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Abstract: Although the energy and cost benefits for retrofitting existing buildings are promising,
several challenges remain for accurate measurement and verification (M&V) analysis to estimate
these benefits. Due to the rapid development in advanced metering infrastructure (AMI), data-
driven approaches are becoming more effective than deterministic methods in developing baseline
energy models for existing buildings using historical energy consumption data. The literature review
presented in this paper provides an extensive summary of data-driven approaches suitable for
building energy consumption prediction needed for M&V applications. The presented literature
review describes commonly used data-driven modeling approaches including linear regressions,
decision trees, ensemble methods, support vector machine, deep learning, and kernel regressions.
The advantages and limitations of each data-driven modeling approach and its variants are discussed,
including their cited applications. Additionally, feature engineering methods used in building energy
data-driven modeling are outlined and described based on reported case studies to outline commonly
used building features as well as selection and processing techniques of the most relevant features.
This review highlights the gap between the listed existing frameworks and recently reported case
studies using data-driven models. As a conclusion, this review demonstrates the need for a flexible
M&V analysis framework to identify the best data-driven methods and their associated features
depending on the building type and retrofit measures.

Keywords: baseline models; data-driven modeling; energy conservation measures; measurement
and verification; retrofitted buildings

1. Introduction

Buildings are the largest energy-consuming sector, with a global share of 35% of energy
consumption, exceeding industry and transportation [1]. It is estimated that 85% of the
building energy consumption is attributed to heating, ventilation, and air conditioning
(HVAC), lighting, and plug loads. Moreover, residential buildings account for approx-
imately 63% [1] of the total energy used by the building sector. In terms of electricity
consumption, buildings take 50% of the world’s electricity consumption [1]. According to
the U.S. Energy Information Administration (EIA), projections show that the residential
and commercial buildings will increase by 1.3% per year from 2018 to 2050 for countries in
the Organization for Economic Cooperation and Development (OECD), while non-OECD
countries will experience an average of 2% growth annually [2]. Several studies have ana-
lyzed the historical and current status of energy consumed by buildings and have projected
future increases in building-related energy use globally [3] or in specific regions such as
China [4], the European Union [5], and Gulf Cooperation Council countries [6]. The high
energy consumption by the built environment has significant detrimental effects on the
environment and the climate. Several governmental agencies and global organizations are
adopting initiatives and programs that target the reduction of energy consumption in the
building sector. For instance, the U.S. Department of Energy has set a 2030 goal of tripling
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2020 levels of commercial and residential buildings’ energy efficiency [7]. Similarly, the UK
has developed a net-zero energy strategy for buildings so that by 2050, buildings will be
completely decarbonized [8]. The goal included a plan that is driven by decisions to fund
several research projects, support owners to shift the buildings’ efficiency, and subsidize
clean and efficient projects [8]. In addition, China, the largest carbon dioxide emitter, has
pledged to reach neutral carbon emissions before 2060 [9].

Such initiatives and pledges can be achieved by a combination of several approaches
including enhancing renewable energy sources, setting more stringent energy efficiency
regulations, and funding research to develop effective and transformative technologies
in the building energy sector. However, improvements in the energy efficiency levels of
existing buildings are required to attain the desired goals. Indeed, the average annual rate
of replacing existing buildings is low reaching only 1% in the UK [10]. It is argued that
the environmental and economic benefits of retrofitting existing buildings outweigh those
achieved by replacing them with more efficient new buildings. Hasik et al. [11] performed a
life cycle assessment (LCA) of both retrofitted and newly constructed buildings and found
that retrofitting results in a reduction ranging between 53% and 75% for over six different
environmental impact factors compared to new construction. Economic benefits are highest
when retrofitting the least energy-efficient buildings when considering aspects such as the
creation of employment and reduction of carbon emissions compared to constructing new
buildings [12].

Retrofitting existing buildings includes renovations of mechanical, structural, and
electrical systems with a range of options such as refurbishment, replacement, or addition
of new equipment. In the case of energy efficiency retrofits, the replacement and addition
of new equipment is usually referred to as an energy conservation measure (ECM). Several
ECMs can be considered for existing buildings such as changing HVAC equipment, lighting
systems, and envelope features such as glazing types and wall assemblies. The deployment
of ECM aims primarily at reducing the energy use and cost of the buildings. The required
investments for ECMs are justified based on economic and environmental benefits. How-
ever, the implementation of ECMs can face several challenges, especially during assessment
and identification, as well as installation and verification. In the first period, any missing
information and documentation can hinder good assessment of the existing building energy
performance and thus effective identification. Similarly, uncertainty and lack of data can
affect the installation and validation process. For the validation analysis, an energy model
of the building is typically needed to predict the energy use before the deployment of any
ECM with minimum prediction uncertainty. Additionally, this process includes an essential
step in justifying the effectiveness of the installed employed EMCs, that is, measurement
and verification (M&V) analysis.

Several literature reviews have discussed data-driven models for tasks that are related
to the energy performance of existing buildings. Wei et al. [13] categorized data-driven
approaches into two applications including prediction and classification. However, this
literature review considers only prediction with a subset of prediction that is related to
times series instead of cross-sectional data. Cross-sectional data represent observations that
are not collected at unique timestamps or identified by a chronological order. Typically,
data are represented in a tabular form of columns and rows. If each row represents a
value assigned for a specific timestamp (e.g., the energy consumption of a building at
13:00), then the data is time series. In M&V baseline modeling, the data characteristics may
require different modeling methods. On the other hand, prediction of energy consumption
with cross-sectional data is performed with each realization being a single building and
its response variable being a single value representing total energy consumption over a
specific period. Deb et al. [14] did a review of forecasting in building’s energy consumption
using nine different techniques with a hybrid approach that represents a combination of
more than one technique. Unlike M&V baseline modeling, forecasting in building’s energy
consumption focuses on predicting future values using correlation from closely past values
which is not possible for the created baseline when performing M&V after retrofitting.
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Grillone et al. [15] conducted a literature review of deterministic and data-driven methods
that can be used to estimate energy savings from retrofits. Their analysis is focused on
two areas: M&V and prediction and recommendation while this literature review aims to
focus on M&V and prediction extensively. Deb and Schlueter [16] reviewed data-driven
approaches in retrofitting applications including benchmarking, energy signature, and
feature extraction. However, the review did not specifically discuss the baseline modeling
approaches for M&V Applications.

In terms of applications, numerous reported studies have considered data-driven
models to predict the energy consumption of existing buildings. Many of the reported
data-driven models are based on historical data that is used for training the models and
testing their prediction accuracy. However, few of such models have been applied to create
a baseline for M&V analysis to determine energy savings achieved by installed ECMs.
Additionally, reported data-driven models for M&V applications have been developed
and tested only for specific building types and ECMs. Furthermore, models have not
been evaluated for multiple buildings and ECMs. With the increasing interest in applying
data-driven models for building energy retrofit analysis, there are limited guidelines on the
suitability of these models for M&V applications. Therefore, this literature review examines
various methods and algorithms that have been applied to develop data-driven models
for M&V analysis of building energy retrofits. The contribution of this paper is to build a
summary of every step in building a data-driven model for M&V analysis. The focus is
specifically on only prediction with applicability to M&V analysis along with the necessary
steps in processing and creating features before training the baseline model. The literature
review summarizes the previous endeavors of studies and frameworks and extracts the
most listed requirements and modeling approaches.

2. Overview of Measurement and Verification Analysis

M&V analysis is a process of quantifying the energy use savings due to the deployment
of ECMs when retrofitting existing buildings. A baseline energy model allows the prediction
of the energy use of an existing building due to variations in environmental and behavioral
factors such as different climatic conditions or changes in occupancy levels before any ECM
implementation. The baseline energy model is often used as a benchmark to estimate energy
savings due to installing one or several EMCs. Figure 1 shows the difference between
metered and modeled energy use of an existing building over three periods. The first period
corresponds to the pre-retrofit operation of the building with the energy use data being
metered using historical data collected from utility bills or a building management system
(BMS). The baseline energy model is typically developed and tested during this pre-retrofit
period. During the retrofit period, ECMs are installed in the building resulting in a gradual
reduction in the energy consumption compared to the predictions of the baseline energy
model as noted in Figure 1. After completing the ECM installation phase, the building
typically consumes less energy than during the pre-retrofit period, as demonstrated in
Figure 1 during the post-retrofit period. Indeed, the baseline energy model predicts higher
energy consumption than the metered data during the post-retrofit period. The difference
between the baseline and the metered energy consumption during the post-retrofit period
represents energy savings incurred by the installed ECMs during the post-retrofit period. A
building energy model baseline is often established for M&V analysis of retrofitting existing
buildings, especially for those with energy use historical data that meet certain requirements
such as date range, missing values, or reporting frequency. These requirements, however,
are not well-defined and vary from one case to another depending on a wide range of
factors including the nature of occupancy. The process of constructing a data-driven
baseline model requires that a building has been in operation during a sufficiently long
period to gather enough data to establish correlation between its energy performance and
other independent factors such as weather and occupancy parameters.
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Figure 1. Actual energy consumption and modeled building baseline vs. time.

2.1. Measurement and Verification Protocols

Several M&V protocols have been developed to improve consistency and reduce
uncertainty in estimating the energy savings attributed to retrofitting existing buildings,
such as the International Performance Measurement and Verification Protocol (IPMVP) [17]
and ASHRAE Guideline 14 [18]. The analysis approaches outlined in these protocols differ
depending on the geographical regulatory requirements, the types of ECMs, and building
typologies. Additionally, specific frameworks and methodologies have been proposed to
achieve the desired objectives of retrofitting projects. For instance, Ma et al. [19] developed
a systematic methodology for carrying out retrofitting projects and successfully completing
the various phases and analyses including the M&V analysis.

