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Abstract: The goal of this literature review was to outline the research currently conducted on
smart meter (SM) adoption and its connection to building occupant behavior to better understand
both SM technology and SM customers. We compiled our findings from the existing literature and
developed a holistic understanding of the socio-demographic factors that lead to more or less energy
use, the methods used to group and cluster occupants on the basis of energy use, how occupant
energy use profiles are developed, and which socio-psychological determinants may influence
SM adoption. Our results highlight 11 demographic variables that impact building energy use,
find 9 methods commonly used to profile occupants on the basis of energy usage, and highlight
13 socio-psychological variables than can be utilized to better understand SM adoption intentions.
The review findings two major deficiencies in the existing literature. First, this review highlights
the lack of existing interdisciplinary research that combines occupant behavior with SM data and
a clear socio-psychological framework. Second, this review underscores certain data limitations in
existing SM research, with most research being conducted only on residential or office buildings
and geographically in North America or Western Europe. Final policy recommendations center on
increased need for interdisciplinary SM research and the need for an expanded understanding of
occupant behavior and SM research across different geographies.

Keywords: smart metering; building occupant behavior; socio-demographics of energy use

1. Introduction
1.1. Energy Metering

As there is an ever-growing need to improve the energy efficiency of buildings, it is of
utmost importance to obtain feedback on energy consumption. With the development of
energy metering technology [1], it became possible to perform deeper analysis of energy
usage patterns, habits, and peculiarities of buildings. In the early stages of energy metering,
mostly analogue devices were installed, which could only be read or registered manually.
In most buildings, until recently, only monthly or yearly readings were available, which
made it impossible to analyze the energy consumption patterns in detail. Typically, utility
companies read these meters, of which there are electricity, gas, and heat meters, but in
some cases also heat cost allocators. In the case of electricity meters, three basic types can
be distinguished, namely, flat rate, interval, and smart meters (SMs). Flat rate meters only
measure the consumed electricity, regardless of the time of consumption, while interval
meters make it possible to introduce different tariffs for different (peak/off-peak) periods.
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Through the development of metering and IT technology, it became possible to read
meters more frequently and send and save the measured data on a server or central
unit. The more frequent meter reading can be achieved even without installing any
additional hardware up to a resolution of 15–30 min, and with additional hardware,
the resolution can reach a finer than minute detail. There have been countless research
projects aimed at analyzing building consumption habits and trends in the past decades;
however, due to limitations of resources and budget, that research only focused on a few
selected buildings. With the development and increased use of SM technology, researchers
have the opportunity to analyze larger clusters of buildings and derive more general,
statistically relevant, conclusions from the measured data.

This research expands on existing SM research in two key areas. First, this paper
highlights existing gaps in SM and occupant behavior research, underscoring the need for
increased interdisciplinary research and a more holistic understanding of occupants them-
selves. Second, this research highlights the building type and geographic concentration
of existing SM research and emphasizes the need for a more diverse pool of occupants
in order to better understand varied, diverse motivations and energy usages as SMs are
increasingly deployed globally. In order to pinpoint these deficiencies, we utilized research
from key areas of SM adoption and implementation, namely, background research on
existing technology, current barriers and limitations, demographic indicators of energy
use, occupant behavior research, and socio-demographic factors related to energy efficient
technology adoption. This paper marries together key fields of SM research to develop a
more holistic understanding of occupants and their energy use and offer a mechanism for
researchers and policymakers to implement more interdisciplinary methods to promote
widespread SM deployment.

1.2. Smart Meter Technology

SMs are electronic devices that record occupant energy consumption and share this
information with utilities, allowing two-way communication between consumers and
energy providers [2]. SMs measure electricity, heat, and gas consumption, with the former
being the most common type, and less research focused on the latter two [2]. Three key SM
benefits have been outlined in the literature [2–5]:

1. Providing more accurate and accessible energy consumption data, allowing customers
to better understand their energy use and make appropriate adjustments. This in-
cludes the non-intrusive load monitoring as well, where only a single meter’s data is
needed to analyze the appliances’ consumption patterns.

2. Utilities or other providers can better tailor programs and refine their services ac-
cording to this consumption data, and, with a better understanding of consumption
patterns, can secure the energy supply, reduce costs, ensure electric grids remain sta-
ble, or even identify affected areas during emergency situations such as blackouts [4].

3. Finally, SM allows energy to be produced and consumed in an efficient manner,
thereby helping the planet limit greenhouse gas (GHG) emissions to combat cli-
mate change. More advanced SMs can even control household appliances and help
customers better regulate their energy consumption on the basis of times of lesser
demand or on the basis of when electricity prices are cheapest, an idea known as
demand response (DR) [4].

Given the potential of SM and these benefits, there has been an uptake in SM technol-
ogy. At the end of 2016, there were 700 million SMs installed globally, with over half of
those in China [6]. Aside from China, Europe leads in SM implementation; a European
Union directive set an ambitious goal of 80% customer penetration by 2020 [7]. One par-
ticular study compiled a database of smart grid projects from 2002 to 2017, finding that
a total of 950 projects have been launched in the European Union or within EU member
states, spanning 50 countries with investments of nearly EUR 5 billion [8]. As of 2019,
there were 94.8 million SMs installed in the United States [9], and notably Consolidated
Edison, a utility company that serves New York City, has invested USD 1.4 billion in the
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technology [10]. Additionally, one notable review mentions the growing importance of
installing SMs in developing countries to improve overall efficiency of energy distribu-
tion [4]; these developments will be crucial in preventing energy theft, which has a severe
monetary impact on utility companies and impacts overall system security [11]. Overall,
these numbers paint a broad picture of the continued global increase in SM technology use
and implementation.

1.3. Why Are SMs Not as Effective as Originally Intended?

Given the large global uptake in SMs, one would expect widespread success with the
technology. However, there are many factors that inhibit the technology from performing
at peak efficiency. In one project, EnSURE [12,13], which highlights the need for interdisci-
plinary approaches and increased stakeholder and public engagement in energy efficiency
planning, researchers found that when customers had a negative experience with certain
technologies, utilization was reduced. For example, energy providers may add fees or
change pricing policies once customers reduce their consumption in order to maintain
profit, which leads to negative customer experiences. From a regulatory standpoint, there
must be better management on such providers so that customers are not gouged with fees
once they reduce their energy use. On the opposite side, many distributers or retailers
face issues with associated SM costs, and how those costs can be equitably distributed
among those stakeholders [14]. To address this concern, researchers have used dynamic
modeling methods to better understand coordination among stakeholders and identify
ways to recover costs among actors [14]. Researchers find that not only are costs and bene-
fits for each stakeholder key, but also better understanding behaviors among the varied
actors involved in the process [14]. However, this process proves complicated, and the
intricacies of coordination among actors and intricate cost recovery necessary may explain
some hesitancy in widespread SM deployment [14]. Further, some issues are related to
the technology itself; one study lost nearly 15% of the SM data they sought to collect due
to transmission problems [15]. It is also likely that some SMs are installed but proper
maintenance or checkups are not performed, and thus the technology is vastly under-
utilized. SM technology also raises important negative issues that hinders its acceptance
and necessitates further developments. SM grids can be hacked into, changing energy
usage resulting in false pricing and data about energy consumption. By rendering usage
patterns accessible, various privacy and security issues arise for households and occu-
pants [16,17]. These risks will be discussed in greater detail in a later section of this article.
In addition, standardization of smart grid technologies is crucial to ensure widespread
implementation. One review found 17 varied communication standards across SMs in
Europe alone [18]. One way to circumvent this issue is to have users serve as developers
of sorts, which has proven successful in research [19]. Cooperation between users and
firms, as well as technological support from firms is crucial to ensure success [19]. Under
these research conditions, technological strategies can standardize and change over time,
which leads to more collaboration and coalition forming across stakeholders [19]. In short,
increased communication and collaboration among all SM stakeholders can help facilitate
more widespread implementation, but standardization still serves as a crucial barrier to
address as SM uptake increases.

