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Abstract: Background and Objectives: Heart failure (HF) is a prevalent and debilitating condition that
imposes a significant burden on healthcare systems and adversely affects the quality of life of patients
worldwide. Comorbidities such as chronic kidney disease (CKD), arterial hypertension, and diabetes
mellitus (DM) are common among HF patients, as they share similar risk factors. This study aimed to
identify the prognostic significance of multiple factors and their correlation with disease prognosis
and outcomes in a Jordanian cohort. Materials and Methods: Data from the Jordanian Heart Failure
Registry (JoHFR) were analyzed, encompassing medical records from acute and chronic HF patients
attending public and private cardiology clinics and hospitals across Jordan. An online form was
utilized for data collection, focusing on three kidney function tests, estimated glomerular filtration
rate (eGFR), blood urea nitrogen (BUN), and creatinine levels, with the eGFR calculated using the
Cockcroft–Gault formula. We also built six machine learning models to predict mortality in our
cohort. Results: From the JoHFR, 2151 HF patients were included, with 644, 1799, and 1927 records
analyzed for eGFR, BUN, and creatinine levels, respectively. Age negatively impacted all measures
(p ≤ 0.001), while smokers surprisingly showed better results than non-smokers (p ≤ 0.001). Males
had more normal eGFR levels compared to females (p = 0.002). Comorbidities such as hypertension,
diabetes, arrhythmias, and implanted devices were inversely related to eGFR (all with p-values <0.05).
Higher BUN levels were associated with chronic HF, dyslipidemia, and ASCVD (p ≤ 0.001). Higher
creatinine levels were linked to hypertension, diabetes, dyslipidemia, arrhythmias, and previous
HF history (all with p-values <0.05). Low eGFR levels were associated with increased mechanical
ventilation needs (p = 0.049) and mortality (p ≤ 0.001), while BUN levels did not significantly affect
these outcomes. Machine learning analysis employing the Random Forest Classifier revealed that
length of hospital stay and creatinine >115 were the most significant predictors of mortality. The
classifier achieved an accuracy of 90.02% with an AUC of 80.51%, indicating its efficacy in predictive
modeling. Conclusions: This study reveals the intricate relationship among kidney function tests,
comorbidities, and clinical outcomes in HF patients in Jordan, highlighting the importance of kidney
function as a predictive tool. Integrating machine learning models into clinical practice may enhance
the predictive accuracy of patient outcomes, thereby supporting a more personalized approach to
managing HF and related kidney dysfunction. Further research is necessary to validate these findings
and to develop innovative treatment strategies for the CKD population within the HF cohort.

Medicina 2024, 60, 831. https://doi.org/10.3390/medicina60050831 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina60050831
https://doi.org/10.3390/medicina60050831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0001-7872-973X
https://orcid.org/0000-0002-0456-1230
https://orcid.org/0009-0006-8718-9249
https://orcid.org/0000-0001-8193-7046
https://orcid.org/0000-0002-4688-9728
https://doi.org/10.3390/medicina60050831
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina60050831?type=check_update&version=1


Medicina 2024, 60, 831 2 of 12

Keywords: machine learning; heart failure; chronic kidney disease; mortality prediction; random
forest classifier

1. Introduction

Among cardiovascular diseases, heart failure (HF) is a progressive condition and one
of the leading causes of death globally. The prevalence of cardiac diseases continues to
rise, with HF significantly affecting healthcare systems and the quality of life of millions
worldwide [1–3]. HF patients face a high risk of comorbidities like chronic kidney disease
(CKD), arterial hypertension, and diabetes mellitus (DM) due to shared risk factors such
as older age, obesity, and tobacco use [4–6]. These comorbidities correlate with higher
mortality risk, increased healthcare costs, and worse outcomes [4,7]. Most HF cases coexist
with at least two chronic conditions, underscoring the need for comprehensive care [4,7].