2.1.1. International Performance Measurement and Verification Protocol (IPMVP)

The International Performance Measurement and Verification Protocol or IPMVP is
one of the most common frameworks in performing M&V analysis of retrofitting existing
buildings, with four evaluation options as outlined in Table 1. The selection of the most
appropriate analysis option depends on the boundary of the deployed ECMs. Options A
and B are applied when the retrofit is restricted to only one specific and isolated building
energy system. These two options differ depending on the analysis method and the
availability of metered data. In particular, option A can be used for a M&V analysis for a
lighting system retrofit using only key parameters including power ratings and operation
schedules to calculate energy savings. On the other hand, option B is applied for systems
whose energy performance can be monitored such as chillers and boilers. In addition,
Options C and D can be applied when the retrofit affects the energy performance of the
entire building. When metered building energy data can be collected before and after the
retrofit periods, Option C is suitable for conducting the M&V analysis. When the historical
data of metered energy consumption are not available or are unreliable before or after the
retrofit, option D is considered using calibrated energy models [17].

Table 1. IPMVP M&V options.

M&V Options Boundary Parameters Process

Option A System Key system parameters with estimation Simple calculations with the estimated
parameters

Option B System All system parameters with no estimation More rigorous calculations with all related
parameters

Option C Whole Building Whole building energy consumption
historical data

whole building baseline modeling with
building energy consumption and related
parameters

Option D Whole Building
and/or System

Whole building and/or system parameters
with energy bills

Calibrated simulation of the boundary
using data and modeling tools
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2.1.2. ASHRAE Guideline 14

ASHRAE has developed Guideline 14 for Measurement of Energy, Demand, and Water
Savings to standardize the M&V calculations used to estimate achieved energy demand
and water savings from retrofit projects. ASHRAE Guideline 14 utilizes three M&V analysis
options that are similar to those specified by the IPMVP including retrofit isolation, whole
facility, and whole building calibrated simulation. Instead of having two analysis options
for isolated systems, ASHRAE Guideline 14 allows only one method with the flexibility
of the parameters that can be used in the calculations. The whole facility option is similar
to Option C of the IPMVP using the whole facility metered energy consumption along
with independent variables to establish the building’s baseline energy model. The third
approach is similar to the IPMVP’s option D using a calibrated baseline model to quantify
savings from the retrofit. While ASHRAE Guideline 14 shares some features with IPMVP,
it does not cover specific details such as energy performance contracting and metering
provisions as IPMVP does [18].

2.1.3. Advanced Measurement and Verification

Advanced M&V, usually referred to as M&V 2.0, encompasses detailed analysis
approaches using high frequency metered data (i.e., sub-hourly), and end-use loads using
advanced metering infrastructures (AMI) [20]. In fact, M&V 2.0 enables metered data to
be more effective for building real-time performance assessment, occupant engagement,
and resource management using various analysis tools and algorithms. The improvements
of both hardware and software over the last decade have resulted in better accuracy in
performing various M&V tasks such as developing baseline models, detecting non-routine
events, and benchmarking energy consumption. Furthermore, retrieval of metered data
at higher frequencies and shorter time intervals facilitates performing data analytics and
automating savings quantification for retrofit projects, which reduces the time lag between
implementation and evaluation phases [21].

2.2. Baseline Modeling

Three approaches are commonly used to establish building baseline models: deter-
ministic (also referred to as direct or white-box), data-driven (also referred to as indirect
or back-box), and hybrid (also referred to as gray-box) methods. All approaches reach the
same objective in M&V (i.e., constructing a baseline) with different inputs and processes.
The comparison between such means for a single case is time-consuming and rarely per-
formed, as each approach has sub-approaches, which alone will take more time and effort.
Therefore, this subsection aims to provide a concise comparison between them.

Deterministic modeling relies on physics-based tools to predict the energy consump-
tion of buildings due to their thermal interactions with the outdoor environment. Such
interactions are often represented using heat and mass balance equations that are solved
using a set of algorithms that are the basis for a deterministic building energy model-
ing tool. There is a wide range of commercially available and open-source deterministic
modeling tools that can be utilized for developing building energy models including En-
ergyPlus [22], TRNSYS [23], DOE-2 [24], DesignBuilder [25], Matlab/Simulink [26], and
Modelica/Dymola buildings library [27]. Most of these deterministic modeling tools re-
quire comprehensive input data about the building features such as envelope thermal
properties, mechanical equipment efficiency, and operation schedules. Ke et al. [28] devel-
oped a deterministic (also referred to as white-box) baseline energy model using eQUEST
software (based on DOE-2 simulation engine) for an existing office building with a mean
bias error (MBE) of 0.37%. The building energy model includes over 50 input variables
indicating the types and operation characteristics of chillers, indoor air-conditioning units,
and cooling towers performance in addition to several variables describing other building
systems such as the envelope elements and lighting fixtures. The study has demonstrated
high levels of interpretability in understanding the specific interactions between energy
end-uses of various building systems and occupancy behaviors that deterministic building
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energy modeling can offer. However, the interpretability as well as the high prediction
accuracy of the deterministic models come with significant computing times and input
data collection efforts.

Data-driven models represent relationships between energy performance indicators
and environmental parameters identified using historical data. These relationships are
then applied to predict the building response when all or some environmental variables
would change. Thus, data-driven models are based on developing correlations between
the desired input and output parameters using various statistical and machine learning
approaches. In particular, the development as well as the accuracy level of data-driven
models rely heavily on historical data for both input and output variables. Types and
applications of data-driven modeling are discussed in detail in Section 4. Typically, the
accuracy and interpretability levels of data-drive models are lower than those achieved by
white-box models, as data is usually noisy and the occupancy behavior is not consistent.

Hybrid, also referred to as gray-box, models utilize a data-driven analysis approach to
tune and improve physics-based (also referred to as deterministic or white-box) models
through value estimations of input parameters values using historical data. A common
deterministic model using in the hybrid analysis approach is based on resistance and
capacitance (RC) modeling to account for building thermal mass. Piccinini et al. [29]
developed a framework for building a hybrid modeling approach using historical monthly
electricity and natural bills of a primary school building to calibrate a building energy
model using the Dymola Environment. The study achieved a normalized mean bias error
(NMBE) of 1.8% while using far less parameters compared to a white-box model developed
using detailed simulation tools such as EnergyPlus or TRNSYS. Similarly, Giretti et al. [30]
compared the performance of reduced-order modeling using Modelica with Buildings
Library against calibrated detailed models belonging to three cases: a hospital, library,
and an educational building. The calibrated reduced-order models obtained a coefficient
of variation of the root mean squared error (CV(RMSE)) between 5% and 8% compared
to the detailed models while using only 25 parameters that are categorized into building
envelope, heating/cooling system, occupancy, and weather components.

Chen et al. [31] compared three energy modeling approaches including black-, white-,
and gray-box models. The comparative analysis considered several performance metrics
including development efforts, computational times, and analysis limitations. Their study
found a trade-off between each metric category, with black-box models requiring the least
effort and time, while white-box models had far more input parameters. Gray-box models
are in the middle in terms of development effort and required input parameters as it
still requires significant data correlating energy consumption and weather variables. In
terms of interpretability, white-box models allow for better understanding of the impact
contributed by each input on building energy performance followed by gray-box then
black-box modeling approaches. This capability is due to the fact that relationships between
energy consumption and input parameters are well-established for deterministic models
based basic physical principles rather than inferred from historical data as required by the
data-driven (black-box) models.

3. Data-Driven Trend in Building Energy Modeling

Data-driven approaches have gained an increasing popularity especially in the last
10 years as more methods have been proposed for baseline modeling and energy consump-
tion forecasting due to the higher availability of reliable building energy consumption data
and advances in machine learning techniques. Indeed, significant valuable and granular
data can be collected from smart metering building technologies. For instance, measured
building data currently have short frequencies of 15-min or 1-h intervals instead of monthly
frequency data like utility bills. Additionally, the energy end-use granularity allows bet-
ter evaluation of various building energy systems (i.e., lighting, HVAC, and appliances).
Moreover, higher data storage capabilities through databases and clouds permit access to a
significant amount of building performance data for various analyses and applications. Due
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to the aforementioned factors, advances and interests in using data-driven approaches for
building energy analyses have been significantly increased in the last decade as described
in the following subsections.

3.1. Interest in Data-Driven Approaches

To gauge the level of interest in using data-driven approaches for building energy
assessments, a bibliometric analysis is performed by using Web of Science database [32]. The
analysis is specific to the literature published between 2010 and 2021, focusing on technical
papers that develop and apply data-driven approaches to model or predict building energy
consumption. Web of Science is used to identify the number of published papers that are
relevant to data-driven approaches during a specific time period. Specifically, the following
keywords are considered for the Web of Science search:

• Data-driven Building Energy Modeling.
• Building Energy Prediction.
• Building Electricity Prediction.
• Machine Learning Building Energy Modeling.

Figure 2 shows the results of the bibliometric analysis, clearly depicting the rapid and
consistent increase over the last decade in published papers with a focus on data-driven
approaches applied to building energy analysis.

Figure 2. Number of research papers using data-driven approaches for building energy modeling.

3.2. Data-Driven Approaches

The bibliometric analysis is also performed to understand the most common methods
used in the literature for data-driven building energy modeling. The search query of peer-
reviewed papers published from 2010 to 2021 to identify the used modeling approaches was
categorized into machine learning methods categories by Sklearn library [33] in Python. The
models are further organized to represent relevant models since Sklearn library includes
many models while the energy modeling research papers were more focused on a set of
these models. However, this approach was not successful, since the search query cannot
determine the objective of the research paper, but rather filter results based on matching
keywords and similarity. This issue is amplified when the research paper addresses certain
methods but does not actually use that method. Hence, an alternative approach is followed
by using the resulted papers in the queries mentioned in Section 3.1 and randomly selecting
papers until reaching 75 research papers. The randomness is introduced by exporting
the list of papers and using Python to shuffle titles. If a certain paper does not utilize
data-driven methods to model the energy consumption, the next paper on the shuffled list
will be analyzed until reaching 75 papers. Figure 3 shows the result of this reading. The
main level categories are:
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• Linear Regression (LR): it is a category that involves linearly regressed models as
described in Section 4.1.

