and S4, are pivotal
in innervating the sigmoid colon, rectum, and external anal sphincter and in controlling
bladder and genital organ functions. Studies reveal that electrical stimulation of these roots
affects colorectal motility differently: S2 induces low-pressure contractions, S3 initiates
high-pressure activity, and S4 enhances tone and sphincter activity. The pelvic nerves,
emerging from these sacral roots, supply the colorectum, impacting bowel and bladder
control and sexual functions. SNS, targeting these nerves, is an effective therapy for bladder
and bowel dysfunctions unresponsive to conventional treatments [10,48,97]. SNS received
FDA approval in 1997 for treating urinary incontinence in the U.S. With further research,
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this approval was extended for urinary retention and overactive bladder in 1999 and for
fecal incontinence in 2011. The FDA’s recognition of SNS for bowel dysfunctions highlights
its potential utility in IBD management, underscoring the need for targeted research to
explore its efficacy in this area.

4.2. SNS Efficacy in Animal Models

Research on SNS in animal models of colitis shows its potential to mitigate colonic
inflammation. Studies like Pasricha et al. have found significant reductions in Disease Activ-
ity Index (DAI), histological improvements, and a 57% decrease in colonic myeloperoxidase
activity, alongside diminished TNF-α expression and an increase in M2 macrophage popu-
lations [84]. These findings are complemented by HRV analyses indicating an enhanced
vagal tone. Similarly, Tu et al. reported SNS-induced improvements in autonomic function,
evidenced by upregulated vagal efferent activity and reduced plasma norepinephrine,
correlating with decreased DAI and inflammatory markers in colonic tissues, including
a reduction in pro-inflammatory cytokines (TNF-α, IL-2, and IL-17A) and an increase in
IL-10 [83].

Exploration of optimal SNS parameters reveals that one hour of daily stimulation
offers more pronounced benefits in reducing colonic inflammation than either shorter or
longer periods. Bipolar stimulation, which involves placing two electrodes near each other
on a single nerve root, significantly outperforms bilateral or unipolar configurations in
diminishing inflammation. Lower frequency stimulation at 5 Hz, as opposed to 14 Hz,
favorably modulates autonomic activity by enhancing vagal and reducing sympathetic
responses. This aligns with findings of decreased pro-inflammatory cytokines (e.g., IL-2,
IL-13) and increased anti-inflammatory markers (e.g., IL-10), underscoring the therapeutic
potential of specific SNS techniques [85].

However, these insights stem from rodent studies, which inherently limit their ap-
plicability to human IBD due to differences in physiology and the disease’s complexity.
Short-term experimental designs may not adequately reflect long-term safety and thera-
peutic outcomes necessary for clinical application.

4.3. SNS Clinical Studies in IBD and Other Conditions

The SNS clinical trials, originally intended to address conditions like overactive blad-
der (OAB), urinary retention (UR), bladder pain syndrome/interstitial cystitis (BPS/IC),
fecal incontinence (FI), and diurnal incontinence (DI), have shown promising results. Four
out of five of these trials, while not initially targeting IBD treatment, have demonstrated
secondary outcomes that suggest a potential role for SNS in effectively managing IBD.

SNS has demonstrated varying degrees of effectiveness in treating bowel-related
diseases across different studies. In 2008, an observational study focusing on five CD
patients with fecal incontinence found that SNS led to improved continence, with notable
reductions in Wexner’s score from 15 to 6 and daily stool frequency from 7 to 2 times,
highlighting SNS’s effects in this subset of CD patients over a median of 14 months
(range 3–36). However, this study comes with its limitations, including a small sam-
ple size of only five patients, hindering the generalizability of its results. The lack of a
control group and relatively short follow-up period for some patients challenge long-term
efficacy and safety assessment. All participants selected had severe symptoms, resulting in
limited applicability to those with less severe manifestations [95].

A recent case study on a patient with refractory ulcerative proctitis (UP) undergoing
sacral nerve stimulation (SNS) demonstrated notable improvements in fecal incontinence,
disease activity, and histological outcomes. Notably, the Lichtiger Score, which assesses
disease activity, dropped from 11 to 4, a reduction maintained through the 18-month follow-
up. Fecal incontinence, measured by the Wexner Score, improved significantly, with a
slight increase in stability observed over time. Endoscopic and histological assessments,
indicated by the Mayo and Geboes Scores, showed sustained improvements. This case
also highlighted a reduction in daily fecal leaks and improved rectal barrier function,
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underscoring SNS’s potential beyond traditional incontinence treatment. Despite these
promising results, the study’s observational nature and the lack of a control group limit the
generalizability of findings, suggesting the need for more rigorous research [94].