The Kidney Disease Improving Global Outcomes (KDIGO) guidelines define CKD as
a structural or functional kidney abnormality lasting more than three months [8]. CKD is
characterized by an estimated glomerular filtration rate (eGFR) below 60 and/or chronic
kidney damage. Advanced stages of CKD are linked to poor prognosis, progression to
end-stage renal disease (ESRD), cardiovascular disease (CVD), and death [8,9]. Patients
with CKD have a higher prevalence of all forms of CVD, including myocardial infarction
(MI), peripheral artery disease (PAD), and cerebrovascular accidents (CVA) [8]. Serum
creatinine levels and eGFR estimates are vital markers in managing HF patients [8,10].
Elevated creatinine levels (>0.3 mg/dL) are associated with increased hospital stay and
mortality [11]. GFR depends on renal plasma flow and autoregulatory mechanisms like
vasoconstriction of afferent and efferent arterioles, which maintain GFR despite cardiac
output decline [10,12].

CKD often exacerbates HF and acts as a disease multiplier, increasing hospitalization
and mortality risks [4,10]. Cardiorenal syndrome illustrates the bidirectional nature of
heart and kidney disease, where impairment of one organ can lead to dysfunction in the
other [4]. The ‘low flow theory’ proposes that renal hypoperfusion triggers baroreceptor
activation, RAAS activation, and tubular/glomerular damage [7,12]. In the Atherosclerosis
Risk in Communities study, stage ≥3 CKD was associated with a 1.9-fold higher risk of
HF [4,13,14].

Machine learning (ML) models have proven effective in managing cardiac diseases
like HF [15,16]. Random Forest Classifiers aggregate predictions from multiple decision
trees to create a more accurate predictive model. By reducing overfitting through averaging,
the random forest approach enhances generalization and minimizes noise. This study aims
to correlate kidney function measures (creatinine, BUN, and GFR) with outcomes in HF
patients in Jordan and predict mortality using advanced machine learning techniques.

2. Methods
2.1. Study Design and Setting

Data were used from the Jordanian Heart Failure Registry, which was made by gath-
ering medical records of acute and chronic HF patients who reviewed public or private
cardiology clinics and hospitals across Jordan. This registry method has been previously
described. The characteristics of the JoHF registry and the protocol of our study were
registered at clinicaltrials.gov (NCT04829591). Institutional Review Board (IRB) approval
was taken from appropriate centers. Records were progressively followed up at 3, 6, 9,
and 12 months to register new lab work and to see if new complications developed and,
therefore, if they resulted in any change in the medication list.

2.2. Data Collection

An online form was used to collect the data; this form was filled out by healthcare pro-
fessionals who had access to the systems. It contained 10 sections, which involved the per-
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sonal medical history of the patient, the status of his/her heart failure, all labs/procedures
conducted on the patient, outcomes of treatment such as the need for mechanical ventilation,
duration of hospital stay, and, lastly, whether morbidities or mortalities occurred.

In this study, we focused on studying the factors associated with the 3 different
kidney function tests and how, therefore, these tests affect the outcomes. The first measure
studied was the estimated glomerular filtration rate (eGFR), which was calculated using
the Cockcroft GFR formula, which depended on age, weight, and creatinine level. The
second test was the blood urea nitrogen (BUN), which is considered normal if the level
is in-between 7–20 mg/dL and abnormally high when it is >20 mg/dL. The last measure
studied was the creatinine level, which is normal when the level is ≤115 µmol/L and high
when levels are >115 µmol/L. Acute HF was used when patients’ record was taken from
the ER, whether it was the first presentation of HF or if it was an acute-on-chronic HF
exacerbation. Mechanical ventilation was documented if it was required during patients’
stay in the hospital. Meanwhile, death was a 30-day mortality.

2.3. Statistical Analysis

The data were entered using Microsoft Office Excel 2019, then imported and analyzed
using IBM SPSS v.25 software. The relationship between exposures and outcome was tested
using the t-test and Chi-square for continuous and categorical variables, respectively. A
p-value <0.050 was considered statistically significant. We employed multiple imputations
in R (version 4.4.0) using the “mice” package to address missing data, generating five
imputed datasets through Predictive Mean Matching (PMM). Post-imputation, the same
statistical analyses were performed on each dataset, with results pooled to provide final
estimates. This approach ensured robust handling of missing data and enhanced the relia-
bility of our findings, thereby accounting for the uncertainty introduced by the imputation
of missing data.