• Ensemble methods and Decision Tree (DT): The two methods are grouped in one
category based on their similarity as explained in Section 4.2.

• Support Vector Machine (SVM): it is a modeling method of using supporting vectors
to fit a hyperplane for regression and classification as demonstrated in Section 4.3.

• Artificial Neural Network (ANN): it is a category that utilizes deep learning and
human brain-inspired function of neurons and layers as discussed in Section 4.4.

• Kernel regression: it is a family of non-parametric techniques to fit changing coeffi-
cients on data points as outlined in Section 4.5.

From the main categories, the most commonly used models branch based on the
frequency of occurrence in peer-reviewed papers. The plot does not branch into the specific
models used in each study, but rather into a general yet specifically sufficient level that can
encompass the modeling approach.

Figure 3. Sunburst chart of bibliometric analysis methods used in data-drive building energy
modeling.

3.3. Building Typologies

Data-driven models have been applied for several building types including commer-
cial and residential buildings as well as individual and group of buildings. The typology
can significantly impact the building energy performance due to occupant behavior and
the operation of various systems. According to a study performed by Liang et al. [34] in
Phoenix, Arizona using data for 636 commercial and 201 residential buildings collected
from Energize Phoenix program, retrofits can save about 8% and 12% in annual energy
consumption for residential and commercial buildings, respectively. Wang et al. [35] per-
formed a comparison between different building typologies including offices, shopping
malls, and educational buildings. The study concluded that shopping malls have the
highest potential for energy savings, followed by multifunctional buildings and hotels.
Figure 4 shows a sunburst chart of building typology reported in various energy modeling
studies categorized using three levels including data source, building the main function,
and sub-category of building type as the following:

• Actual or metered data: these consist of energy consumption recorded using stan-
dalone measurement devices or Building Management Systems (BMS).

– Non-residential: encompassing mostly commercial buildings and office spaces.
Educational buildings represent cases where the building’s purpose is mostly for
classrooms and teaching such as schools and universities. Other buildings with a
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commercial nature such as restaurants and retail buildings are grouped into one
category.

– Residential: including buildings that are used mostly for housing and living
spaces. Residential buildings are divided into detached houses, apartment build-
ings, and other types of residential buildings.

• Simulated or synthesized data: are typically generated using simulation analysis tools
such as EnergyPlus and DOE-2.

• Public datasets: are obtained from public databases such as Open Energy Data Initia-
tive (OEDI) [36].

Figure 4. Sunburst chart of bibliometric analysis building types used in data-drive building
energy modeling.

4. Data-Driven Approaches

This section outlines a brief description of each method used for data-driven modeling
and the main reported applications for these methods. Each subsection discusses one of
the main categories that are mentioned in Section 3.2 with an explanation of the general
algorithm, sub-models within the category, and a list of publications that utilized one
or more of the category’s models. The tables in this section show summaries of such
publications with a description of the applied case, data type, features, utilized category’s
models, and data granularity or frequency. The papers listed in this section include data-
driven modeling suitable not only for M&V analysis, but also for baseline building energy
development. Among the reported literature, there are very limited papers that perform
full M&V analysis using data-driven models, as most of the reviewed applications evaluate
the prediction performance of data-driven approaches. Features, predictors, and dependent
variables are terms that are used interchangeably to list input parameters that are used to
train the model to perform predictions about the response, target, or independent variable
that represents the model’s output. In each of the following sections’ tables, the general
category of the feature will be mentioned instead of the specific features for conciseness. In
Section 5, the features will be explained further in terms of filtering and processing. Based
on the conclusion reached by each study, the tables in this section will show, if the results
are clearly indicating one best model, the best model within the categories mentioned in
this section in bold font. Data granularity represents the interval of prediction, which can
be 15-min, hourly, daily, weekly, or monthly.
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4.1. Linear Regression
4.1.1. Definition

Linear regression (LR) is a term that encompasses a family of different techniques
that aims to establish a linear relationship between the target y (i.e., output) and a set
of predictors xi (i.e., input parameters). Equation (1) shows the general form of a linear
regression [37].

ŷi(β, X) = β0 + β1X1 + . . . + βnXn (1)

where

• βi: Linear regression coefficients.
• Xi: Linear regression features or predictors.
• ŷi(β, X): Linear regression prediction of the output variable.

The LR modeling includes several methods, with the most basic approach being
the Ordinary Least Square (OLS). Other methods can be more complex involving other
equation forms and algorithms for estimating the regression coefficients.

4.1.2. Applications

The LR approach with its various forms is used extensively in building energy mod-
eling including establishing baselines and benchmarks. Mathieu et al. [38] used an OLS
method that is called Time of Week and Temperature (TOWT) to develop a building
energy baseline model. The model considers two input parameters: time of the week
and temperature. The time of week segments the week into 15-min intervals, while the
temperature is featured into ranges that are a function of the maximum and minimum
temperature from historical data. The ranges are fitted using piecewise linear regression
analysis. Existing frameworks modified the method of TOWT by using a Weighted Least
Squares (WLS) regression instead of OLS and allowed for recent data to be weighted more
than old data. Granderson et al. [39] compared the prediction accuracy of 10 data-driven
models including those based on linear regression methods using data from 537 buildings
to gauge the accuracy of M&V modeling approaches. The study included two metrics
where linear regression with appropriate feature engineering showed similar accuracy to
complex models. Kim et al. [40] modeled the energy use of an educational facility based on
a set of metered data using linear regression methods along with more complex techniques
over both working and non-working periods. In the study, Kim et al. [40] found that the
linear regression method predicted building energy use less accurately than the complex
model during non-working days when occupancy stochastic behavior is difficult to capture.
Further applications are shown in Table 2.

Table 2. Linear regression cases that are applicable to M&V analysis and utilize real historical data.

Building Type and Number Features Data
Granularity Model Type References

Bakery, office, and furniture store Date and temperature Hourly OLS [38]

537 commercial buildings Varies from model to model with
temperature and date as main features Hourly OLS and MARS [39]

Educational building Date, Weather, Occupancy Hourly OLS [40]
Health Center Temperature Monthly OLS [41]
Office Building Temperature and Occupancy Monthly OLS [42]
Genome Project 2 open dataset of
1578 non-residential buildings Date, and Meteorological data 3-h Baysian LR [43]

Two office buildings, two shopping
malls, one hotel, and one
multi-function building

Date, Meteorological data, and
Occupancy 15-min GPR [44]

2 Educational buildings Date and Meteorological data Daily OLS [45]
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Reported studies showed that LR approaches can vary in complexity and accuracy.
The LR approach is often used as a benchmark for more complex models or even as a
method with similar accuracy compared to more complex approaches for modeling the
building energy consumption. Although LR cannot fit complex non-linear relations, the
accurate selection of features, analysis before modeling, and checking LR assumptions
can improve its accuracy greatly. Raw features with LR usually do not fit relationships
easily while processing features with other models or simple methods allows LR to capture
relationships better. This highlights the importance of the LR approach to act at least as a
benchmarking model.

4.2. Decision Tree and Ensemble Methods
4.2.1. Definition

DT is a basic non-parametric supervised learning method used for classification and
regression analyses. The DT method can predict the value of a target variable using simple
decision rules inferred from the data features. The training process for DT follows a
piecewise constant approximation approach with different prediction models for various
data groups [46]. In the context of M&V applications, decision trees act as regressors rather
than classifiers using different metrics to measure their splitting homogeneity or commonly
known as impurity. In regression, the case of M&V, the impurity of a leaf is measured
by the residual sum of squares. The tree splits data points based on features until fitting
the data or reaching specified stopping criteria. The splitting relies on different metrics
to decide the goodness of the criterion set at a node, which acts as a decision point that
splits the data to minimize a specified cost function (i.e., residual sum of squares for M&V
applications). Typically, DTs use the splitting criterion as described in Equation (2) [46].

R1 j, s = X|Xj ≤ s and R2 j, s = X|Xj > s (2)

where

• s: A decision dividing a node into two leaves.
• Ri: Resulted leaf.
• Xi: Feature from the dataset.
• X: Realizations from the dataset.

Figure 5 shows a simple DT for regression where X represent that data points and Xi
to Xr represent features from the dataset. At each decision node, the tree divides the data
based on criteria, si to sr, where the resulted leaves can have additional decision nodes.
The tree keeps branching until minimizing the considered cost function (i.e., Residual Sum
of Squares (RSS)) as shown in Equation (3) or reaching the set stopping criteria. The end
leaves represent the predicted value for the data points that fall into the leaf based on a
series of decision nodes, yj to yr.

RSS = ∑
i:xi∈R1(j,s)

(yi − ŷR1) + ∑
i:xi∈R2(j,s)

(yi − ŷR2) (3)

However, decision trees can form the basis for more complex models using ensemble
methods. Random Forest (RF) is an ensemble method that fits several regressions or
classification decision trees for various sub-samples of the dataset and aggregates them
by averaging to improve prediction accuracy levels and control the overfitting problem.
This ensemble approach is called “bagging” with sampling features and aggregating via
averaging. Moreover, other ensemble approaches can be utilized instead of simple weighted
averaging methods such as RF. “Stacking” is another ensemble process of generating
several base models using training data such that meta-models use predictions from base
models as features for out-of-sample predictions. “Blending” is a variation of stacking
using testing data set to gauge the prediction accuracy of base models while a final test is
applied for the meta-model [47]. The state-of-art ensemble methods include AdaBoost [48],
Gradient Boosting Machine (GBM) [49], Extreme Gradient Boosting Machine (XGB) [50],
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and Light Gradient Boosting Machine (LGBM) [51]. All these methods use the principle of
multiple learners, except the boosting algorithm, which introduces weighting penalization
before each successive learner rather than aggregating the final prediction from multiple
learners directly. However, DT and DT-based models like RF and XGB are not effective at
extrapolating beyond the range of the predictor’s values [52]. Therefore, when a building’s
energy consumption data include values beyond the trained data for the predictors, other
algorithms must be incorporated to overcome this issue.