Aside from the economic, data, privacy, and standardization concerns, many other
SM concerns arise from a consumer standpoint. For example, SMs are not as effective as
originally intended, as the monetary savings promised by the technology are generally
small [20]. There are several explanations for this, one being that simply showing partici-
pants’ consumption information will not change behavior, but more targeted feedback and
assistance could mitigate this issue [12,13]. That is, information more individually tailored
to customers and building occupants that also considers customer attitudes towards and
concerns with the technology could prove beneficial [21]. Further, older versions of SM
technology only showed total energy consumption and provided no information on when
the energy was specifically consumed in each building [22]; however, improved feedback in
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the form of in-home displays has been shown to reduce demand from the residential side by
making it easier for occupants to track their consumption [23]. Additionally, customers may
have different motivation levels, energy use levels, and varied energy-saving habits [24].
The general public has mixed reviews on SMs, from positive opinions and dispositions to
public opposition [25,26]; regardless of opinion, there is generally a disconnect between the
user and the technology. In this disconnect, and the issues outlined above, we find the need
for researchers to better understand the user, thereby incorporating occupant attitudes and
behavior in the realm of SM technology.

1.4. Privacy Concerns

Privacy concerns are part of a large debate in the field of SMs. As technology that
monitors users’ habits and behaviors becomes more prevalent, more concerns with pri-
vacy will arise. In the socio-psychological section, we briefly mentioned some concerns
with privacy, strictly from the psychological perspective of intention to adopt SM. Below,
we outline some concrete user concerns as well as some legal issues related to SM.

Privacy concerns associated with SM can have a negative influence on a customer’s
intention to adopt SM technology [27]. Since many other researchers have outlined these fac-
tors, this section will be brief, but privacy’s impact on SM should not be understated. For a
more in-depth explanation of the privacy concerns outlined in this section, see Yildiz [28].
Overall, Yildiz outlines several concerns with the uptake of SM technology: companies
seeking to obtain more information about customers to better target ads; SM data being
sold to third parties for targeted ads or similar purposes; or that SM data could be used
to detect illegal activity, and if the government or law enforcement uses this information
then freedoms and privacy could be restricted [28]. Lisovich, Mulligan, and Wicker outline
concerns about directed advertisements, stating that research suggests advanced metering
infrastructure could see specific brands customers are using, determine when they are
malfunctioning, and target ads for repairs [29]. The authors also suggest concerns that
criminals can see usage and determine which homes have more expensive appliances and
target those residences, as well as monitor usage to see when occupants are not home;
further, law enforcement could surveil homes and infringe on privacy rights [29]. The re-
searchers created an algorithm to highlight the feasibility of homes being monitored in real
time [29]. One additional privacy concern is the idea that family members could surveil
each other, limiting privacy inside homes (i.e., parents could monitor kids when they
are away, or family members could monitor each other when they are not at home) [30].
To address the growing concerns with privacy, two researchers have created algorithms to
prevent occupant behavior detection and privacy violations with increased SM technology
uptake [31,32]. However, it is worth noting that privacy concerns with SM technology
in public buildings are small, if present at all; however, this is an area less studied than
private buildings.

As SM technology advances, users may feel like they have less privacy in their homes.
It is important that localities across all levels of government take legal steps to ensure
the privacy of individuals remains protected. In his review, Yildiz outlines some legal
concerns associated with SM technology: he asserts that access to SM data could be a
violation of the Human Right to Privacy, as outlined in the European Union Convention on
Human Rights [28,33]. Yildiz cites this law in his review, stating that in the Netherlands a
mandatory SM rollout was switched to a voluntary program under this aforementioned
privacy right [28]. Lisovich, Mulligan, and Wicker [29] also mention many U.S. privacy laws
and Supreme Court cases. Two notable cases in the United States that the aforementioned
authors address are United States v. Miller, which states that individuals have no reasonable
expectation of privacy in data voluntarily given to and held by third parties [34], and Kyllo
v. United States, which ruled that heat imaging cannot be used to detect energy use [35].
Lisovich, Mulligan, and Wicker [29] also mention arrangements between American utility
companies: the Austin, TX, police department has an agreement with Austin Energy to see
power usage without a search warrant [36], while alternatively, the California Public Utility
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Code (Section 394.1) requires written consent before investor-owned utilities can release
customer’s personal data [37]. Finally, and importantly, the European Union General Data
Protection Regulations ensure that citizens have the right to their information regarding
personal data, can request that irrelevant or outdated data be erased or removed from
certain platforms, object to data being used for marketing, and can request that processing
of certain data be restricted and done by a neutral person as opposed to a computer—
these are just a few of the guaranteed protections [38]. These restrictions on data usage
ensure privacy and control for SM users in Europe, and other countries should look towards
ensuring the confidentiality of personal data as SM use increases. However, on the opposite
side, these restrictions make it more difficult for researchers to obtain data, only making
the research process longer and more tedious. It is important to consider that as SM use
continues to grow, more privacy concerns will arise, and citizens, lawmakers, and utilities
should all be aware of potential breaches of customers’ privacy. While some of the above-
mentioned privacy laws are important, they are only a starting point. Moving forward,
steps should be taken to ensure that customers’ personal data remains protected.

Now that the associated risks and barriers with SMs have been addressed, we move
onto the key components of this paper and the importance of better understanding the
human components of energy use withing buildings.

1.5. The Importance of Studying Occupant Behavior

The need to mitigate energy use in buildings is more pressing now than ever before,
as practical solutions are necessary to minimize the effects of climate change. Building
energy use accounts for nearly one-third of total energy consumption in the USA in
2019 [39], and thus exploring opportunities to more efficiently use this energy is a fruitful
area of research. This opportunity is even more pressing as emissions from buildings have
increased over the past years, highlighting that the efficiency potential of buildings is largely
overlooked [40]. Project report of IEA-EBC Annex 53 states that energy use in buildings is
influenced by six key elements: climate, building envelope, building equipment, operation
and maintenance, environmental conditions indoors, and occupant behavior [41].