2.4. Machine Learning Analysis

This study utilized a machine learning-based approach for predicting ‘Death’. For
handling missing values, median imputation was applied to numerical columns, while
the most frequent value was used for categorical columns. All numerical data were stan-
dardized using a StandardScaler (version 0.24), ensuring comparability across features.
Recursive Feature Elimination with Cross-Validation (RFECV) was utilized, employing a
Random Forest Classifier as the estimator to identify the most relevant features for pre-
dicting the target variable. The dataset was divided into training, validation, and test sets,
with 40% of the data reserved for the combined validation and test sets. To mitigate class
imbalance, the training set underwent resampling using the SMOTEENN technique, which
combines Synthetic Minority Over-sampling (SMOTE) with Edited Nearest Neighbors
(ENN), improving the model’s performance on minority classes.

A grid search with fivefold cross-validation was performed on the resampled training
data to find the optimal set of hyperparameters. The best parameters identified were then
used to train the final models. Six different machine learning models were evaluated to de-
termine the most effective in predicting the target variable: Random Forest Classifier (RFC),
Logistic Regression (LR), Support Vector Machine (SVM), AdaBoost Classifier, K-Nearest
Neighbors (KNN), and Gradient Boosting Classifier (GBC). The models were assessed using
several metrics, including accuracy, precision, recall, F1 score, and the Area Under the ROC
Curve (AUC). To assess the influence of each feature on the model’s predictions, we utilized
Permutation Feature Importance. This method evaluates the importance of each feature by
observing the effect on model accuracy when the feature’s values are randomly shuffled,
thereby disrupting the association between the feature and the outcome. This approach
provides a straightforward and intuitive means of understanding feature relevance in the
context of the model’s predictive capabilities.
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3. Results
3.1. Characteristics of the Included Patients

Based on Jordan’s heart failure registry (JoHFR), 2151 heart failure patients were
included; out of them, 644 medical records were used to study eGFR, 1799 records were
used to study BUN, and lastly, 1927 records were used to study creatinine levels. Across all
tests, age had a negative effect (p ≤ 0.001); meanwhile, surprisingly, smokers had better
results than nonsmokers (p ≤ 0.001).

3.2. The Association between Patients’ Characteristics and Kidney Function

eGFR was normal in 371 patients but low in 273, as shown in Table 1. The total female
count was 241, 121 of which had low eGFR. Meanwhile, the total male count was 403, with
152 patients with low eGFR. Therefore, males had more normal eGFR levels than females
(p = 0.002). Moreover, a positive medical history of hypertension, diabetes, arrythmias, and
implanted devices all affected eGFR levels inversely (all with p-values < 0.05). Patients
with a family history of ASCVD or premature deaths had lower eGFR results compared to
their counterparts (all with p-values <0.05). BUN was normal in 437 patients and high in
1362 patients, as shown in Table 2. In total, 174 males and 263 females had normal BUN
levels. However, 594 males and 768 females had high BUN. For patients with chronic HF,
dyslipidemia, and a previous history of ASCVD, BUN results were significantly higher
(p ≤ 0.001 for all). Family history of premature deaths and ASCVD affected BUN levels
negatively (p ≤ 0.001 for both). As for creatinine levels, 1113 patients had normal levels
while 814 patients had abnormally high levels, as shown in Table 3. The distribution
between males and females was as follows: the total number of males was 808, and 345 had
high Cr. Meanwhile, females were 1119, out of them 469 had high Cr. Co-morbidities
such as hypertension, diabetes, dyslipidemia, arrhythmias, and prior history of HF all led
to higher Cr levels (all with p-values <0.05). Moreover, chronic HF patients had a higher
reading of Cr compared to acute HF (p = 0.004). A positive family history of ASCVD was
associated with high Cr (p ≤ 0.001). Regarding outcomes, patients with low eGFR levels
had higher rates of need of mechanical ventilation (p ≤ 0.001) and death (p ≤ 0.001). On
the other hand, higher levels of BUN did not affect the need for mechanical ventilation or
death. Moreover, the need for mechanical ventilation and death rates were both higher in
patients with high Cr levels.

Table 1. The association between GFR and patient characteristics.