YES NO

YES NOYES NO

YES
NO

Figure 5. Simple structure of decision tree for regression.

4.2.2. Applications

DT is a machine learning method that is used in both classification and regression
applications. Touzani et al. [53] used XGB to determine the improvements of boosting
against TOWT by using date and temperature of buildings where the accuracy metric
boxplots showed an improvement over the TOWT method. Afroz et al. [54] compared
six data-driven models by predicting the energy consumption of 11 office buildings lo-
cated in Ottawa, Canada. RF method is found to provide superior prediction accuracy
levels than those of the DT method and even better than those achieved by some models
except Nonlinear Autoregressive with Exogenous inputs (NARX). Agenis-Nevers et al. [55]
applied 10 methods to model the energy performance of 11 UAE buildings including
10 commercial complexes and one housing unit. RF approach has achieved a global score
that is above the average for the 11 buildings. Liu et al. [56] used simulated data generated
using DesignBuilder model for an educational building in the Northern China region to
compare the energy use predictions from three models. The study found that RF provides
the highest prediction accuracy. Publications that utilized DT and ensemble methods are
shown in Table 3.

Ensemble methods can be used to develop a set of new models different from base
models. With several sampling and aggregating techniques, the choice of the best category
approach can pose some challenges. Indeed, the best suitable model depends on several
factors and is often not possible to generalize for different building types and retrofit
measures. However, reported comparative studies have indicated the appropriateness
of certain ensemble methods over others. For example, in several analyses, RF approach
outperforms DT in regression modeling as the former prevents overfitting by introducing
randomness while the latter tends to branch out until overfitting the training data. On
the other hand, approaches such as stacking rely heavily on their base learners with
different applications providing completely different results. While stacking can be effective,
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it is still a computationally expensive approach with vague transparency and unclear
interpretability.

On the other hand, XGB and RF can indicate the contribution of each variable and
increase the model interpretability. Given the results of the bibliometric analysis and
reported applications of this modeling category, RF and XGB are the two most commonly
suitable techniques in ensemble approach with limited drawbacks.

Table 3. Decision tree and ensemble cases that are applicable to M&V analysis and utilize real
historical data.

Building Type and Number Features Data
Granularity Model Type References

410 Commercial building Date and Temperature 15-min XGB [53]
12 Office building Date and Meteorological data Hourly RF and DT [54]
10 Commercial and 1 residential
buildings Meteorological data Monthly and

Daily RF and DT [55]

2 Educational Buildings Date, Meteorological data, and
Occupancy Hourly RF and DT [57]

Residential Quarter Date and Meteorological data Hourly DT, GBM, XGB [58]
507 Non-residential Buildings from
Genome Database Date and Meteorological data Hourly Stacking [59]

Educational Building Date, Meteorological data, and
Occupancy Hourly Bagging Trees [60]

Healthcare Date, Meteorological data, and
Occupancy

Daily and
Weekly XGB and RF [61]

Hotel Date, Meteorological data, and
Occupancy Hourly RF [62]

1325 air conditioners Date, Meteorological data, and indoor
environmental parameters Daily XGB, RF, GBDT,

AdaBoost [63]

Heat pump in a residential building Date, Meteorological data, and HVAC
system operating parameters 30-min XGB, Stacking [64]

House Meteorological data, and indoor
environmental parameters 10-min XGB [65]

4.3. Support Vector Machine
4.3.1. Definition

Support vector machine (SVM) is a common machine learning tool used for classifica-
tion and regression analyses. A SVM model is developed by fitting a hyperplane that aims
to determine the underlying relationship between predictors (i.e., input parameters) and
target (i.e., output). The hyperplane is supported by two vectors as shown in Figure 6 such
that the error measured with respect to these two vectors and the hyperplane is minimized
by including the maximum number of points within the boundary lines and close to the
hyperplane. The two parallel lines represent the supporting vectors while the middle line
is the hyperplane. Equation (4) shows the hyperplane equation where the data is mapped
to a higher dimension by a dot product between points and weights. Then, SVM aims
to minimize the cost function, which is shown in Equation (5), where ε represents the
distance of the supporting vectors from the hyperplane and ζ represents the distance from
the supporting vectors to the points outside the supporting vectors. The more points that
lie within the boundary, the less the cost function [66].

F(xi) = (w, φ(xi)) + b (4)

where

• b: Model bias.
• φ(xi): Kernel function that maps data to higher dimension.
• w: Model weights.
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Figure 6. One-dimensional support vector machine for regression.

Min(L(w, C)) = Min

(
1
2
||w||2 + C

n

∑
i=1

(ζi + ζ∗i )

)
(5)

• L(w, C): Loss or cost function.
• C: Direction regularization coefficient.
• ζi: The distance from data observation to any of the supporting vectors which is

minimized by the cost function.

4.3.2. Applications

Edwards et al. [67] compared using two variations of SVM against other modeling
techniques including LR and ANN. The SVM is demonstrated to have a better performance
compared to complex models when applied to residential buildings and to provide similar
prediction accuracy levels compared to complex models for commercial buildings. Amber
et al. [68] utilized parameters denoting working and non-working days to predict energy
demand for an office building which resulted in SVM models that are trained on a subset
of data denoting a specific type of day (i.e., work or non-work day) outperforming SVM
models that were trained on all the data in prediction accuracy. This result highlights the
importance of consistency in occupancy and how the model prediction accuracy can be
degraded with more stochasticity in occupant behavior. Although SVM can be computa-
tionally expensive, several fitting algorithms can be utilized to minimize the computational
time such as parallelizing the training work [69]. Zhao and Magoulès [70] utilized a parallel
implementation approach for predicting a building’s energy consumption that reduces the
training time by parallelizing kernel evaluations and gradients compared to a sequential
approach and provides similar prediction accuracy. Table 4 provides some reported studies
applying SVM for building energy predictions.

The Support Vector Machine is a powerful yet computationally expensive algorithm.
The mapping of observation to a higher dimension makes SVM superior in fitting complex
relationships and minimizing the model prediction errors. Parallelization can mitigate the
slow-fitting performance of the SVM approach, especially when dealing with large datasets
and when accuracy distribution over the entire dataset is required. The proper choice
of kernel when using SVM is not straightforward, as the resulted mapped data points
can change the prediction accuracy of the model and the process of fitting a hyperplane
with no direct relation to model accuracy. Additionally, the choice of a kernel can be
determined usually through k-fold cross validation. However, the number of studies using
non-linear models as found by the bibliometric analysis suggests that using kernels such as
Gaussian or RBF are more common. Furthermore, linear kernels can fit linear hyperplanes
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for non-complex applications as well as non-linear models that are more computationally
expensive.

Table 4. Support Vector Machine cases that are applicable to M&V analysis.

Building Type and Number Features Data
Granularity Model Type References

3 Residential Buildings Date, and Meteorological data Hourly SVM, LS-SVM [67]
Simulated Office building Date, and Meteorological data Hourly PI-SVM [70]
4 Commercial Buildings Temperature Monthly SVM [71]

Hotel Date, Meteorological data, and
Occupancy Hourly SVM with RBF [72]

Commercial Building Date, Meteorological data 15-min SVM with RBF [73]

Hotel Date, Meteorological data, and HVAC
operation parameters Hourly SVM with RBF [74]

4.4. Artificial Neural Network

Deep learning or artificial neural network (ANN) is a subfield of machine learning
where algorithms mimic the human brain functioning process. The ANN involves a set of
neurons forming layers that are inter-connected starting from an input layer to an output
layer. The connections between neurons are determined using weight coefficients that are
determined based on a training process using input–output data sets. As discussed in
Section 3, the majority of ANNs used in data-driven building energy modeling are Feed
Forward Neural Network (FFNN) [75], as detailed in the following sections.

Feed Forward Neural Network

FFNN is the most commonly used ANN-based approach in building energy modeling.
Each layer’s neurons, comprised of various features’ signals, are multiplied by weights
wi,j,k that connect them to the other layer’s neurons. Following this, a bias term bj,k is
added to the summation of each weight and signal multiplication. The result is then
inserted into an activation function, which can be either a Rectified Linear Unit (ReLU) or a
linear activation function. Without activation functions, the FFNN would be just a linear
regression model. Equation (6) shows the process of multiplying weights with signals and
adding bias [75]. Figure 7 illustrates the basic FFNN architecture. Figure 7 shows the same
variables in Equation (6) with different indices, where i denotes the layer number, j the
neuron in certain layer, and k the connection. For example, wi,j represents the weight wi,j of
the connection between node i and j.

ŷX,W,b,g(h) = g
(

WTX + b)
)

(6)

where

• W: Weights associated with the connection between neurons.
• X: Inputs form the input layer or the output of an activation layer.
• b: Bias term for each neuron.
• g(h): Activation function.

FFNN can have multiple hidden layers (i.e., Multi-Layer Perceptrons, MLP) or a
single hidden layer (i.e., Single Layer Perceptrons, SLP). Other forms can have different
processes with the same network architecture such as Radial Basis Function Neural Network
(RBFNN) [76] or Extreme Learning Machine (ELM) [56]. Both forms have instead of multi-
hidden layers, a single hidden layer. RBFNN has radial basis functions that map data to a
higher dimension instead of simply activating h. ELM is also a single hidden layer network
where initial weights bias terms are initialized using a different method than MLP or SLP
and fixed during the tuning phase. Table 5 shows some reported stuides that apply FFNN
to predict building energy consumption.
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Figure 7. Feed forward neural network architecture.

Table 5. Neural network cases that are applicable to M&V analysis.