Occupant behavior (OB) is an emerging, previously overlooked component of build-
ing energy performance [41–43]. Hong et al. [44] emphasizes the oversimplification of
occupant behavior in buildings, and that prior research does not consider the steps people
take to be more comfortable in their indoor environment, as occupants, not buildings,
are the main consumers of energy [45]. Importantly, behaviors can vary greatly from
building to building, and this is especially true in a residential context, as occupancy hours,
lifestyles, family composition, and activities vary across each residence [46]. This discon-
nect between occupant behavior and building performance, perpetuated by the consistent
disregard for complex OB in buildings, leads to a large gap between modeled and actual
building energy consumption [43,44,46,47]. For further information, Yan et al. provides a
thorough literature review on the variability occupant behavior adds to building energy
use, as well as the general complexities that come with predicting how humans interact
with buildings [48]. Of course, building technology is important, but there must be a
focus on socio-psychological factors and behavioral influences; this means OB requires
interdisciplinary methods of research [41,44,49]. If researchers better understand occu-
pants’ attitudes, motivations, and behavioral influences, they can better predict energy
use behaviors, and in turn aid understanding between modeled and actual building en-
ergy use. Importantly, an improved framework can help researchers determine how to
better mitigate energy use overall. It is also worth noting that 75% of OB studies focus
on residential and office buildings [43], and therefore the scope of OB research could be
extended to buildings outside these contexts. With this paper, we reviewed scientific
research works on building energy performance measured by SMs, the impact of occupant
behavior, and the corresponding influencing factors such as socio-psychological issues and
privacy constraints.
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1.6. Aim and Structure of the Current Review

This paper serves as a review of currently available scientific studies on building
occupant demographics and energy profiles, the methods used to categorize such data,
and how the psychological variables such as attitudes and behaviors of consumers can
better inform SM data-related research. The goal of the paper is to highlight how SM
data analysis can support the understanding of OB in buildings to create a better holistic
understanding of building energy use. The remainder of the paper continues as follows:
Section 2 outlines the methods used to collect papers for this review; Section 3 discusses
household characteristics and demographic categorizations of occupants and their relation-
ship to energy use; Section 4 discusses occupant profiling methods and results; Section 5
discusses the largely understudied area of socio-psychological influence on SM technology
adoption; and, finally, the paper concludes with a discussion and recommendations for
future research. Sections 3–5 largely build upon each other, with results from Section 5
informing Section 4, and Section 4 informing Section 5.

2. Literature Review Methodology

A simple Google Scholar search of the term “smart meter” produces 640,000 article
results, and for “occupant behavior”, the query leads to 129,000 options. Of course,
a methodical way of finding the articles most relevant to this paper was of the utmost
importance. As Higgins and Green outline, there are 5 key elements to a systematic review,
each of which we sought to incorporate into this paper: a predetermined set of criteria
for each study to be included, a clear and straightforward methodology for literature
collection, a systematic search to identify all relevant studies, assessment of the validity
of each study’s findings, and a clear explanation and presentation of our results and
findings [50]. We adapted these criteria from Staddon et al., who utilized the Higgins and
Green Cochrane Handbook [51].

The research in this review had to meet certain criteria. We sought empirical, peer-
reviewed studies that would help us link the fields of SM data analysis and occupant
behavior. We began broadly, searching for papers related to the overarching themes of the
paper: SM technology implementation, SM data analysis, demographics and energy use,
building occupant behavior, socio-psychological factors related to SM adoption, and SM
privacy concerns. Articles from the past 10 years were considered (with the exception
of articles outlining or developing a specific theory, which could be older). All studies
had to be in English or previously translated into English. Studies could be conducted in
any country, and each study had to be from a peer-reviewed journal or a report from an
organization, government, or some other sector (i.e., gray literature).

Each article was systematically selected for this review. We utilized multiple online
sources and search engines: Google Scholar, PsycINFO, Web of Science, and Academic
Search Complete. Most reports or conference papers were found through Google Scholar.
As previously mentioned, we started with main topics: SM technology implementation,
SM data analysis, demographics and energy use, building occupant behavior, SM cluster-
ing, energy profiling, and socio-psychological factors related to SM adoption. The main
search terms used were “smart meter adoption”, “smart meter consumers”, “smart meter
analysis”, “occupant behavior buildings”, “demographics and energy use”, “energy behav-
iors smart meters”, and “occupant profiling smart meters”, to name a few. These search
terms of course varied as we found more literature in each field. We examined the citations
of each article to determine any similarly related literature. We further looked through all
articles that had cited each article we found in order to ensure we systematically read the
newest and most relevant literature. We determined the validity of each article through our
initial criteria by ensuring our literature was peer-reviewed and published in reputable
journals, and that reports did not have any inherent bias or any ulterior motivations (i.e.,
checking that reports were not funded by third parties with monetary interests).

Once we obtained the articles of interest for each section of this paper, we orga-
nized the results by topic, and then grouped the relevant results. Supplementary Table S1
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provides an overview of the content we pulled from each paper. For peer-reviewed ar-
ticles related to demographic characteristics, we tallied the major findings to determine
11 occupancy- and household-related variables that influence energy use, both individually
and in combination with one another: dwelling type, size of house, home ownership, num-
ber of occupants, household composition, age of occupants, location, income, employment
status, appliance types, and recent energy retrofits. Among the energy profiling articles,
we grouped and tallied the peer reviewed results on the basis of clustering method: lin-
ear/logistic/probit regression, factor analysis, cross-domain feature selection and coding,
feature extraction and classification, distribution model-based clustering, fuzzy c-means
clustering, self-organizing maps, k-means clustering, and hierarchical clustering. Among
the socio-psychological factors, we determined 13 determinants that work individually
and in conjunction with one another to influence SM adoption: attitudes, social norms,
perceived behavioral control, perceived usefulness, perceived ease of use, personal norms,
values, environmental worldview, awareness of consequences, knowledge, perceived cost,
trust in technology providers, and perceived risk to privacy. Finally, we grouped each
article on the basis of the overall location of data collection: North America, Asia, Western
Europe, and Central/Eastern Europe.

Each article specifically relates to findings from SM data and are sometimes supple-
mented by self-reported survey responses. Given that the SM field is emerging, we rec-
ognize the niche nature of our review, and thus tried to compile a list of as many factors
that might impact SM use as possible, given the limited available research. With this
methodology, we created a systematic means of determining demographic factors that
impact energy use, common clustering methods utilized to group and profile occupants,
socio-psychological factors that might promote or diminish SM use, and common locations
wherein this type of research is concentrated.

3. Demographics of Occupants, Household Characteristics, and Their Relationship to
Energy Use
3.1. Socio-Demographics and Energy Use

The idea that socio-demographic characteristics can influence energy use is prevalent
and well-studied in the literature. Jones, Fuertes, and Lomas have a comprehensive
review of demographic, dwelling, and appliance factors that influence residential energy
consumption (see [52]). As this field is already heavily researched, we sought to analyze
energy use from a more focused area by only examining research and data collected from
smart metered buildings. This allowed us to narrow our search, ensured we examined
the most recent studies, and helped us develop a better framework of how smart metered
buildings are consuming energy. To the best of our knowledge, no other study has compiled
recent socio-demographic information reinforced with SM data in this particular way.