Variable, n (%)
Normal GFR

mL/min/1.73 m2

(≥60) (n = 373 **)

Low GFR
mL/min/1.73 m2

(<60) (n = 277 **)
p-Value

Gender
Male 251 (67.7) 152 (55.7)

0.002 *Female 120 (32.3) 121 (44.3)

Age (years)

<40 22 (6.3) 3 (1.2)

<0.001 *
40–49 30 (8.5) 2 (0.8)
50–59 76 (21.7) 28 (11.2)
60–69 106 (30.2) 72 (28.9)
≥70 117 (33.3) 144 (57.8)

Hypertension Yes 263 (77.1) 234 (89.3)
<0.001 *No 78 (22.9) 28 (10.7)

Diabetes
No 118 (34.6) 61 (23.3)

0.003 *Yes 223 (65.4) 201 (76.7)

Smoking No 199 (58.4) 211 (80.5)
<0.001 *Yes 142 (41.6) 51 (19.5)

Alcohol
No 334 (97.9) 259 (98.9)

0.387Yes 7 (2.1) 3 (1.1)
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Table 1. Cont.

Variable, n (%)
Normal GFR

mL/min/1.73 m2

(≥60) (n = 373 **)

Low GFR
mL/min/1.73 m2

(<60) (n = 277 **)
p-Value

Type of Heart Failure Chronic 276 (75.2) 201 (73.1)
0.544Acute 91 (24.8) 74 (26.9)

Dyslipidemia No 121 (35.5) 97 (37.0)
0.697Yes 220 (34.5) 165 (63.0)

Obesity No 303 (88.9) 235 (89.7)
0.742Yes 38 (11.1) 27 (10.3)

Family History of
Premature Death

No 306 (89.7) 220 (84.0)
0.035 *Yes 35 (10.3) 42 (16.0)

Family History of
ASCVD

No 326 (95.6) 156 (59.5)
<0.001 *Yes 15 (4.4) 106 (40.5)

History of ASCVD No 47 (16.3) 40 (17.2)
0.783Yes 242 (83.7) 193 (82.8)

History of
Arrhythmias

No 261 (76.1) 157 (61.4)
<0.001 *Yes 109 (23.9) 118 (38.6)

History of Implanted
Device

No 283 (97.9) 220 (94.4)
0.034 *Yes 6 (2.1) 13 (5.6)

History of Structural
Heart Disease

No 271 (93.8) 213 (91.4)
0.303Yes 18 (6.2) 20 (8.6)

History of HF No 106 (28.6) 65 (23.7)
0.162Yes 264 (71.4) 209 (76.3)

Admissions in Past
6 Months

0 206 (57.4) 141 (51.6)

0.474
1 67 (18.7) 53 (19.4)
2 22 (6.1) 15 (5.5)

>2 64 (17.8) 64 (23.4)

Mechanical
Ventilation

No 255 (97.3) 207 (93.7)
0.049 *Yes 7 (2.7) 14 (6.3)

Death
No 351 (94.1) 224 (80.9)

<0.001 *Yes 22 (5.9) 53 (19.1)
Abbreviations: GFR: Glomerular Filtration Rate; HF: Heart Failure; ASCVD: Atherosclerotic Cardiovascular
Disease. Values in parentheses indicate the percentage of patients within that subgroup relative to the total group
size for that variable. * Statistical significance was determined with a p-value ≤ 0.05. ** Totals for some variables
may not amount to the total group size due to missing values.

Table 2. The association between BUN and patient characteristics.

Variable, n (%) Normal BUN mg/dL
(n = 437)

High BUN mg/dL
(>20)

(n = 1362)
p-Value

Gender
Male 174 (39.8) 594 (43.6)

0.163Female 263 (60.2) 768 (56.4)

Age (years)

<40 27 (6.3) 38 (3.0)

<0.001 *
40–49 45 (10.5) 72 (5.8)
50–59 83 (19.3) 178 (14.3)
60–69 116 (27.0) 326 (26.1)
≥70 158(36.8) 633 (50.8)

Hypertension No 86 (20.6) 244 (19.0)
0.459Yes 331 (79.4) 1042 (81.0)

Diabetes
No 135 (32.4) 379 (29.4)

0.243Yes 282 (67.6) 912 (70.6)
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Table 2. Cont.