Building Type and Number Features Data
Granularity Model Type References

Biomedical manufacturing’s chilled
water system HVAC system operating variables 15-min to

weekly SLP [77]

Office building HVAC hot water
system Outside dry-bulb temperature Hourly and

Daily MLP [78]

5 Office buildings Date, Meteorological data, and HVAC
loads Hourly SLP [79]

1 Educational building, 1 real and 2
simulated office buildings Date and Temperature Hourly SLP [80]

47 buildings in an educational
campus Date and Meteorological data Hourly SLP [81]

7 Dormitory buildings Date, Meteorological data, and
Occupancy Hourly SLP [82]

Library and ASHRAE Energy
Prediction Competition I dataset Date and Meteorological data Hourly SLP [83]

Educational building Date, Meteorological data, and
Occupancy 15-min SLP [84]

ANNs are gaining more popularity in building energy modeling due to the availability
of better computing machines to perform cumbersome and time-consuming approaches.
Furthermore, the development in ANN architecture and algorithms that enable the capture
and identification of complex relationships. Nevertheless, the superiority of such methods
remains the subject of debate since only slight improvements in prediction accuracy can be
achieved at the expense of significant computational efforts. FFNN-based models can take
several forms with the choice between them being difficult to generalize to all building
energy modeling applications. Typically, the development of FFNN-based models relies
on a trial and error process using cross-validation to obtain the best model’s parameters
with no clear choice in the reported literature on the best general approach that leads to an
accurate model’s prediction. Some papers recommended certain methods to find the first
iteration’s parameters’ values such as the number of hidden layers and neurons. Ahmad
et al. [62] chose only a single hidden layer and performed a stepwise searching method to
select the optimum number of neurons. On the other hand, Amber et al. [85] and Ye and
Kim [86] relied on a formula that is a function of both the output and input layer sizes to
determine the number of neurons.
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4.5. Kernel Regression
4.5.1. Definition

Another category of data-driven approaches used for building energy modeling is
kernel regression. This category of regression analysis approaches is also called time-
varying coefficients, where response values are predicted using different coefficients for
different intervals. Kernel, in this context, is a function that assigns weights to data points
based on a specific metric [87]. An example of kernel regression is K-Nearest Neighbor
(KNN) [88] regression, where Euclidean distance is used as a metric for weighing nearby
points where a subset of all data points is selected and each is given an equal weight.
Equation (7) defines the K-nearest neighbor regression. However, this method can have
boundary issues as the regression becomes inaccurate at the endpoints. Additionally,
the method generates a curve with several discontinuities as each point has an equal
weight. Another approach is Nadaraya–Watson kernel-weighted average [89], which
minimizes the weight points based on distance. Equation (8) shows the calculation of the
model predictions.

ŷ =
1
h ∑

xi∈Nh(x)

yi (7)

where

• N: Neighborhood of points similar based on Euclidean distance.
• h: Count of points in neighborhood N.

y =
∑N

i=1 Kλ(x0, xi)yi

Kλ(x0, xi)
(8)

where

• Kλ: Kernel equation that weighs points in neighborhood N.

The kernel equation Kλ can be Epanechnikov quadratic, Tri-cubic, or Gaussian [87]. In
each kernel function, a hyperparameter λ, named smoothing parameter, determines the
local neighborhood’s widths where lower and higher values can change the variance and
bias of the model.

4.5.2. Applications

Ho and Yu [90] applied a kernel regression using KNN using measured data for an
educational building with a special focus on the energy performance of a chilled water
plant. The model included typical features for a building and chiller operating variables
such as water flow rate, water supply, and return temperatures, as well as outdoor air
dry-bulb temperature, and relative humidity. The model achieved reasonable prediction
accuracy levels by selecting the optimal number of clusters based on the lowest mean
square error. These results highlight the ability of kernel regression to consider several
factors and weight them based on Euclidean distance. Gallagher et al. [91] modeled energy
use of a biomedical facility using over 18 features (i.e., input parameters) including dry-bulb
temperature data and equipment manufacturing variables such as production machinery
electricity consumption, facility operation schedule, and chilled water system electricity
consumption. The study showed that KNN achieved the best accuracy metrics when using
weekly data compared to SVM, ANN, LR, and DT. Wang et al. [92] compared energy use
predictions for several data-driven models, stacking, RF, GBM, SVM, XGB, and KNN. The
reported results indicate that the KNN-based model has mixed performance as it achieved
better accuracy levels than RF and XGB in one case, but provided the worst prediction
accuracy in another case. Table 6 shows a summary of the reported studies using kernel
regression for building and retrofit baseline energy modeling.
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Table 6. Kernel regression cases that are applicable to M&V analysis and utilize real historical data.

Building Type and Number Features Data
Granularity Model Type References

2 Educational buildings Date and Meteorological data 30-min and
Hourly KNN [92]

Biomedical manufacturing facility Date, Temperature, and manufacturing
factors

Intervals from
15-min to
Monthly

KNN [91]

Educational building Date, Meteorological data, and chiller
operating variables 15-min KNN [90]

68 Commercial and 54 residential
buildings Date Hourly KNPTS and

KNFTS [93]

Chiller in a public building Meteorological data and Chiller
operating parameters 15-min KNN [94]

Kernel regression approach provides a powerful tool when modeling relations that
are observed frequently over the dataset. By developing neighborhoods of similar points,
the kernel-based models can make predictions that are based on weighted values. The
similarity provides a mean for the kernel-based model to link the mapping between
inputs and outputs and easily fit non-linear relations. However, several hyperparameters
are encountered when selecting a kernel-based modeling approach. From the reviewed
applications, there appears to be no specific selection guidelines for these parameters other
than experimentation and trial and error mechanisms. Although complex kernels can
produce smooth curves to fit the building energy consumption, there is no clear procedure
to develop the set of complex kernels. The common recommendation from reported
analyses is that kernel-based models need to be tested over a set of different data and
compared against each other to determine the best modeling approach.

5. Feature Engineering

Feature engineering is an important step in developing data-driven models as it can
significantly affect the models’ accuracy. This process involves manipulating the available
dataset to transform it into a set of features that data-driven models use to make predictions
specific to a response variable. Feature engineering is similar to data processing where
raw data is cleaned and any missing values are replaced or dropped. However, feature
engineering utilizes processed data instead of raw data to identify a set of features that
enables the model to capture the relationship between predictors and the desired response
variable. Machine learning models can be applied to cleaned data without performing any
feature engineering, but multiple issues can arise reducing their predictive and explanatory
capabilities. Typically, the prediction accuracy levels using training data can increase when
a higher number of predictors are included. However, the use of several predictors can
lead to over-fitting with data-driven models fitting the noise variations instead of the actual
relationship and thus limiting the model’s predictive and explanatory capabilities. The
aforementioned detrimental effects are important for M&V applications as only historical
data sets are available to tune and test the models. Thus, feature engineering can have
a significant role in developing sound data-driven models that quantify energy savings
accurately when conducting M&V analyses.

For M&V applications, feature engineering can be structured into two main goals:
identifying the features to be used in the models and selecting the methods to perform
feature engineering. The former emphasizes the mostly used features to predict the energy
consumption regardless of the used models while the latter focuses on the approaches to
adopt for selecting and/or creating relevant features.
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5.1. Features

As discussed in Section 4, the selected features for reported data-driven models
vary significantly. For many studies, the model’s features are considered based on their
availability as limitations and challenges often arise in obtaining and collecting relevant
data that are effective in predicting building energy performance. Table 7 lists categories
and features used in predicting building energy consumption in the published literature.
The most used categories of features include outdoor dry-bulb temperature and time-
related parameters. Indeed, time-related features are often considered to predict the time
dependency of the energy used by buildings. For instance, Mathieu et al. [38] used the time
of week feature, where the week is segmented into 15-min intervals to capture patterns and
correlations that occur on a weekly basis. The process of converting a numerical time value
into a grouping factor is usually called hot-encoding [95]. Time-related features can include
parameters such as month, day type, and holidays. The larger the interval of a time-related
feature, the more historical data are needed to assess the contribution of that feature in the
development of a relationship between the predictors and the response variable. However,
certain relationships to predict a building’s energy consumption may target large time
periods as demonstrated by Wang et al. [57], who evaluated the effect of occupancy levels
during three academic semesters to determine the energy use of an institutional building at
the University of Florida.

Another set of important features is meteorological data that include measurements
of site weather parameters during the period when the building’s energy consumption
data are collected. The structure of such data can vary in terms of time granularity and
the number of variables depending on the weather station’s capabilities. In most weather
stations, at least six variables denoting outdoor temperature, humidity, pressure, wind, and
precipitation are recorded on a sub-hourly basis [96]. Table 7 lists common meteorological
features used to develop the building’s energy models and some reported studies. Some of
the analyses have indicated the diminishing return of including all meteorological features
as the model’s prediction accuracy tends to increase slightly, but its overfitting issues
increase [38,55]. When including all meteorological features, it is important to consider
the multicollinearity between predictors. Indeed, highly correlated predictors can lead
to inaccurate estimates of predictors’ contributions and ultimately reduce the model’s
prediction accuracy levels.

The occupancy level is an important feature that can significantly reduce the unex-
plained variance in predicting a building’s energy consumption. Anand et al. [97] used
recorded occupancy presence based on Wi-Fi traffic monitoring devices to predict energy
use for an institutional building. Although the study found that a large portion of the
building’s energy is due to office equipment and plug loads, occupancy level is determined
to be a contributing feature. Time-related features can be used as occupancy indicators by
using schedules. Zeng et al. [73] incorporated six buildings’ schedules in modeling the
energy consumption and found that the use of occupancy schedules has a significant impact
on the model’s prediction accuracy, especially for buildings with stable occupants’ rate.

Based on Table 2 through Table 6, the minimum required features for developing
a baseline building energy model for M&V analysis include date and outdoor dry-bulb
temperature. The date feature must be in a timestamp format to indicate the frequency
of recording observations, starting, and ending date of historical values. Outdoor dry-
bulb temperature is the main feature commonly reported for establishing the relationship
between weather and building energy consumption. Meteorological features, other than
outdoor temperature, have been utilized by certain reported studies with no or little
improvement in prediction accuracy [38,55]. In a number of applications, occupancy rate
can significantly improve the prediction accuracy of data-driven models if this data is
readily and accurately available. As alternatives to occupancy rates, time-related features
using operation schedules and building use patterns have been successfully considered in
some applications. It is important to note, however, that as the modeling time step becomes
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shorter (e.g., hourly to daily), accurate estimations of occupancy patterns become more
challenging.