Researchers in the reviewed papers supplement their SM readings with survey data
to gather information in three areas: demographics, dwelling characteristics, and appliance
information. The following paragraphs discuss some relevant key variables and how they
impact energy use among SM datasets. The interrelated nature of these categories are also
discussed. Note that in most of these studies, the researchers looked at total electricity
consumption, but as Huebner et al. point out, focusing on different types of energy
consumption (such as gas, oil, or heating and cooling) will result in different indicator
variables and different results [53]. Further analysis of electricity use per square meter
and per person is also not prevalent. For a more synthesized explanation of our results,
see Table 1 below. The energy-related results of the studies presented in the table are based
on SM data, thus also providing an overview of the perspectives of SM-based research.
In addition, Supplementary Table S1 highlights how these variables fit into the larger
framework of this review.
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Table 1. Demographics, dwelling characteristics, and appliance information indicators of energy
consumption.

Variable Result

Dwelling type

• Detached houses consume the most and apartments use the
least total electricity (−11%) [54].

• Apartments were associated with using less total annual
electricity than detached dwellings [54].

• Apartments’ daily maximum electricity consumption is the
lowest [55].

Size of house

• Smaller dwellings (in square meters, floor area) use less total
annual electricity and larger ones use more [53–56].

• Daily minimum electricity consumption is highly correlated
with house size during the winter (explains 21% of the
variability) [55].

• Two-bedroom apartments are likely to have a late evening
peak in electricity consumption [57].

• 5+ bedroom apartments are heavy users of electricity across
a 24-h period [57].

Home ownership

• Renter vs. owner status is a good predictor of energy
consumption [15].

• One study found no significant difference between
renter/owner status [55].

• Energy saving after installing SMs most relevant for
renters [22].

# of occupants

• The more occupants, the higher annual electricity use per
floor area [15].

• Number of occupants is a significant predictor of maximum
daily electricity consumption (explains 8% of the
variability) [55].

Household composition

• Households with children use more total annual electricity
than households only composed of adults [58].

• One-person households are likely to have a late evening
peak in electricity consumption [57].

Age of occupants

• Generally, those between 19 and 35 and over 55 use the least
electricity [55].

• The household age category between 45 and 64 meant
higher annual total electricity use [53].

• Head of household (HoH) age < 36 years is likely to have a
late evening peak in electricity consumption [57].

• HoH age > 56 years is likely to have a morning and a
midday peak in electricity consumption [57].

• HoH 65+ associated with high peak at noon and low peak in
the evening [59].

Location
• Inconclusive; location can be influenced by several variables.
• Dwellings in urban areas compared to rural areas have

different yearly electricity consumption profile shapes [60].
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Table 1. Cont.

Variable Result

Income

• Highest income category was associated with higher annual
total electricity use [53].

• Found no relationship between income and electricity
consumption [55].

• Households that use the least electricity are the least
satisfied and probably suffer from fuel poverty [61].

Employment status

• Those who are retired and work from home use more
electricity and have different daily [62] and also seasonal
electricity consumption profiles and needs [63].

• Farmers are likely to be heavy users of electricity across a
24 h period [57].

Appliance types

• Dwellings with more energy-intensive appliances (tumble
dryers and dishwashers) are likely heavy users of electricity
across a 24-h period [57].

• Number of refrigerators significantly affect the daily
minimum electricity consumption (explains 7% of the
variability) [55].

• The hours of TV watched has a direct effect on seasonal
electricity profiles [63].

Recent energy retrofits

• Households with energy efficiency appliances use more
energy due to a “rebound effect” [55,64].

• A recent energy retrofit has a direct effect on seasonal
electricity profiles [63].

Dwelling type: Generally, in studies that examine total domestic electricity con-
sumption, apartments are found to have the least when compared with other building
types [54,55]. This could be a result of different building characteristics, (e.g., external
surface—floor area ratio in apartments is generally lower than in case of free-standing
buildings), but also the fact that apartments are generally a smaller dwelling type with less
total areas to condition, smaller space for appliances, and fewer occupants [54]. Further,
apartments could even be heated and cooled from surrounding units through common
walls. In this factor, we see examples of the interconnected nature of dwelling character-
istics, as factors such as dwelling type and size are interrelated and can influence total
electricity consumption. Another paper only found a relationship between dwelling type
and total household heating in the winter, finding that apartments had the lowest daily
heating consumption and free-standing homes had the highest [55], which suggests that
energy-related building characteristics are more prevalent in some cases than others.

Size of house: Size of house could be determined in the overall floor area, but many
studies use the number of bedrooms as a proxy to measure house size. Research shows
that smaller dwellings (in square meters) use less total annual electricity, and conversely,
larger dwellings (in square meters) use more [53,55,56]. This same fact is true in studies
that use the number of bedrooms as a proxy for size: McLoughlin found that five-bedroom
apartments are heavy users of electricity across a 24-h period [57]. In the Kavousian study,
house size had more of an effect on daily maximum electricity consumption in regard to
cooling during the summer [55]. Further, house size is usually correlated with wealth,
socio-economic status, and number of occupants and appliances [55].

Home ownership: Some research shows that renters versus owner status is a good
predictor of electricity use [15]. Another study found no relationship between ownership
status and total household electricity use [55]. Interestingly, one study found that those
who rent their dwellings find it more relevant to save energy, and thus are more susceptible
to using SMs and saving energy with their use [22].
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Number of occupants: This factor is rather self-explanatory, as generally more occu-
pants suggest higher electricity consumption. Huebner et al. found that as the number
of people in a household increases, so does the total electricity consumption [53]; relat-
edly, as the number of occupants in a dwelling increases, so does the annual electricity
consumption per floor area [15]. One study suggests that the number of occupants is
also a significant predictor of maximum daily electricity consumption, explaining 8% of
variability [55].

Household composition: Research shows that households with children use more
total annual electricity than those only composed of adults [58] and that children change
the seasonal consumption pattern of households [57]. This variable is also particularly
interesting to energy consultants, as one study, which supplemented SM data collection
with interviews, found that retirees and double-income households without children are
more interested in adapting their consumption patterns [56].

Occupant(s) age: Studies that analyzed age as a factor of energy use looked at the age
of the head of household (HoH) when examining a household with more than one occupant.
Generally, those between 19 and 35 and over 55 use the least amount of electricity [55]. If the
HoH was between 45 and 64, they had higher annual total energy use [53]. One explanation
for middle-aged household groups using the most total electricity might be partly due to
this age group having more children living at home, and thus more occupants [54]. It is
also worth mentioning that age can impact the time of day electricity is used in a dwelling:
older household members have an electricity peak in the morning and midday, and those
less than 36 years old have a late evening peak [57,59].