Variable, n (%) Normal BUN mg/dL
(n = 437)

High BUN mg/dL
(>20)

(n = 1362)
p-Value

Smoking No 248 (59.5) 921 (71.6)
<0.001 *Yes 169 (40.5) 365 (28.4)

Alcohol
No 412 (98.8) 1281 (99.6)

0.060Yes 5 (1.2) 5 (0.4)

Type of HF Chronic 330 (75.3) 896 (66.4)
<0.001 *Acute 108 (24.7) 454 (33.6)

Dyslipidemia No 119 (28.5) 627 (48.8)
<0.001 *Yes 298 (71.5) 659 (51.2)

Obesity No 378 (90.6) 1192 (92.7)
0.177Yes 39 (9.4) 94 (7.3)

Family History of
Premature Death

No 365 (87.5) 1259 (97.9)
<0.001 *Yes 52 (12.5) 27 (2.1)

Family History of
ASCVD

No 373 (89.4) 903 (70.5)
<0.001 *Yes 44 (10.6) 380 (29.0)

History of ASCVD No 47 (13.5) 218 (22.2)
<0.001 *Yes 302 (86.5) 766 (77.8)

History of
Arrhythmias

No 267 (65.3) 798 (67.4)
0.329Yes 170 (34.7) 567 (32.6)

History of
Implanted Device

No 334 (95.7) 946 (96.1)
0.720Yes 15 (4.3) 38 (3.9)

History of Structural
Heart Disease

No 329 (94.3) 920 (39.5)
0.609Yes 20 (5.7) 64 (6.5)

History of HF No 69 (15.8) 265 (19.3)
0.098Yes 368 (84.2) 1107 (80.7)

Admissions in Past
6 Months

0 166 (39.1) 545 (41.1)

0.031 *
1 90 (21.2) 241 (18.2)
2 43 (10.1) 93 (7.0)

>2 126 (29.6) 446 (33.6)

Mechanical
Ventilation

No 227 (93.8) 912 (95.3)
0.340Yes 15 (6.2) 45 (4.7)

Death
No 392 (89.3) 1243 (90.0)

0.667Yes 47 (10.7) 138 (10.0)
Abbreviations: BUN: Blood Urea Nitrogen; HF: Heart Failure; ASCVD: Atherosclerotic Cardiovascular Disease.
Values in parentheses indicate the percentage of patients within that subgroup relative to the total group size for
that variable. * Statistical significance was determined with a p-value ≤ 0.05.

Table 3. The association between creatinine level and patient characteristics.

Variable, n (%) Normal Cr µmol/L
(n = 1113)

High Cr µmol/L
(>115)

(n = 814)
p-Value

Gender
Male 463 (41.6) 345 (42.4)

0.730Female 650 (58.4) 469 (57.6)

Age

<40 59 (5.8) 11 (1.4)

<0.001 *
40–49 95 (9.3) 32 (4.2)
50–59 197 (19.3) 87 (11.3)
60–69 271 (36.5) 194 (25.3)
≥70 401 (39.2) 443 (57.8)



Medicina 2024, 60, 831 7 of 12

Table 3. Cont.

Variable, n (%) Normal Cr µmol/L
(n = 1113)

High Cr µmol/L
(>115)

(n = 814)
p-Value

Hypertension No 42 (23.7) 111 (13.9)
<0.001 *Yes 779 (76.3) 688 (86.1)

Diabetes
No 380 (37.1) 175 (21.9)

<0.001 *Yes 645 (62.9) 625 (78.1)

Smoking No 645 (63.2) 611 (76.5)
<0.001 *Yes 376 (36.8) 188 (23.5)

Alcohol
No 1012 (99.1) 797 (99.7)

0.060Yes 9 (0.9) 2 (0.3)

Type of HF Chronic 792 (72.1) 538 (65.9)
0.004 *Acute 307 (27.9) 278 (34.1)

Dyslipidemia No 417 (40.8) 371 (46.4)
0.017 *Yes 604 (59.2) 428 (53.6)

Obesity No 935 (91.6) 738 (92.4)
0.540Yes 86 (8.4) 61 (7.6)

Family History of
Premature Death

No 976 (95.6) 753 (94.2)
0.190Yes 45 (4.4) 46 (5.8)