Table 7. Features used in building energy consumption prediction.

Feature Categories Feature References

Date-Related

15-min of an hour [53,65,76,84]
Hour [40,61,63,74,82,84,98,99]
Day [40,45,55,57,74,84,84,99]
Week [45,57]
Holiday [53,55,100]
Month or/and Biannually [57,84,99]

Meteorological

Outside Dry-Bulb and/or
Wet-bulb Temperature [38,40,45,53–55,57,65,70,72,74,76,84]

Relative Humidity and/or
Humidity Ratio [40,45,57,74,84]

Solar Irradiance [40,55,57,84]
Enthalpy [45,55]
Wind Direction and/or
Speed [40,55,57,84]

Occupancy-Related
Infrared Sensors and/or
recorded Equipment use [40,74,84]

Schedules and Records [57,73]

Operation-Related

Indoor Dry-Bulb
Temperature [63,74]

Building Systems’ Operating
Variables

[45,65,74,99]

5.2. Feature Processing and Extraction

In processing analysis for developing baseline building energy models for M&V
analysis, time and outdoor air temperature (i.e., dry-bulb and/or wet-bulb air temperatures)
are the most commonly used features. Often, outdoor air temperature, especially when it
fluctuates significantly, can reduce the ability of data-driven models in providing accurate
predictions of building energy consumption. Therefore, this feature is usually processed to
have a predictor with less variation frequency such that the building’s thermal dynamics can
be easily explained [101]. Table 8 lists some predictors that are calculated based on outdoor
air temperatures including Cooling Degree Days (CDD), change-point temperatures, and
piece-wise fitting models. Such predictors provide surrogate variables to determine the
impact of the outdoor air temperature variations on the building’s thermal performance. In
terms of time-related features, hot-encoding and factoring provide a set of features with
categorical instead of numerical variables. Examples of these categorical features are listed
in Table 7, where timestamps of 15-min intervals can be converted into a set of categorical
variables such as hour, day type, and holidays. The last two processing methods indicated
in Table 8 do not rely on domain knowledge, but are based on algorithms such as PCA
and Deep Learning Extraction to develop a set of new features to enhance the predictive
capabilities of data-driven models.

5.3. Feature Selection

The selection analysis in feature engineering involves the conversion of the original
dataset into a smaller dataset with fewer features. As noted earlier, increasing the number
of features has not only a limited effect on improving the model’s prediction accuracy, but
may result in an overfitted model with reduced explanatory capabilities. At the initial
development phase of a data-driven model, EDA-based methods can be used to extract
insights into the relationship between the predictors and the response variable. The EDA-
based methods include pairwise correlation and plotting against the response variable [56].
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However, data double-dipping must be avoided as identified relationships between the
response variable and the predictors using the EDA approach based on the same training
dataset can lead to enforcing relationships that do not necessarily exist outside the analyzed
dataset. Gallagher et al. [77] used developed a M&V modeling methodology where a
feature selection pipeline of two metrics reduced a dataset of 504 to 15 feature. The
pipeline sorts several features by iteratively using Spearman correlation coefficient between
features to select the optimum set of features that maximize the coefficient of determination
R2. Following this, the variance inflation factor (VIF) is utilized to remove any possible
multicollinearity where features with a VIF greater than 5 are dropped.

Another method to filter the features is by a forward and backward elimination ap-
proach, with the model recursively trained on a different set of features and its performance
is assessed using various evaluation metrics. These evaluation metrics, such as Akaike
Information Criterion (AIC) [102], can be used to balance the number of features and the
accuracy level. Feature importance methods [103], often used in DT-based models, such as
RF and XGB, can be considered for the selection analysis with features splitting the leaves
having a high contribution in improving the model’s prediction accuracy are identified
to have higher importance. In M&V applications, the process of selecting features relies
on the availability of more features by having multiple meters, weather data that includes
several parameters, or multiple occupancy sensors that are laid on several locations inside
the building. Moreover, generated time-related features (e.g., day of a month, month of
a year) might be dropped if the received information gain does not lead to an improve-
ment in prediction accuracy. A list of selection processes in building energy modeling are
summarized in Table 8.

Table 8. Feature engineering methods in building energy consumption prediction.

Feature Engineering
Category Feature Method References

Processing

Outdoor Temperature
CDD and HDD [45,104]
Change-Point [54,104]
Piece-wise Fitting [38,53,105]

Time Hot-encoding [38,53,55,100,105]
All or Multiple Features Clustering [98,105]
All or Multiple Features PCA [73,83,106]
All or Multiple Features Deep Feature Extraction [107]

Selection
All or Multiple Features Forward and Backward

Selection [54,67]

All or Multiple Features Feature Importance [55,63–65]
All or Multiple Features EDA [56,63,73,82,97]

6. Data Requirements

Data-driven models for M&V rely heavily on historical data to establish a relationship
between input variables and building energy performance. The quality and quantity of
historical data can significantly affect the accuracy of a data-driven model. In particular,
the following three characteristics are often used to assess the quality and quantity of the
data: time range, reporting frequency, and missing values. Data time range affects the
re-occurrence of certain performance levels that can help models identify repeating patterns
or ignore unusual activities. Grillone et al. [105] simulated 54 cases of three buildings with
different parameters and trained two data-driven models using data specific to a period
ranging from 9 to 12 months. The result showed that a significant decrease in the prediction
accuracy distribution median and an increase in the distribution variance when using
TOWT approach. OpenEEmeter [108] is an open-source framework used to calculate the
energy use that could be avoided by retrofitting a building. The framework sets certain
requirements on the data used for developing a building energy model including the data
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time range. For data with hourly and daily frequency, an OpenEEmeter compliant baseline
building energy model requires at least data for 365 days.

The time frequency provides the level and type of information that can be gained
from data through data-driven modeling. Using hourly or sub hourly data for energy
consumption, any patterns and correlations can be learned better, but more significant noise
levels could be introduced as the building energy consumption becomes less consistent. On
the other hand, aggregated consumption using daily or monthly frequencies exhibit less
fluctuations at the expenses of extracting more information. Gallagher et al. [77] analyzed
the effect of sub-hourly, hourly, daily, and weekly frequency on four data-driven models by
using a recorded measurement of a chilled water system. They found that the frequency
effect varied between models with daily frequency producing the lowest CV(RMSE), except
for KNN, where the hourly-based model resulted in a lower CV(RMSE).

Missing values represent another important requirement for the quality of data needed
for training. Missing values are identified by periods of disconnected metering, irregular
values, or missing some features’ values during a given timestamp. Although each case
of missing data is usually unique and requires a certain imputation technique, several
thresholds were established to prevent training models from using invalid data sets. Cal-
TRACK [109] dictates missing data requirements for daily and hourly frequencies specific
to data-driven models. Models based on daily data must not have more than 37 days
(i.e., 10% for a full-year data) while hourly frequency data must have less than 10% missing
hours of the total hours in every calendar month.

7. Existing Open-Source M&V Frameworks

Several papers developed specific data-driven models for building energy modeling
and M&V analysis as shown in Table 2 through Table 6. The process of developing
such models involves specific knowledge of the underlying statistics and building energy
consumption patterns and is limited to the considered building type and location. To
automate this process, only limited analysis frameworks have been proposed with varying
degree of capabilities and applications. Although such frameworks still require some
knowledge of the underlying process, they still facilitated the development of baseline
energy modeling needed for performing an M&V analysis. Table 9 lists the limited open-
source frameworks and their characteristics suitable for M&V analysis.

Table 9. Sample of existing M&V frameworks.

Framework Models Inputs Frequency Development
Language Reference

ECAM LR Date, Dry-bulb temperature, and
Occupancy Hourly, Daily, and Monthly Excel add-in [110]

EEMeter LR, GBM Date, Dry-bulb temperature, and
Occupancy Hourly, Daily, and Monthly Python [108]

NMECR LR Date, Dry-bulb temperature,
Occupancy, and independent variables Hourly, Daily, and Monthly R [111]

RMV2.0 LR Date, Dry-bulb temperature, and
Occupancy Hourly R [112]

8. Models Evaluation

To accurately estimate energy savings associated with retrofitting buildings, baseline
models need to be established to provide predictions with a satisfactory accuracy level
using specific qualities. Several such qualities have already been discussed throughout
this review including generality, predictive, and explanatory capabilities. The process
of obtaining a model with the best aforementioned qualities requires a selection of both
evaluation metrics and approaches.
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8.1. Evaluation Approaches

To have good predictive performance, data-driven models must balance bias and
variance effects to provide accurate predictions even using unforeseen conditions. To
enhance their prediction accuracy, models are often trained using a fraction of the available
historical dataset until acceptable accuracy levels are reached without compromising other
model performance metrics such as overfitting. Then, the trained models are tested on a
new data set not used in the training analysis to evaluate their performance using metrics
such as prediction accuracy level. A basic approach of evaluation is to split the data into
training and testing dataset. With cross-sectional data, the split is random, but with time
series, the split must be carried to have two sets of data that are similar such that the model
testing process is valid. An approach to split time series data is to set a date at the end of
the data where observations after such date are left for testing. However, this approach
is limited if the some of features’ values does not occur in the training set, a case that can
happen when splitting with a training data of less than a year time range.

Another approach is using k-fold cross validation where the whole data set is seg-
mented into k consecutive blocks and the model is trained on all blocks except one which
is left for testing. Following this, the process is iterated by changing training and test-
ing blocks k times and averaging the resulted evaluation metric. There is no specific
number for the cross validation folds (i.e., blocks) but in practice, a value of 5 or 10 is
usually chosen [37].

8.2. Evaluation Metrics

Regardless of the followed evaluation approach, different evaluation metrics can
be used to indicate a desired quality of the trained model. One metric commonly used
for model performance evaluation is the coefficient of determination, R2, the explained
variance as expressed by Equation (9) where ŷ represents predicted values.