Location: The research on how location influences energy use is largely inconclusive.
Kavousian, Rajagopal, and Fischer point out that location is correlated with other variables
such as climate, building type, building edifices and materials, socio-economic status,
and a multitude of other factors [55]. For this reason, energy behaviors will differ greatly
across countries and regions due to these myriad variables. One study did find that
dwellings in urban versus rural areas have different yearly electricity consumption and
profile shapes [60].

Income: In some studies, social class was used as a proxy for income, and a scale was
developed according to the type of job or profession the head of household had [54,57]. Re-
searchers found that the higher the social class (based on profession) of the HoH, the greater
the total electricity use in a household [54,57]. In another study, the highest income category
was associated with a higher annual total electricity use [53]. One explanation for this phe-
nomenon could be that wealthier heads of household generally live in larger dwellings with
more appliances, thereby suggesting a relationship between income and energy use [54].
One study also mentions that customers who used the lowest total amount of electricity
were the least thermally satisfied, meaning these customers were experiencing fuel poverty;
residents were spending too much of their income on heating or cooling, while also being
unable to maintain optimal comfort due to the high cost of electricity [61]. The same study
found that households with the highest total electricity consumption had, on average,
the highest monthly income [61]. Many lower income households are susceptible to the
effects of fuel poverty, but as Darby points out, SMs can help energy consumers obtain
affordable comfort through better energy management, automated consideration of tariffs,
and increased connection between user and supplier [61]. While fuel poverty is out of
the scope of this paper, it will be an important obstacle for researchers, policy makers,
and providers to address with increased SM implementation.

It is also important to note here that the factor of income is much more complicated
than the simple amount of money that a household has or that the HoH earns. Socio-
economic status is more all-encompassing, as it often accounts for the interaction between
income, employment, and education, among other factors. Essentially, households with
similar income status may vary in attainment levels, access to education, upward mobility,
and a whole host of factors, each of which influences how “well-off” a household may be.
With this in mind, we recognize, again, how interconnected each socio-demographic factor
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is, as well as how difficult it may be to separate how each factor influences energy use on
its own. In fact, research has found that a focus on social and behavioral patterns may have
higher predicting power than income alone [65], again suggesting that socio-demographics
should be combined for better prediction of energy use.

Employment status: Those who regularly work from home and those who are retired
are more likely to be in a higher total residential electricity use group and use more energy
during times of high wholesale price [62,63]. The unemployed, retired, and those who work
from home also have different daily and seasonal electricity consumption profiles, further
alluding to the impact employment has on energy use habits [62,63]. Finally, McLoughlin
points out that farmers tend to be heavy users of electricity across a 24-h period, as farms
require a lot of energy expenditure for upkeep [57].

Appliance types present: Generally, homes that have more energy-intensive appli-
ances such as tumble dryers, dishwashers, or electric water heaters use more energy [57].
Research shows a relationship between appliances and energy use, and households
that owned more appliances such as computers, desktops, refrigerators, freezers, mi-
crowaves, washing machines, and televisions used more total electricity across a 24-h
period [53,55,56,58]. In addition, households with wet appliances have differing load pro-
files [59]. Interestingly, the number of refrigerators significantly affects the daily minimum
electricity consumption, explaining 7% of the variability [55]. The hours of TV watched has
a direct effect on seasonal electricity profiles [63]. Increased appliance ownership is also
associated with wealth, as households with more money will own more appliances [54].
This further reiterates the interconnected nature of socio-demographics.

Recent energy retrofits: Along the same vein of appliance types, buildings that recently
had energy retrofits or installed local renewable energy generation (typically photovoltaic
panels) generally used more electricity during times of high wholesale prices and generally
used more total residential electricity [63]. The same study also found that retrofits had a
direct effect on seasonal variations in energy use [63]. An additional study found that ap-
pliances such as programmable thermostats and insulations were correlated with increased
energy use [55]. One explanation for these behaviors is a so-called “rebound effect” [64],
meaning that consumers think they can use more energy because they have taken steps
to install more efficient appliances or retrofits in their home [55], or in consequence of
their efforts to use renewable energy they are freer to use more. This could also be related
to income, and wealthier houses may be able to afford more retrofits and also use more
electricity due to their wealth.

It is worth noting that some studies examine this relationship in reverse and seek
to determine socio-demographic characteristics from energy consumption data and pat-
terns [53,56]. Studies found that the following areas could be inferred from electricity
consumption data:

1. Occupancy in the house (employment status of inhabitants, and if the dwelling was
occupied or unoccupied) [56].

2. Number of persons in the house (single-occupant or family and number of resi-
dents) [56].

3. Number of appliances [53].

This relationship becomes more important as we examine the role of occupant profiling
in SM data collection in the upcoming section.

3.2. Connection to Occupant Behavior Research

As outlined in the paragraphs above, many of the socio-demographic and household-
related factors are interrelated, and thus the goal of developing clearly defined groups with
specific energy consumption characteristics becomes difficult. However, we can see that,
overall, certain characteristics serve as indicators for more or less energy use. By collecting
demographic and household data, researchers can better understand energy users and
develop frameworks for energy use based on these data. With a better understanding
of energy users, researchers and utility companies can better tailor efficiency programs
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and technology to target customers who use more energy. By having a clearer picture on
these parameters, researchers are able to determine behavioral patterns, and thus better
understand energy use profiles. The above-mentioned variables (dwelling size and type,
home ownership, household size, age, location, income, employment status) coupled
with building energy-related occupant behavior types (occupancy, window and shading
opening, thermostat, and lighting and appliance use) represents a potential indirect impact
on building energy use. This connection highlights the importance of interactions between
two topics generally left uncombined in the literature as such behavior types have a vast
effect on the energy consumption of buildings [66].

However, human behavior is complicated, and thus our socio-demographic charac-
teristics will not serve as a strict guidebook for determining consumer energy behavior
alone. Therefore, other methods (such as occupant profiling through clustering, which
will be mentioned next) and other disciplines (such as socio-psychological models and
characteristics, which will be mentioned later in the paper) are important to consider as this
field of research continues to grow. The importance of varied methodology when merging
the fields of OB and SM technology cannot be overstated.

The subsequent section builds upon our understanding of socio-demographic char-
acteristics, energy profiling methods, and clustering results build upon researchers’ un-
derstanding of demographic factors that influence energy use. Profiling and clustering
assist researchers in grouping occupants and better understanding their usage patterns
and needs.

4. Occupant Energy Profiling Methods and Results
4.1. Occupant Energy Profiling

In case of vast data analysis, finding correlations and connections plays a significant
role, and thus different algorithms have been developed to identify the connections making
the further analysis easier [67]. In the context of occupant profiling, it is important to
remember that energy consumers are not all the same, and they can be grouped together
on the basis of certain similarities in their energy use and behavior [68]. Given the massive
uptake in SM technology, as previously discussed, methods for analyzing such data are
essential, and there is an increased need to profile occupants and better ascertain their
energy-related behaviors.