Family History of
ASCVD

No 979 (95.9) 401 (50.2)
<0.001 *Yes 42 (4.1) 398 (49.8)

History of ASCVD No 164 (20.1) 118 (18.8)
0.519Yes 650 (79.9) 510 (81.2)

History of
Arrhythmias

No 695 (62.7) 465 (56.6)
0.007 *Yes 414 (37.3) 357 (43.3)

History of
Implanted Device

No 781 (95.9) 605 (96.3)
0.703Yes 33 (4.1) 23 (3.7)

History of Structural
Heart Disease

No 761 (93.5) 587 (93.5)
0.989Yes 53 (6.5) 41 (6.5)

History of HF No 227 (20.5) 131 (15.9)
0.011 *Yes 882 (79.5) 692 (84.1)

Admissions in Past 6
Months

0 457 (42.8) 324 (40.0)

0.368
1 195 (18.2) 159 (19.7)
2 84 (7.9) 62 (7.7)

>2 333 (31.1) 264 (32.6)

Mechanical
Ventilation

No 648 (96.6) 559 (93.3)
0.008 *Yes 23 (3.4) 40 (6.7)

Death
No 1064 (95.0) 688 (83.0)

<0.001 *Yes 56 (5.0) 141 (17.0)
Abbreviations: Cr: creatinine; HF: heart failure; ASCVD: atherosclerotic cardiovascular disease. Values in
parentheses indicate the percentage of patients within that subgroup relative to the total group size for that
variable. * Statistical significance was determined with a p-value ≤ 0.05.

3.3. Machine Learning Model Performance

In the comparative analysis of predictive models shown in Table 4, the Random
Forest Classifier (RFC) and eXtreme Gradient Boosting (XGBoost) showed similar accuracy
(90.02%), with RFC exhibiting a slightly higher Area Under the ROC Curve (AUC) of
80.51%, compared to 78.21% for XGBoost (Figure 1). Logistic Regression (LR) demonstrated
a balance between sensitivity (72.09%) and specificity (73.97%), with an AUC of 79.15%.
The Support Vector Machine (SVM) model, while having lower accuracy (80.74%), showed
a moderate AUC of 73.65%. The specificity of the models varied, with RFC showing the
highest (96.39%) and LR the lowest (73.97%).
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Table 4. Performance metrics of the used algorithms for death prediction.

Model Accuracy AUC Sensitivity Specificity

Random Forest Classifier 90.02% 80.51% 32.56% 96.39%
Logistic Regression 73.78% 79.15% 72.09% 73.97%

Support Vector Machine 80.74% 73.65% 46.51% 84.54%
eXtreme Gradient Boosting 90.02% 78.21% 39.53% 95.62%
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3.4. Feature Importance Analysis

The Permutation Feature Importance analysis highlighted length of hospital stay
and creatinine >115 as the most significant features influencing the model’s predictions
(Figure 2). Other features, such as ‘Mechanical Ventilation,’ chronic kidney disease, and
dyslipidemia, also showed a notable impact on the model’s performance. Conversely,
factors like ‘Alcohol Consumption’ and ‘Estimated Glomerular Filtration Rate <60’ had
the least impact, suggesting that their roles in predicting the target variable Death are less
critical in the context of the models tested.
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Figure 2. Permutation Feature Importance for the top-performing model, highlighting the mean
decrease in model performance when each feature’s information is shuffled. The error bars represent
the standard deviation of the permutation importance over multiple shuffles.