R2 =
n

∑
i=1

(ŷ− ȳ)2

(y− ȳ)2 (9)

However, R2 does provide an accurate performance metric when comparing multiple
models having a different number of predictors. Therefore, the adjusted coefficient of
determination R2

adj is used such that a complex model with a high number of predictors is
penalized as shown by Equation (10):

R2
adj = 1− (1− R2)(n− 1)

n− P− 1
(10)

where p is the of predictors and n is the number of training data points. Similar metrics to
R2

adj are AIC and Bayesian Information Criterion (BIC), where the model is penalized as its
complexity increases.

For M&V applications, the normalized mean bias error (NMBE) and coefficient of
variation of the root mean squared error (CV(RMSE)) are the most commonly used per-
formance metrics to assess the model’s prediction accuracy levels. The NMBE measures
the overall bias in the model’s predictions as defined by Equation (11), with a positive
value indicating that the model is on average over-predicting and a negative value being
an indicator that the model is under-predicting.

NMBE =
100
n
× ∑n

i=1 y− ŷ
ȳ

(11)

The NMBE is invariant of the time granularity as models with 15-min or hourly
interval predictions result in the same NMBE value. The CV(RMSE) measures the difference
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between actual and predicted values as expressed by Equation (12) where the differences
are squared instead of being summed as the case for estimating the NMBE value.

CV(RMSE) = 100×

√
1
n ∑n

i=1(y− ŷ)2

ȳ
(12)

The CV(RMSE) is sensitive to the model’s prediction time granularity so its value
for a model with 15-min prediction intervals is different from the value obtained from
another model with hourly prediction intervals. Both metrics are important in evaluating
and comparing the performance of several models.

9. Summary and Conclusions

To justify retrofitting buildings, M&V analysis is often needed to quantify the achieved
energy savings and ultimately justify the cost-effectiveness of implemented energy effi-
ciency measures. Data-driven modeling provides an effective approach to perform M&V
analysis when compared to traditional deterministic modeling methods especially con-
sidering the growing availability of significant historical data specific to historical energy
performance due to advancements in metering and monitoring of building energy systems.

In this review of the existing literature, several data-driven building energy models
that are suitable for M&V applications have been described and evaluated. In particular,
five categories of data-driven modeling approaches have been identified for M&V analysis
of retrofitted building energy systems. The simplest data-driven modeling option consists
of LR with the TOWT approach, which is found to be widely used for developing baselines
of existing buildings. The TOWT method is incorporated in two of the mentioned existing
frameworks (i.e., EEMeter and RMV2.0), and all the mentioned studies with an hourly
frequency use such a method to build LR models. The ensemble modeling approach has
two prominently applied methods for assessing building energy performance including
RF and XGB. The two modeling approaches were mentioned in almost all the reported
papers using ensemble approaches and, in every one of them, either XGB and RF were the
models scoring best in prediction accuracy compared to the remaining ensemble methods.
Several data-driven models have been developed using the SVM approach combined with
a range of hyperparameters. However, there are no clear guidelines from the reported
literature on determining the best combination of hyperparameters suitable for M&V
analysis of building energy savings. In addition, a wide range of FFNN-based models
has been considered to predict building energy performance with different architectures
and features. Among the reported FFNN’s architectures, SLP is mostly used in predicting
building energy consumption. One study suggests that there was no improvement in
prediction accuracy when changing SLP to MLP by one hidden layer [79]. Lastly, kernel
regression methodology has been applied for building energy prediction, with KNN being
mostly used, especially for M&V applications.

Two important features used in most of the data-driven models reported for building
energy prediction and M&V analysis include date and outdoor dry-bulb temperature.
Another effective feature considered for several data-driven modeling consists of occupancy
pattern derived from indoor sensing and/or operating schedules. In terms of selecting
features, EDA and feature importance by ensemble methods were demonstrated to be
the widely used methods for selecting the optimum features. The popular processing
techniques were applied to date and outdoor dry-bulb temperature with hot-encoding
being popular for time-related features. For temperature, CDD and HDD transformation
is popular for data with low frequency, while change-point and piece-wise fitting is used
mainly for linear regression-based models.

Existing popular frameworks for M&V analysis were discussed along with features,
modeling approaches, and used features. The usual data requirements for building a
M&V baseline were derived from studies and frameworks’ requirements. Important
requirements were discussed including data range, frequency, and missing values. The
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smallest data range for building a baseline was one year before retrofitting regardless of
the data frequency. Results from reported studies demonstrated that the highest prediction
accuracy usually comes with an hourly or daily frequency since sub-hourly data introduce
more noise than information while lower frequencies such as weekly or monthly lack usage
patterns. Few studies discussed the effect of missing data, but an emphasis was made to
have less consecutive missing data as data imputation becomes difficult.

Finally, the paper discussed several evaluation performance metrics and approaches
to assess the prediction accuracy of the baseline building energy model. In particular,
evaluation metrics for both general building energy prediction and M&V analysis were dis-
cussed with CV(RMSE) and NMBE being the mostly used metrics to evaluate the building
energy models. These two metrics complement each other and convey better information
about the model’s performance. Two other evaluation approaches were outlined with
their drawbacks and benefits: split without shuffle and k-folds evaluation. With sufficient
data covering more than a year of building energy consumption, split without shuffle
approach provides an easy and efficient evaluation metric, while the k-folds approach tests
the generality of the model better. However, the selection of the evaluation approach is still
dependent on the building case.

It is clear from the presented review analysis that there is a need for a general frame-
work and a set of guidelines to develop advanced data-driven models suitable for M&V
analysis and capable to estimate accurately energy savings achieved by building retrofits.
While the review has revealed some existing frameworks, all of them are based mostly
on LR. Several papers indicated that modeling approaches deliver varying prediction
accuracy and that there is no best modeling approach for every M&V analysis. Moreover,
retrofit analyses with advanced data-driven modeling approaches are currently developed
only for specific case studies and their application cannot be readily generalized to any
building type and location. If established, the proposed framework will enhance the use of
data-driven models for various applications of building energy analysis including M&V of
energy saving from retrofit projects.
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Nomenclature

AIC Akaike Information Criterion
AMI Advanced Metering Infrastructure
ANN Artificial Neural Network
ASHRAE American Society of Heating Ventilation Refrigeration and Air-conditioning Engineers
BIC Bayesian Information Criterion
BMS Building Management System
CDD Cooling Degree Days
DT Decision Tree
ECM Energy Conservation Measure
EIA Energy Information Administration
ELM Extreme Learning Machine
FFNN Feed Forward Neural Network
GBM Gradient Boosting Machine
HVAC Heating Ventilation and Air Conditioning
IPMVP International Performance Measurement and Verification Protocol
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KNN K-Nearest Neighbor
LCA Life Cycle Assessment
LGBM Light Gradient Boosting Machine
LR Linear Regression
LS-SVM Least Squares Support Vector Machine
M&V Measurement and Verification
MBE Mean Bias Error
MLP Multilayer Percepton
NARX Nonlinear Autoregressive with Exogenous inputs
NMBE Normalized Mean Bias Error
OECD Organization for Economic Cooperation and Development
OEDI Open Energy Data Initiative
OLS Ordinary Least Square
PI-SVM Parallel Implemented Support Vector Machine
RBFNN Radial Basis Function Neural Network
RC Resistance and Capacitance
RF Random Forest
ReLU Rectified Linear Unit
RSS Residual Sum of Squares
SLP Single Layer Perceptron
SVM Support Vector Machine
TOWT Time of Week and Temperature
VIF Variance Inflation Factor
WLS Weighted Least Squares
XGB Extreme Gradient Boosting Machine
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72. Borowski, M.; Zwolińska, K. Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques.
Energies 2020, 13, 6226. [CrossRef]

http://dx.doi.org/10.1016/j.jobe.2019.101054
http://dx.doi.org/10.1016/j.enbuild.2015.10.035
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/ICMLA.2019.00138
http://dx.doi.org/10.1016/j.enbuild.2017.11.039
http://dx.doi.org/10.1016/j.enbuild.2021.111054
http://dx.doi.org/10.1016/j.enbuild.2021.111183
http://dx.doi.org/10.1016/j.egyr.2021.07.135
http://dx.doi.org/10.1016/j.enbuild.2018.04.008
http://dx.doi.org/10.1016/j.scs.2019.101623
http://dx.doi.org/10.1016/j.enbuild.2021.110929
http://dx.doi.org/10.1016/j.enbuild.2017.10.085
http://dx.doi.org/10.1016/j.egyr.2020.10.005
http://dx.doi.org/10.1016/j.enbuild.2017.04.038
http://dx.doi.org/10.1016/j.scs.2020.102194
http://dx.doi.org/10.1016/j.egypro.2019.01.935
http://dx.doi.org/10.1016/j.enbuild.2012.03.010
http://dx.doi.org/10.1016/j.energy.2018.05.155
http://dx.doi.org/10.1260/1748-3018.4.2.231
http://dx.doi.org/10.1016/j.enbuild.2004.09.009
http://dx.doi.org/10.3390/en13236226


Energies 2022, 15, 7824 29 of 30

73. Zeng, A.; Liu, S.; Yu, Y. Comparative study of data driven methods in building electricity use prediction. Energy Build. 2019,
194, 289–300. [CrossRef]

74. Shao, M.; Wang, X.; Bu, Z.; Chen, X.; Wang, Y. Prediction of energy consumption in hotel buildings via support vector machines.
Sustain. Cities Soc. 2020, 57, 102128. [CrossRef]

75. Aggarwal, C.C. Training Deep Neural Networks. In Neural Networks and Deep Learning; Springer International Publishing: Cham,
Switzerland, 2018; pp. 105–167.