A retrospective analysis involving 10 patients with severe defecation issues post-
intersphincteric resection revealed SNS achieved a 40% positive response rate. Notably,
median daily bowel frequency reduced from 10 to 6.5, and weekly fecal incontinence
episodes decreased from 7 to 4. Although changes in the Wexner score were not statistically
significant, 70% of participants avoided the necessity for a permanent colostomy after SNS
therapy, indicating its potential to significantly impact surgical outcomes. However, this
study’s retrospective nature, small cohort, and lack of a control group limit the extrapolation
of these results [93].

In a broader longitudinal study of 106 individuals with diverse pelvic floor disorders,
SNS demonstrated substantial benefits over the long term. Among fecal incontinence (FI)
sufferers, over 71% reported symptom improvement, with about 14% achieving complete
resolution. Yet, one-third of patients witnessed a reduction in therapeutic effects after
75 months, pointing to potential long-term efficacy issues. Device-related discomfort was
reported by 39% of patients, though the majority found relief through device adjustment; a
small fraction underwent surgical intervention or device removal. Despite these challenges,
SNS remains a minimally invasive, effective, and safe option, enhancing symptom man-
agement and life quality for many, underscoring its potential utility in IBD management
within specific patient subsets [92].

These findings underscore the need for rigorous, controlled studies to better under-
stand SNS’s role in IBD therapy and its long-term implications.

4.4. Tibial Nerve Stimulation in IBD Therapy and Other Conditions

Research in this field is still in its early stages. With limited but promising studies on
transcutaneous posterior tibial nerve stimulation (TPTNS) and percutaneous posterior tibial
nerve stimulation (PTNS), this novel approach suggests a potential to alleviate symptoms
for patients experiencing fecal incontinence and other bowel dysfunctions associated
with IBD.

One study reviewed the efficacy of TPTNS as a treatment for fecal incontinence
in IBD patients. A cohort of 12 patients with different durations of IBD was included.
Electrical stimulation to the posterior tibial nerve was delivered by self-adhesive electrodes
positioned behind the internal malleolus. After the 3-month treatment period, 41.6% of the
patients (5 out of 12) reported significant improvements in symptoms and quality of life.
However, only 8% of the patients (1 out of 12) exhibited a significant change in the Wexner
score. Among the patients who reported improvements, quality of life enhancements were
noted to be over 50%. Despite these positive findings, the improvement in Wexner scores
was not generalizable among the participants, leading to consideration of the variability
in response to TENS therapy. Additionally, the small sample size and the absence of a
control group undermines the ability to establish concrete evidence of TENS’s efficacy, as
factors such as natural disease progression or placebo effects cannot be ruled out. The lack
of standardization in concomitant treatments and the absence of objective physiological
measurements further limit the study’s conclusiveness, underscoring the need for more
comprehensive research in this area [96]. TPTNS is also studied in treating functional
non-retentive fecal incontinence in children. The results showed a significant decrease in
the incontinence score with TPTNS treatment compared to dietetic regulation and Kegel
exercises, but less effective compared to biofeedback [98].

PTNS is another form of TNS where a needle electrode is inserted above the medial
malleolus and slightly posterior to the tibia. In patients with multiple sclerosis, PTNS
showed positive results in treating neurogenic bowel dysfunctions, specifically FI and
functional constipation [99]. The treatment led to a significant reduction in the median
Cleveland Clinic Fecal Incontinence Score of 29% (12.0 to 8.5), particularly improving
incontinence for liquid, flatal incontinence, pads’ need, and lifestyle restrictions, indicating



Medicina 2024, 60, 729 14 of 20

that PTNS is an effective and minimally invasive treatment for MS patients suffering from
neurogenic bowel dysfunctions. However, this result should be cautiously interpreted. The
study’s limited sample size restricted its ability to effectively identify clinical and demo-
graphic predictors of a positive response to PTNS. Furthermore, the pathophysiological
mechanism underlying bowel dysfunction may differ significantly between MS and IBD.
Therefore, the findings of this study might not be directly applicable or generalizable to
patients with IBD [99]. Other studies have also shown that PTNS can improve symptoms
and quality of life for patients with combined medical treatment in different GI disorders,
highlighting the potential of TNS as an adjunctive treatment in managing IBD-related
symptoms [100,101].

In summary, TNS shows promise for symptomatic relief in IBD, but current evidence
is limited by small studies, the absence of control groups, and lack of long-term outcomes.
Given the distinct pathophysiological differences between IBD and other conditions like
multiple sclerosis, careful consideration of these initial findings is necessary. Further, robust
research is needed to confirm TNS’s effectiveness as an adjunctive IBD treatment.

5. Electrical Neuromodulation for Concurrent GI Motility Disorders in Quiescent IBD

Given the substantial overlap between symptoms of GI motility disorders and func-
tional GI disorders (FGID) in quiescent IBD patients [102], including irritable bowel syn-
drome (IBS) [103], anorectal dysfunction [104], and mood disorders [105], neuromodulation
emerges as a promising strategy for managing these conditions. The intertwining of IBS
and IBD, through shared genetic, immunological underpinnings and alterations in the
microbiota, underscores the necessity of a nuanced approach to treating the complex
symptomatology observed in IBD patients during remission phases [106,107].