4. Discussion

The heart and kidneys play a significant role in maintaining fluid homeostasis and
normal blood pressure in the body [7]. Individuals with CKD have mortality rates that are
more than double the rate in the general population [8]. Our results show that patients with
lower eGFR levels had higher mortality rates (19.1%), whereas HF patients with normal
eGFR were 5.9%. Approximately more than 50% of patients with CKD suffer and die from
CVD [7,8]. Cardio-renal syndrome is characterized based on which organ is primarily
affected and whether it is acute or chronic damage [7]. In fact, patients with CKD are more
likely to die from CVD than to progress to end-stage renal disease (ESRD) [8]. For that
reason, improving or worsening the accuracy of GFR assessment has implications at the
individual and population levels [7,17]. This study is about the multifaceted relationship
between multiple kidney function measures, comorbidities, and clinical outcomes in heart
failure patients, shedding light on several intriguing findings. For age, we observed a
notable trend among older patients who exhibited higher Glomerular Filtration Rate (GFR)
levels, increased Blood Urea Nitrogen (BUN) levels, and elevated creatinine (Cr) levels.
Sex disparities in kidney health became apparent, with males displaying more normal
eGFR levels than females, suggesting potential gender-related variations in kidney function.
Females were more likely to have lower eGFR levels for a count of 121 out of 241; in
comparison to males, only 152 out of 403 had low eGFR. This could be due to the higher
body fat distribution in females; obesity, specifically central, plays a role in abnormal kidney
function tests. Almost 30% of CKD Medicare patients have HF, compared with just 6% of
Medicare patients without CKD [8]. Even the risk of incident HF is threefold greater in
individuals with eGFR 90 mL/min/1.73 m2 [8,10]. This age–gender-related phenomenon
raises questions about the intricate interplay between these factors and kidney health.
The impact of common comorbidities was evident in our findings. Patients with diabetes
mellitus displayed lower GFR and elevated Cr levels, indicating a potential link between
diabetes and kidney dysfunction. Similarly, hypertensive patients exhibited lower GFR and
higher Cr levels, underscoring the well-established association between high blood pressure
and renal health. These results emphasize the need to proactively manage these conditions
to preserve kidney function. Smokers surprisingly manifested lower BUN and Cr levels and



Medicina 2024, 60, 831 10 of 12

higher GFR levels; 41.6% had normal eGFR on the other hand, and 19.5% had low eGFR.
However, the unlimited adverse effects of smoking on overall health necessitate a cautious
interpretation of these results. The smoker’s paradox is an interesting phenomenon where
smokers sometimes appear to have better cardiovascular outcomes than non-smokers [18].
A few factors could explain this anomaly. For instance, smokers in this study may have
been younger or had fewer baseline health risks compared to non-smokers, influencing
kidney function measurements. Another possibility is survival bias; those with severe
kidney disease or other health conditions might have quit smoking, leaving a relatively
healthier group of current smokers. Confounding factors like socioeconomic status, diet,
and healthcare access might also play a part. Moreover, chronic inflammation due to
smoking could alter biochemical pathways, potentially masking kidney function problems.
While the findings are intriguing, they need careful interpretation and more research to
understand the relationship between smoking and kidney function fully. Patients with
dyslipidemia had lower BUN (298 out of 437) and Cr levels, suggesting better kidney
health. By contrast, atherosclerosis patients had lower GFR levels and higher bilirubin and
Cr levels, highlighting the tangled connection between cardiovascular health and kidney
function. Arrhythmias were notably more prevalent in patients with higher Cr levels and
lower GFR levels.