There are several benefits to customer segmentation, such as (1) utility companies
can tailor tariffs or other pricing models that better reflect the consumption of specific
groups, and (2) utilities and other providers can better create personalized services to
customers if they better understand their consumption [69]. There are many ways in which
researchers seek to categorize such large amounts of data; this can be through regression
modeling or clustering, which is explained below. However, it is worth noting that most
studies focus on total electricity use, and there is a lack of research on SM heat and gas
data. For an overview of how profiling fits into the larger framework of this review, see
Supplementary Table S1.

4.2. Clustering

One of the most common methods to group occupants by similar energy use patterns
and better understand is a data mining technique known as clustering [70–72]. This sec-
tion highlights several clustering methodologies utilized to better analyze SM data and
group customers. For visual results from this section, please see Supplementary Table S1.
The text below provides descriptions of the numerous clustering methods we found within
the literature.

Essentially, the goal of clustering is to group items in a way that they have the greatest
similarity with the items in the same group and the largest dissimilarity between the other
groups [69]. SM data are very suitable for clustering, and it is often the method utilized
to analyze such data [68–72]. Clustering can be based on several methods [73] (Figure 1),
from which k-means and hierarchical clustering are the two of the more common, well-
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known types [68,73]. Yildiz et al. published a comprehensive study on the recent advances
in the residential SM data analysis, which includes several clustering types [28]. Fan et al.
focused on unsupervised data analytics for mining building operational data utilizing
different clustering approaches [74].
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Hierarchical clustering was used by Gouveia and Seixas, who created 10 different
clusters for the yearly electricity consumption profile [60]. Rhodes et al. used hierarchical
clustering as well for creating two separate clusters for each season for daily energy
patterns [63].

k-means clustering was used by Viegas et al., who created four clusters for each
season [69]. Benítez et al. used k-means clustering for different time intervals (hourly–daily)
and types (working day–not working day), wherein each group contained 10 clusters [70].
Yu et al. created four clusters using k-means clustering, while taking into account not just
the total but the different electricity end-uses as well [75]. Al-Wakeel and Wu tested the
accuracy of the k-means clustering method with different border conditions [76].

A distribution-based model utilizing the Gaussian distribution in finite mixture model
was used for clustering by Haben et al. [71]. Zakovorotnyi and Seerig used self-organizing
maps (SOM) to identify behavioral patterns from SM data [77].

In some cases, different clustering methods were tested. McLaughlin, Duffy, and Con-
lon tested three clustering methods: k-means, k-medoid, and SOM, from which SOM
showed the best suitability [57]. Azaza et al. used hierarchical and SOM clustering [78].
Panapakidis et al. used several different clustering approaches, including k-means, fuzzy
c-means (FCM), and SOM, finding that the best results came from utilizing combined
SOM/k-means algorithms [79].

These results highlight the numerous ways in which clustering is utilized to study
SM data. Further, these results show that k-means and hierarchical methods were most
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commonly used within the literature and were the most common methods used to cluster
SM usage data.

4.3. Energy Profiles

This section blends the demographic factors discussed previously with clustering
methods to highlight how the previous two sections build upon each other to create a better,
more holistic picture of occupant energy use vis-à-vis SM data. With socio-demographic
data trends and clustering methodologies, researchers can then move to developing energy
profiles of occupants. When researchers create energy profiles, they are typically based on
temporal readings such as hourly, daily, weekly, monthly, or seasonal energy use patterns.
Sometimes researchers looked at calendar data such as the day of week (weekday versus
weekend) or holiday versus regular day use. Occasionally, weather or location were also
considered. It is important to note that the socio-demographics, mentioned earlier, impact
both the amount and time of day energy is consumed. This energy use data collected via
SM, is then used to create various clusters on the basis of these hourly, daily, monthly,
or seasonal use patterns.

McLoughlin, Duffy, and Conlon, after conducting a cluster analysis, combined con-
sumers into 10 different groups on the basis of the intensity and temporal pattern of their
energy use [57]. Most of the energy use profiles followed a specific daily pattern: generally,
there is a primary peak early in the day, and then later in the afternoon or evening there is
a secondary peak that lessens in intensity; however, the intensity and timing of this pattern
varied among groups. The researchers found diurnal, intra-daily, and seasonal patterns of
use during their analysis [57]. They found that households in higher electricity use clus-
ters had middle-aged or older HoHs, households with more energy-intensive appliances,
and households with five or more bedrooms [57]. Those clustered in smaller energy use
groups tended to live in apartments, live in homes with fewer bedrooms, were households
with older HoHs, were those who lived alone, and were those with fewer appliances [57].

Benítez et al. looked at daily energy use and created 10 corresponding clusters [70].
This research focused on when the specific peaks in use occurred during the day and
how many there were [70]. The most common cluster, representing the majority of the
households in the study, had three peaks in a day (morning, lunch, and evenings) with
low-to-moderate energy use total [70]. Haben, Singleton, and Grindrod conducted similar
research, determining 10 energy groups via clustering as a means of identifying when
demand could be reduced [71]. The researchers grouped clusters on the basis of temporal
and calendar data, and they found that demand in different time periods changed as a
function of season and day of week [71]. Additionally, some researchers were able to
characterize energy use with specific shapes on the basis of seasonal use. One study found
nine clusters on the basis of the amount of energy used and the pattern shape; the two
extremes were (1) a “soft U shape”, characterized by low energy use with a peak in the
winter, and (2) a “W profile”, which was characterized by high levels of energy use in
the winter and summer [60]. Generally, households use more energy in the summer and
winter, and less in fall and spring, according to Benítez et al. [70]; however, Viegas et al.
found that the peak loads were in the winter and fall [69].

Importantly, research suggests that socio-demographics can, in fact, influence temporal
patterns of energy use. Researchers found that factors such as employment status and
internet usage had a significant effect on energy behavior; both factors influence people’s
lifestyles, such as when they work or have leisure time [62]. Further, younger people
generally use the internet more regularly and later at night, highlighting that age and
household composition will impact which energy use cluster households may be placed
into [62]. Additionally, those who are unemployed generally stay at home and use more
energy throughout the day, resulting in fewer peaks and valleys that result from employed
households leaving for the day [62].

In another situation, households were divided on the basis of their time of use: those
who used energy when wholesale prices were high, and those who did not [62]. Impor-
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tantly, demographic factors influenced these data: working from home, hours of television
watched per week, and education were all correlated with which cluster specific resi-
dences were placed in [63]. This research further highlights the relationship between
socio-demographics and energy use. Additionally, Tureczek and Nielson stated that the
most successful clustering classifications supplemented their SM data with survey data
to better understand socio-demographic characteristics of the clusters [68]. This is an
important point, as it highlights the need to supplement SM data and clustering techniques
for a better understanding of occupants themselves.

Energy profiling is an emerging field of research that blends together occupant behav-
ior and SM data analysis. Through profiling, we can determine the categories of occupants
that use the most and least energy, and we can also determine energy use behaviors such
as the time of week, time of day, or seasons that occupants use energy. Essentially, profiling
helps researchers gain a better picture of how occupants use energy, which will help SM
programming to become more tailored to the needs and behaviors of occupants.