SNS is extensively applied in the treatment of fecal incontinence, with proven efficacy,
as discussed earlier in this review [92,93,95]. Beyond its established role, SNS has also
emerged as a viable option for managing bladder dysfunctions, notably demonstrating
significant symptom alleviation in overactive bladder cases among adults [108]. Further-
more, SNS has shown benefits in ameliorating various urinary symptoms, particularly
for patients facing refractory urinary urgency–frequency issues [109]. Moreover, different
forms of electrical stimulation have shown promise in addressing a range of GI disorders,
indicating the versatile potential of neuromodulation in this domain.

The occurrence of IBS-like symptoms in IBD patients in remission not only diminishes
their quality of life but is also frequently associated with heightened levels of anxiety and
depression. Remarkably, a significant fraction of IBD patients in remission report symptoms
meeting the diagnostic criteria for IBS, with a higher prevalence observed in CD than in
UC. This correlation underscores the intricate relationship between IBS-type symptoms
and psychological well-being in IBD patients, emphasizing the importance of integrating
neuromodulation into comprehensive care strategies to address both the physical and
emotional facets of these conditions effectively [110].

Experimental models and clinical trials reveal the potential of SNS for treating visceral
hypersensitivity in IBS, a common comorbidity in quiescent IBD. In rat models, SNS
markedly reduced visceral hypersensitivity, indicated by lower abdominal withdrawal
reflex scores and improved autonomic functions [111]. Similarly, a randomized, double-
blind, placebo-controlled crossover study observed a marginal but notable reduction in IBS
symptoms with sub-sensory SNS in patients with diarrhea-predominant or mixed IBS. Due
to its small sample size and short duration, it limits the statistical power and generalizability
and may overlook the long-term efficacy and safety. In addition, a notable placebo effect
(52% of patients) was observed, hindering the assessment of the true therapeutic effect of
SNS [112].

Additionally, spinal cord stimulation, applied at the T5–T8 spinal level, demonstrated
potential in reducing pain intensity and frequency of diarrhea episodes in a pilot study
despite the absence of statistical significance. The choice of a majority of participants
to retain their devices post-trial suggests a subjective perceived benefit. Yet, the small
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cohort size and methodological constraints limit the generalizability of these results and
the establishment of a definitive causal link between neuromodulation and symptom
relief [113]. These preliminary findings underscore the necessity for further, more expansive
research to thoroughly evaluate the utility of neuromodulation in managing IBS symptoms
within the IBD population during remission phases, ensuring a holistic understanding of
its efficacy and safety profiles.

In summary, electrical neuromodulation offers a promising approach to managing GI
motility and functional disorders in quiescent IBD, particularly for symptoms similar to IBS,
anorectal dysfunction, and mood disturbances. SNS exemplifies this potential, especially
in enhancing life quality for patients in remission by addressing both physical symptoms
and emotional well-being.

6. Conclusions

In conclusion, the intricate gut–brain nexus underscores the pathogenesis of IBD,
with electrical neurostimulation emerging as a promising avenue for treatment. The
potential of VNS to modulate inflammatory responses through the HPA and cholinergic
anti-inflammatory pathways has been highlighted in both preclinical and clinical settings.
Despite promising outcomes in managing IBD and its associated symptoms like FI and
IBS, the need for further research to ascertain the long-term efficacy and safety of VNS
remains. Notably, the specific mechanisms underlying the benefits of neuromodulations are
not fully elucidated, and there is considerable variability in treatment parameters such as
stimulation intensity, frequency, and duration across studies, complicating the comparison
of results and the formulation of standardized protocols.

SNS and TNS, though less explored, offer alternative neuromodulatory approaches,
especially for IBD patients experiencing concurrent GI motility and functional GI disor-
ders. Preliminary evidence suggests that these modalities may effectively manage specific
symptoms, underscoring the potential for broader therapeutic applications.

However, the current landscape of electrical neuromodulation in IBD management
primarily focuses on symptom alleviation, with a significant gap in understanding its
effects on disease trajectory and progression. The advent of bioelectrical modulation holds
promise, yet the minimally invasive nature of VNS, SNS, or TNS does not preclude them
from potential side effects, necessitating personalized parameter adjustments.

The heterogeneity in IBD highlights the imperative for tailored treatments, advocating
for a comprehensive investigation into neurostimulation parameters to optimize thera-
peutic strategies. Additionally, while our review outlines promising preliminary findings,
we acknowledge the need for more comprehensive studies to confirm these results and
understand the long-term implications of neuromodulation in IBD. Despite the absence of
a consensus on the synergistic potential with conventional therapies, the evolving evidence
base signals a need for further refinement and research in bioelectrical modulation to
establish its place within the broader IBD treatment paradigm.
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