For the clinical outcomes, represented by a number of hospital admissions, need
for mechanical ventilation, and mortality rate, a prognostic value of kidney function in
heart failure patients was evident. Elevated Cr levels were linked to a higher need for
mechanical ventilation (6.7%) and an increased mortality rate (17%) vs. 3.4% and 5%,
respectively. Similarly, lower GFR levels were associated with an increased need for
mechanical ventilation and higher mortality, reinforcing the critical role of kidney function
in predicting patient outcomes. CKD appears more common in HFpEF. Nevertheless, worse
outcomes are mostly related to HFpEF and HFrEF [7]. The prevalence of CKD is higher
among patients with acute decompensated heart failure (ADHF), ranging from 30 to 60%,
depending on the definition used [10]. Natriuretic peptides can be elevated, among others,
because of the low elimination of the molecules by the injured kidneys [7]. Increased
levels of BNP and NT-proBNP may signal an elevated risk for accelerated progression
of CKD to ESRD [7]. B-type natriuretic peptide (BNP) may be an additional marker to
detect the involvement of kidneys in ventricular stress [7]. Remarkably, bilirubin levels did
not significantly impact the number of admissions or the need for mechanical ventilation,
signifying a distinct role for bilirubin in this context. A decrease in glomerular filtration
rate (GFR) seems to be the most significant determinant of the overall progression of HF [7].
Damman et al. have reported that nearly half of the patients with heart failure suffer
from decreased eGFR < 60 mL/min per 1.73 m2 were 18/1000 person years [7]. GFR
estimation and creatinine concentration are nowadays recommended to assess and classify
the impairment and dysfunction of the kidneys in HF [10]. In hospital, worsening renal
function (WRF), which is often defined as an increase in creatinine of at least 0.3 mg/dL,
is observed in 23% of HF patients [5,10]. The employment of machine learning models,
particularly the Random Forest Classifier, has proven to be a powerful analytical tool in our
study. The Random Forest’s higher AUC indicates its robustness in handling the complexity
and nuances within our dataset, thus providing a reliable prediction for mortality in heart
failure patients. This aligns with the evidence suggesting that machine learning models can
capture interactions between clinical variables more effectively than traditional statistical
methods. The model’s ability to discern the prognostic importance of variables like ‘Length
of Hospital Stay’ and ‘Creatinine >115’ further emphasizes its utility in clinical settings.
Moreover, the observed predictive power of the Random Forest Classifier underscores
the potential for implementing such AI-driven tools in healthcare systems to aid in early
detection and intervention, ultimately improving patient outcomes. However, it is critical
to approach the integration of such models with caution, given their dependency on the
quality and breadth of the data they are trained on, as well as their interpretability in
clinical decision making. However, some limitations exist in the usage of creatinine serum
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level, as its levels are biased due to many factors, for example, age, gender, diet, and body
mass index [10]. A common condition seen in advanced heart failure is muscle wasting,
which shows a decrease in creatinine levels (with overestimation of GFR) [10]. However,
to overcome their limits, several emerging glomerular and tubular biomarkers have been
proposed over the last years, alongside imaging techniques that could complement the
laboratory data exploring different pathophysiological pathways [10]. Both conventional
HF risk factors and kidney-specific risk factors, such as anemia, acid/base imbalances,
uremic toxins, bone mineral abnormalities, malnourishment, and myocardial stunning,
are more common in patients with chronic kidney disease (CKD) [8]. Optimizing care for
patients with HF and CKD hence requires a multidisciplinary therapeutic approach [4].
Clinical practice recommendations advocate the examination and treatment of iron-deficient
anemia in this patient population since anemia is frequent in CKD and can independently
increase the risk of hospitalization and mortality in persons with HF [4]. Early diagnosis
and predictable prognosis help to systematically manage and discover new treatment
methods [19]. Since conventional HF medications are underutilized in this population,
more focused therapies may improve outcomes for individuals with renal disease [8]. It is
important to acknowledge several limitations in this study. First, due to its observational
design, this study could only establish associations rather than causation. Second, these
associations may be influenced by various confounding variables. Third, this study’s
limited follow-up period for assessing patient outcomes serves as an additional constraint.

5. Conclusions

In conclusion, this study underscores the complex interplay between kidney function
measures, various comorbidities, and clinical outcomes in heart failure patients in Jordan.
These findings emphasize the critical role of kidney functions as a prognostic indicator and
stress the need for a comprehensive, multidisciplinary approach to managing both cardiac
and renal aspects of heart failure. Machine learning models, particularly the Random
Forest Classifier, have provided substantial predictive insights, highlighting its potential as
a clinical decision-support tool. The model’s notable accuracy and AUC reflect its capability
to navigate multifaceted clinical data and effectively identify key prognostic variables. This
analytical prowess points towards a future where machine learning can assist clinicians
in tailoring interventions more precisely for the heart failure population with coexisting
CKD, thus fostering the advancement of personalized patient care. Nevertheless, the path
forward mandates further research to refine these models, enhance their interpretability, and
validate their efficacy across a wider spectrum of patient populations. Continued efforts
are vital to evolve and substantiate innovative heart failure treatments for individuals
with chronic kidney disease, ultimately aiming to improve outcomes and quality of life.
Despite the absence of baseline data for hemoglobin and nutritional evaluation scores in
this study, the current analysis provides valuable insights into the relationships between
kidney function measures and patient outcomes. Future research should include these
scores to refine predictive models and offer a comprehensive understanding of anemia
management and nutritional status in CKD and HF populations.
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