Profiling utilizes clustering analyses (as previously discussed) and regression analyses
to determine relationships between users and energy patterns. Broadly speaking, energy
profiling is an interdisciplinary area that combines numerous methodologies to under-
stand myriad energy patterns for a variety of occupants. SM data serves as a common
denominator, wherein the presence of more granular energy use data provided by these
meters helps researchers better understand energy use patterns and the increasing under-
standing of occupants themselves can offer better predictions of who uses more energy
and why. By combining methods and understanding occupants, researchers build a more
comprehensive picture of building energy use.

5. Socio-Psychological Influence
5.1. Overview

This final section building on the previous sections by highlighting the importance of
understanding human motivation in utilization of SM technology. This paper stresses the
importance of interdisciplinary, holistic understanding of building energy use; however,
in order to better utilize SM technology and ensure large-scale penetration, researchers
must better understand human motivation that facilitates or limits SM adoption intentions.
When researchers better understand these socio-psychological influences, they can better
tailor SM deployment to the needs of occupants, and subsequently obtain more, higher-
quality SM data with occupants who are less anxious of and more open to utilizing such
technologies

The field of socio-psychological influences on pro-environmental behaviors is growing
as more researchers understand the need for interdisciplinary research in energy studies.
By better understanding certain social or psychological motivations in energy-efficient
behavior, energy providers, researchers, utilities, and municipalities can better understand
how consumers will react to newer technologies and services. In fact, one recent review
on consumer behavior states that future SM consumer engagement campaigns should be
tailored not towards traditional demographic segmentations but to more psychological
ones such as lifestyle, attitudes, values, and environmental concern [80]. As mentioned
previously in the paper, SM technology has not had the desired impact and does not save
users as much money because there is a lack of attention given to occupants’ attitudes
and behaviors—this is where socio-psychological research can help tailor SM research
and programming towards users themselves. However, it is worth noting that this is an
emerging field, and the number of studies that focus on socio-psychological determinants
of smart technology adoption is limited. Below, we have selected the most relevant studies.

Generally, when social psychologists want to predict or transform pro-environmental
behaviors, there are four theories or models that are followed. Researchers use survey
methodology regression analyses to understand how the variables in each of the follow-
ing models influence a person’s attitudes, support, or intention to adopt SM technology.
Additionally, researchers tend to combine models for a more holistic approach towards
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understanding energy customers and SMs. See Table 2 below for an overview of theories,
models, and variables, and select studies that utilize these theories. Note that many re-
searchers combine and extend these models, and therefore some references might appear
for multiple theories and variables.

Table 2. Theories and variables used to determine SM attitudes and adoption intentions.

Theory Variables Reference

Theory of Planned Behavior
• Attitudes
• Social norms
• Perceived behavioral control

[81–83]

Technology Acceptance Model
• Perceived usefulness
• Perceived ease of use [27,84–88]

Norm Activation Model • Personal norms [88–92]

Value–Belief–Norm Theory

• Personal norms
• Values
• Environmental worldview
• Awareness of consequences

[93–97]

Sustainable Energy Technology Acceptance
Model and extended theory variables

• Knowledge
• Perceived cost
• Trust in technology providers
• Perceived risk to privacy

[27,98]

5.2. Theories and Models

This section highlights some theoretical background related to energy efficient technol-
ogy adoption from a socio-psychological standpoint. Further, this section highlights some
key variables researchers must consider when deploying SMs to ensure occupants are com-
fortable with and willing to utilize such technology. First is the Theory of Planned Behavior,
originally developed by Ajzen [81]. This theory posits that attitudes towards something,
social norms (social pressure), and perceived behavioral control (the ease or difficulty with
which a task can be completed) all influence the intention to perform said task, which then
influences actual behavioral change [81]. In practical application, Yang found that attitudes,
subjective norms, and perceived behavioral control (PBC) were all important factors in
intention to use smart home services [82]. An additional study found the PBC was among
one of several factors that had a direct impact on intention to use SM technology [83].
Essentially, positive attitudes towards SMs, the opinion that many close to you are using
the technology and that you value their opinions, and a high perceived ease of using SMs
are all key in actual behavioral intentions [82].

The second model, the Technology Acceptance Model (TAM), was originally devel-
oped by Davis, and it states that acceptance of a new technology is dependent on two
variables: perceived usefulness (how useful the technology is for achieving a goal) and
perceived ease of use (how easy or difficult the technology is to use) [84]. Davis fur-
ther asserts that the two factors will influence a person’s overall attitude towards that
technology—a positive attitude creates an intention to use the technology when the oppor-
tunity is presented followed by acceptance of the technology itself [84]. TAM has been used
to better understand users’ intentions to adopt a multitude of technologies, from mobile
health services to electronic learning [85,86], and it is further used in SM literature. Kranz,
Gallenkamp, and Picot studied SM acceptance with an extended TAM model that also
considered attitudes, perceived usefulness, and ease of use [87]. In their research, Chen,
Xu, and Arpan found usefulness to be the strongest predictor of SM support and intention
to use within the TAM [27]. Broman Toft, Schuitema, and Thogersen found that customers
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were likely to accept smart grid technology if they assessed usefulness in terms of a positive
impact on society and on the environment [88]. Technology adoption has been studied for
decades, and even anthropologists in the mid-20th century understood that people and
society generally take time to adapt to newer ideas and innovations [99]. Even further,
the willingness to adapt to newer technologies has also been found to vary by cultural
background. Research states that societies can be grouped into “innovation-prone” and
“innovation-averse” on the basis of positive factors such as allocation of funds to research
and development and ability to adapt and innovate, or negative factors such as aging work-
force, strict labor markets, limited skills, and migration of capable workers and developers
outside of the country [100]. Socio-cultural differences in each of these models should be
closely considered.

Third is the Norm Activation Model, which focuses on the idea of moral obligations,
and was originally developed by Schwartz in 1977, linking the idea of moral obligations
with altruistic behavior [89]. The norm activation model suggests that performing a behav-
ior is motivated by personal norms, or one’s personal, moral desire to perform an action [89].
There is also a wealth of literature that links moral obligations to pro-environmental be-
haviors [90–92]. Norms can better help researchers see an underlying desire, in this case,
to adopt SM technology. While there may be other barriers to adoption (such as cost or lack
of knowledge, as we will discuss below), norms help us better understand a customer’s
desires or intentions. The previously mentioned Broman Toft, Schuitema, and Thogersen
article asserts that the acceptance of smart grid technology is dependent on both the moral
obligation to adopt as well as TAM, which the authors explain in a combined model [88].

From the Norm Activation Model, the Value–Belief–Norm Theory (VBN) [93] was
developed. The model utilizes five variables to better understand pro-environmental
behaviors: values, environmental worldview (as determined through a scale called the New
Ecological Paradigm or NEP [94]), awareness of consequences, ascription of responsibility,
and personal norms, with research showing causal relationships among the variables [95].
While a limited amount of research exists linking VBN to SM, there is a wealth of research
on VBN and other pro-environmental technologies and behaviors. In fact, research asserts
that VBN variables can help explain why users become early adopters of and exercise high
levels of involvement in innovative environmentally friendly behaviors [96]. Van der Werff
and Steg looked at VBN and smart system adopting, finding that values explained 12%
of the variance in problem awareness; further, personal norms to use smart systems were
much stronger when people felt that environmental problems could be reduced by their
use and were also aware of environmental problems caused by fossil fuels and the like [97].