76. Li, C.; Ding, Z.; Zhao, D.; Yi, J.; Zhang, G. Building Energy Consumption Prediction: An Extreme Deep Learning Approach.
Energies 2017, 10, 1525. [CrossRef]

77. Gallagher, C.V.; Leahy, K.; O’Donovan, P.; Bruton, K.; O’Sullivan, D.T. Development and application of a machine learning
supported methodology for measurement and verification (M&V) 2.0. Energy Build. 2018, 167, 8–22. [CrossRef]

78. Zhang, Y.; O’Neill, Z.; Dong, B.; Augenbroe, G. Comparisons of inverse modeling approaches for predicting building energy
performance. Build. Environ. 2015, 86, 177–190. [CrossRef]

79. Gunay, B.; Shen, W.; Newsham, G. Inverse blackbox modeling of the heating and cooling load in office buildings. Energy Build.
2017, 142, 200–210. [CrossRef]

80. Ridwana, I.; Nassif, N.; Choi, W. Modeling of building energy consumption by integrating regression analysis and artificial
neural network with data classification. Buildings 2020, 10, 198. [CrossRef]

81. Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of different machine learning algorithms and added-value of
predicting aggregated-level energy performance of commercial buildings. Energy Build. 2020, 209, 109705. [CrossRef]

82. Song, K.; Kwon, N.; Anderson, K.; Park, M.; Lee, H.S.; Lee, S. Predicting hourly energy consumption in buildings using
occupancy-related characteristics of end-user groups. Energy Build. 2017, 156, 121–133. [CrossRef]

83. Li, K.; Hu, C.; Liu, G.; Xue, W. Building’s electricity consumption prediction using optimized artificial neural networks and
principal component analysis. Energy Build. 2015, 108, 106–113. [CrossRef]

84. Pombeiro, H.; Santos, R.; Carreira, P.; Silva, C.; Sousa, J.M. Comparative assessment of low-complexity models to predict
electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. Energy Build.
2017, 146, 141–151. [CrossRef]

85. Amber, K.; Aslam, M.; Hussain, S. Electricity consumption forecasting models for administration buildings of the UK higher
education sector. Energy Build. 2015, 90, 127–136. [CrossRef]

86. Ye, Z.; Kim, M.K. Predicting electricity consumption in a building using an optimized back-propagation and Leven-
berg–Marquardt back-propagation neural network: Case study of a shopping mall in China. Sustain. Cities Soc. 2018, 42, 176–183.
[CrossRef]

87. Harrell, F.E., Jr. Regression Modeling Strategies; Springer Series in Statistics; Springer International Publishing: Cham, Switzerland,
2016.

88. Kramer, O. Unsupervised K-Nearest Neighbor Regression. arXiv 2011, arXiv:1107.3600.
89. Mammen, E.; Marron, J.S. Mass recentred kernel smoothers. Biometrika 1997, 84, 765–777. [CrossRef]
90. Ho, W.; Yu, F. Chiller system optimization using k nearest neighbour regression. J. Clean. Prod. 2021, 303, 127050. [CrossRef]
91. Gallagher, C.V.; Bruton, K.; Leahy, K.; O’Sullivan, D.T. The suitability of machine learning to minimise uncertainty in the

measurement and verification of energy savings. Energy Build. 2018, 158, 647–655. [CrossRef]
92. Wang, R.; Lu, S.; Feng, W. A novel improved model for building energy consumption prediction based on model integration.

Appl. Energy 2020, 262, 114561. [CrossRef]
93. Gómez-Omella, M.; Esnaola-Gonzalez, I.; Ferreiro, S.; Sierra, B. k-Nearest patterns for electrical demand forecasting in residential

and small commercial buildings. Energy Build. 2021, 253, 111396. [CrossRef]
94. Ho, W.; Yu, F. Measurement and verification of energy performance for chiller system retrofit with k nearest neighbour regression.

J. Build. Eng. 2022, 46, 103845. [CrossRef]
95. Chandramitasari, W.; Kurniawan, B.; Fujimura, S. Building deep neural network model for short term electricity consumption

forecasting. In Proceedings of the 2018 International Symposium on Advanced Intelligent Informatics (SAIN), Yogyakarta,
Indonesia, 29–30 August 2018; pp. 43–48.

96. Henson, R. Meteorology Today, 12th ed.; CENGAGE Learning Custom Publishing: Mason, OH, USA, 2018.
97. Anand, P.; Deb, C.; Yan, K.; Yang, J.; Cheong, D.; Sekhar, C. Occupancy-based energy consumption modelling using machine

learning algorithms for institutional buildings. Energy Build. 2021, 252, 111478. [CrossRef]
98. Li, K.; Zhang, J.; Chen, X.; Xue, W. Building’s hourly electrical load prediction based on data clustering and ensemble learning

strategy. Energy Build. 2022, 261, 111943. [CrossRef]
99. Lei, R.; Yin, J. Prediction method of energy consumption for high building based on LMBP neural network. Energy Rep. 2022,

8, 1236–1248. [CrossRef]
100. Gao, Y.; Ruan, Y. Interpretable deep learning model for building energy consumption prediction based on attention mechanism.

Energy Build. 2021, 252, 111379. [CrossRef]
101. Bacher, P.; Madsen, H.; Nielsen, H.A.; Perers, B. Short-term heat load forecasting for single family houses. Energy Build. 2013,

65, 101–112. [CrossRef]
102. Faraway, J.J. Linear Models with R, 2nd ed.; Chapman & Hall/CRC Texts in Statistical Science; Chapman & Hall/CRC: Philadelphia,

PA, USA, 2014.

http://dx.doi.org/10.1016/j.enbuild.2019.04.029
http://dx.doi.org/10.1016/j.scs.2020.102128
http://dx.doi.org/10.3390/en10101525
http://dx.doi.org/10.1016/j.enbuild.2018.02.023
http://dx.doi.org/10.1016/j.buildenv.2014.12.023
http://dx.doi.org/10.1016/j.enbuild.2017.02.064
http://dx.doi.org/10.3390/buildings10110198
http://dx.doi.org/10.1016/j.enbuild.2019.109705
http://dx.doi.org/10.1016/j.enbuild.2017.09.060
http://dx.doi.org/10.1016/j.enbuild.2015.09.002
http://dx.doi.org/10.1016/j.enbuild.2017.04.032
http://dx.doi.org/10.1016/j.enbuild.2015.01.008
http://dx.doi.org/10.1016/j.scs.2018.05.050
http://dx.doi.org/10.1093/biomet/84.4.765
http://dx.doi.org/10.1016/j.jclepro.2021.127050
http://dx.doi.org/10.1016/j.enbuild.2017.10.041
http://dx.doi.org/10.1016/j.apenergy.2020.114561
http://dx.doi.org/10.1016/j.enbuild.2021.111396
http://dx.doi.org/10.1016/j.jobe.2021.103845
http://dx.doi.org/10.1016/j.enbuild.2021.111478
http://dx.doi.org/10.1016/j.enbuild.2022.111943
http://dx.doi.org/10.1016/j.egyr.2022.02.071
http://dx.doi.org/10.1016/j.enbuild.2021.111379
http://dx.doi.org/10.1016/j.enbuild.2013.04.022


Energies 2022, 15, 7824 30 of 30

103. Saeys, Y.; Abeel, T.; Peer, Y.V.d. Robust feature selection using ensemble feature selection techniques. In Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp, Belgium, 15–19 September 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 313–325.

104. Lindelöf, D.; Alisafaee, M.; Borsò, P.; Grigis, C.; Viaene, J. Bayesian verification of an energy conservation measure. Energy Build.
2018, 171, 1–10. [CrossRef]

105. Grillone, B.; Mor, G.; Danov, S.; Cipriano, J.; Sumper, A. A data-driven methodology for enhanced measurement and verification of
energy efficiency savings in commercial buildings. Appl. Energy 2021, 301, 117502. [CrossRef]

106. Zhang, C.; Cao, L.; Romagnoli, A. On the feature engineering of building energy data mining. Sustain. Cities Soc. 2018, 39, 508–518.
[CrossRef]

107. Fan, C.; Sun, Y.; Zhao, Y.; Song, M.; Wang, J. Deep learning-based feature engineering methods for improved building energy
prediction. Appl. Energy 2019, 240, 35–45. [CrossRef]

108. Phil, N. OpenEEmeter. 2021. Available online: https://github.com/openeemeter/eemeter (accessed on 12 May 2022).
109. CalTRACK. CalTRACK Methods. Available online: https://www.caltrack.org/ (accessed on 12 May 2022).
110. SBW. ECAM (ENERGY CHARTING & METRICS). 2022. Available online: https://sbwconsulting.com/ecam/ (accessed on

12 May 2022).
111. Engineering, K. NMECR (Normalized Metered Energy Consumption). 2022. Available online: https://github.com/kW-Labs/

nmecr (accessed on 12 May 2022).
112. LBNL. RMV2.0—LBNL M&V2.0 Tool. 2020. Available online: https://github.com/LBNL-ETA/RMV2.0 (accessed on

12 May 2022).

http://dx.doi.org/10.1016/j.enbuild.2018.04.005
http://dx.doi.org/10.1016/j.apenergy.2021.117502
http://dx.doi.org/10.1016/j.scs.2018.02.016
http://dx.doi.org/10.1016/j.apenergy.2019.02.052
https://github.com/openeemeter/eemeter
https://www.caltrack.org/
https://sbwconsulting.com/ecam/
https://github.com/kW-Labs/nmecr
https://github.com/kW-Labs/nmecr
https://github.com/LBNL-ETA/RMV2.0

	Introduction
	Overview of Measurement and Verification Analysis
	Measurement and Verification Protocols
	International Performance Measurement and Verification Protocol (IPMVP)
	ASHRAE Guideline 14
	Advanced Measurement and Verification

	Baseline Modeling

	Data-Driven Trend in Building Energy Modeling
	Interest in Data-Driven Approaches
	Data-Driven Approaches
	Building Typologies

	Data-Driven Approaches
	Linear Regression
	Definition
	Applications

	Decision Tree and Ensemble Methods
	Definition
	Applications

	Support Vector Machine
	Definition
	Applications

	Artificial Neural Network
	Kernel Regression
	Definition
	Applications


	Feature Engineering
	Features
	Feature Processing and Extraction
	Feature Selection

	Data Requirements
	Existing Open-Source M&V Frameworks
	Models Evaluation
	Evaluation Approaches
	Evaluation Metrics

	Summary and Conclusions
	References