As previously mentioned, these theories are often combined to create a more holistic
understanding of pro-environmental behaviors and to improve their explanatory power.
One of the more comprehensive models is the Sustainable Energy Technology Acceptance
(SETA) model; this model combines the Technology Acceptance Model and the Norm
Activation Model, and includes other variables such as perceived cost, trust in technology
providers, perceived risk to privacy, knowledge, and overall positive or negative attitudes
toward the technology in question [98]. There is a lot to be said about these additional
variables, each having a unique impact on SM adoption. In a study of smart grid projects
across Europe, Gangale, Mengolini, and Onyeji found knowledge and trust to be important
factors in successful projects [80]. Chen, Xu, and Arpan found that risk to privacy has a
direct, negative, and significant effect on support of SM installation and intention to adopt
in the United States, while trust, along with problem perception, also impacted support
and adoption intention mediated through usefulness and privacy risk [27]. Interestingly,
as Chen, Xu, and Arpan found in their literature review [27], risk to privacy varies by
country and it was not a concern in studies conducted in Hong Kong of Germany [26,83].
This may be due to the level of trust certain countries have in their energy providers,
and those cultures with more trust may deem privacy as less of a concern. Further, research
shows that when customers do not understand a certain technology, they are more likely
to adopt if they trust the technology provider [98].
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Overall, this section highlights the numerous variables researchers must consider
when deploying SMs. Attitudes, social norms, perceived behavioral control, perceived use-
fulness, perceived ease of use values, personal norms, environmental worldview, awareness
of consequences, knowledge, perceived cost, trust in technology provider, and perceived
risk to privacy each aid researchers in better understanding human motivations and reser-
vations in using new technologies. Once these motivations are better understood and
properly addressed in deployment, researchers will see and increased willingness to utilize
these technologies; increased uptake; or, at the very least, will better understand why SMs
have yet to be deployed on a larger scale. From here, researchers can take steps to mitigate
concerns, which will result in improved SM data quality and an overall better understand-
ing of occupants’ behavior with improved data access and overall better understanding of
building occupants.

With each of the above models, it is important to note that their value comes in
conjunction with the technical data and socio-demographic predictors mentioned in the
previous sections. Again, highlighting how each section of this paper builds upon the other
to create an interdisciplinary, holistic understanding of SM data analysis and occupant
behavior. Studying occupant attitudes and behavior through the lens of SM acceptance
thrives in an interdisciplinary context, developing a fuller picture of both the technology
and the user reaction. Further, a better understanding of human attitudes, values, concerns,
and perceptions helps us better understand human behavior itself. This means that a better
understanding of the sociology and psychology behind energy efficient technology use
can help us better model occupant behaviors themselves. The above paragraphs prove
that these theories and variables help us group occupants into categories of those who
behave pro-environmentally and those who do not, and each theory hinges on human
attitudes being predictors of behaviors themselves. Essentially, socio-psychological fac-
tors inform occupant behavior research, as they ensure a more holistic understanding
of occupants, giving researchers insights on how people will behave in their respective
building environments.

For a list of the main articles mentioned in this section, as well as the variables these
articles researched, please see Supplementary Table S1.

6. Conclusions and Recommendation

This literature review sought to compile research from the fields of SM data analysis,
housing characteristics, socio-demographics, occupant behavior, and socio-psychological
fields to better highlight how SM data can help researchers better understand occupant
behavior. We compile our findings on demographic factors that impact energy use, energy
profiling and clustering, and socio-psychological factors that impact SM uptake to highlight
some gaps in the literature and provide several recommendations on how to diversify and
enrich the research in the field. Namely, this research highlights the need for increased
interdisciplinary research and a more diversified pool of occupants by which to obtain data.

First, SM research must utilize more interdisciplinary methods to ensure researchers
have a more holistic understanding of occupant behaviors and needs to pave the way
for more widescale deployment. For example, the energy profiles field has the potential
to continue adding fruitful information to the fields of SM data analysis and occupant
behavior research. Future research should continue to merge these two topics alongside
socio-demographics and socio-psychological determinants of SM use. Even more broadly,
socio-psychological determinants should be more prevalent in SM research as they provide
valuable insights into the concerns of users and can provide valuable information on how
to address and modify users’ attitudes and opinions to implement behavioral changes.
For example, the areas of privacy concern and trust in utility providers must be addressed
to mitigate some concerns that inhibit users from using SM technology. In addition, as men-
tioned at the beginning of this review, SMs have not been as effective as originally intended,
and this is largely due to the fact that occupant’s attitudes, opinions, and behaviors are
not considered. Early SM technology was not user-friendly, and occupants found it dif-
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ficult to determine their total energy use; this is an issue prevalent in meters all over
the world—there are too many barriers preventing occupants from easily checking their
consumption and then changing behavior. Future research must continue to merge SM
research with occupant attitudes and behaviors to better understand how people interact
with these technologies and how researchers can ensure SM works at peak performance.

Second, the pool of data on buildings and occupants must become more diversified
to ensure researchers better understand the numerous characteristics and behaviors that
may promote or inhibit widescale SM deployment. For example, 75% of occupant be-
havior studies focus on residential and office buildings [43]. In the realm of SM research,
the numbers are similar on the basis of our literature review and research. Research on
socio-demographics and energy use, energy profiling, and socio-psychological determi-
nants of SM use all focus on residential buildings, and then offices. Future research should
focus on different public building types such as hospitals, schools, and sports complexes.
In our own analysis of papers that focus on SM, we noticed that all of our papers focused
on either residential or office buildings. Importantly, 21 of the 26 papers studied data
collected in either North America or Western Europe. Thus, future research should seek
to diversify the field by collecting data, energy use patterns, and occupant attitudes and
behaviors from new and under-studied regions and building types. Finally, when looking
at socio-demographics and how that relates to energy use, there is still much work to
be added to this field. Most studies relevant to this specific review only looked at total
electricity consumption in residential buildings. Research that did separate total electricity
and gas, for example, was either outdated or the sample in the study was not generalizable
to the entire population. Future research should focus on determining how occupants
influence heating, cooling, gas or oil energy use, and the different relationships between
user characteristics and various types of energy use.

We recommend that future research and policy focus on the interdisciplinary nature
of OB and SMs. In order for us to gain a more holistic understanding of SM deployment,
multiple fields must be merged, and researchers must develop a better understanding
of occupants themselves. Further, the data collected must continue to be diversified
in order to include more buildings, occupants, and locations. This can be done through
examining different types of energy use and how that relates to different socio-demographic
characteristics; looking at energy use in a variety of public and private buildings; and,
finally, incorporating the growing field of socio-psychological factors that influence SM
adoption and energy use.
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