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Abstract: Accurate photovoltaic (PV) power prediction plays a crucial role in promoting energy
structure transformation and reducing greenhouse gas emissions. This study aims to improve the
accuracy of PV power generation prediction. Extreme learning machine (ELM) was used as the
core model, and enhanced and improved beluga whale optimization (EIBWO) was proposed to
optimize the internal parameters of ELM, thereby improving its prediction accuracy for PV power
generation. Firstly, this study introduced the chaotic mapping strategy, sine dynamic adaptive
factor, and disturbance strategy to beluga whale optimization, and EIBWO was proposed with high
convergence accuracy and strong optimization ability. It was verified through standard testing
functions that EIBWO performed better than comparative algorithms. Secondly, EIBWO was used
to optimize the internal parameters of ELM and establish a PV power prediction model based
on enhanced and improved beluga whale optimization algorithm–optimization extreme learning
machine (EIBWO-ELM). Finally, the measured data of the PV output were used for verification, and
the results show that the PV power prediction results of EIBWO-ELM were more accurate regardless
of whether it was cloudy or sunny. The R2 of EIBWO-ELM exceeded 0.99, highlighting its efficient
ability to adapt to PV power generation. The prediction accuracy of EIBWO-ELM is better than that
of comparative models. Compared with existing models, EIBWO-ELM significantly improves the
predictive reliability and economic benefits of PV power generation. This study not only provides a
technological foundation for the optimization of intelligent energy systems but also contributes to the
sustainable development of clean energy.

Keywords: photovoltaic power prediction; enhanced and improved beluga whale optimization;
varying meteorological conditions; extreme learning machine

1. Introduction

Photovoltaic (PV) power generation stands out for its environmental friendliness,
reliability, and widespread availability [1]. However, the intermittent nature of solar
radiation and the variability of weather conditions present challenges to power systems’
stability and reliability [2]. The inherent intermittency, randomness, and volatility of PV
power generation highlight the need for innovative solutions to ensure grid stability and
energy reliability in the face of these fluctuations. The output of PV power generation
is highly dependent on meteorological conditions such as solar radiation intensity and
temperature, which makes the volatility and uncertainty of power generation a major
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challenge for grid scheduling and energy management [3]. In this context, high-precision
PV power prediction under varying meteorological conditions is particularly important. It
can not only ensure the stable operation of the power grid and optimize energy distribution
but also improve the economic and cost-effectiveness of PV power generation, promote
the effective integration of renewable energy, and address the impact of climate change [4].
In addition, with the advancement of technologies such as numerical weather forecasting,
artificial intelligence, and big data analysis, the implementation of high-precision prediction
has become more feasible, providing strong technical support for the future development
of PV power generation.

Predicting PV power under varying meteorological conditions plays an important
role in ensuring the reliability of energy supply, improving energy utilization efficiency,
promoting the widespread application of renewable energy, and supporting sustainable
development [5]. In existing research, under varying meteorological conditions, PV power
prediction can be divided into physical modeling methods, statistical prediction methods,
probability prediction methods, and intelligent prediction methods. These methods each
have their own advantages and disadvantages [6]. The physical modeling method is
suitable for building new PV power stations, but the model is relatively complex. Statistical
prediction methods do not require a large amount of historical data but are sensitive
to changes in meteorological environmental factors [7]. Intelligent prediction methods
have high accuracy but may require a large amount of historical data and computational
resources. With the advancement of technology, these methods are constantly being
integrated and optimized to adapt to changing meteorological conditions and improve the
accuracy of predictions. The main work and contributions of this study are as follows.

(1) Quantitative analysis of meteorological impacts: This study introduces the Pearson
coefficient quantitative analysis framework, which carefully examines the complex
relationship between meteorological indicators and photovoltaic power generation
under different conditions (including sunny and cloudy). The analysis provides
a deeper insight into the differences in photovoltaic performance under different
weather patterns.

(2) Advanced optimization algorithm: This study proposes an innovatively enhanced
and improved beluga whale optimization (EIBWO) algorithm, which demonstrates
superior optimization and convergence capabilities compared to existing optimization
algorithms. EIBWO has better optimization ability and convergence accuracy, which
can efficiently solve optimization problems and help achieve more precise and efficient
parameter adjustment processes for ELM.

(3) High-precision prediction model: By integrating EIBWO with ELM, this study de-
velops a new output power prediction model. Whether under sunny or cloudy
conditions, the coefficient of determination (R2) of EIBWO-ELM is above 0.99, indicat-
ing its accuracy in predicting photovoltaic power generation. This level of accuracy
represents further development in the predictability and reliability of photovoltaic
energy systems.

This study not only has a profound impact on the integration and management
of renewable energy in the wider power grid but also contributes to the global shift
towards sustainable energy solutions. The remaining structural arrangements are as
follows: Section 2 provides a literature review on existing research methods for predicting
PV power. Section 3 elaborates on the method proposed by this study. Section 4 establishes a
PV power generation prediction model. Section 5 validates and analyzes the PV prediction
results. The discussion of this study is presented in Section 6. Finally, the concluding
remarks are provided in Section 7.

2. Related Works
2.1. Photovoltaic Power Prediction

PV output power exhibits obvious non-stationary random characteristics due to the
close correlation between PV output and many influencing factors [8]. The fluctuation of PV
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power significantly reduces the safety and reliability of energy system operation for energy
systems containing PV power generation [9,10]. To cope with the uncertainty of PV output,
the system needs to reserve a certain amount of spare capacity to maintain power balance
and ensure safe and reliable operation of the system. Therefore, accurate prediction of the
power output of PV power generation is a key means to effectively dealing with the inherent
randomness and instability of PV grid connection [11]. Due to the nonlinearity, indirect
volatility, and uncertainty of power output in PV power generation systems, improving
the characterization ability of existing models and establishing high-precision PV power
prediction models is a major challenge [12,13]. At present, domestic and foreign scholars
have conducted extensive and in-depth research on PV power prediction methods. The
classification of PV power prediction methods based on different classification criteria is
shown in Figure 1 [14,15].
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As shown in Figure 1, according to the prediction principle, PV power prediction is
mainly divided into physical methods, statistical methods, and machine learning methods.
Ref. [16] proposed a PV power plant prediction method using physical hybrid neural
networks, aiming to solve the problem of integrating renewable energy in smart grids.
Based on statistical methods, Ref. [17] combined the autoregressive moving average with
nonlinear autoregressive models to establish a hybrid model for effective prediction of
solar radiation. With the continuous deepening of scientific research, domestic and foreign
researchers have proposed many machine learning-based prediction models and applied
them to the field of PV power generation prediction, achieving good research results [18].
Machine learning models have strong nonlinear mapping and generalization abilities [19].

These methods train the model based on historical data and establish complex map-
ping relationships between input and output features. Finally, the trained model is used to
predict photovoltaic power. Although machine learning models have many advantages
in the field of PV power prediction, model training and testing are sensitive to the setting
of random parameters [20]. Ref. [21] used seven machine learning models to predict the
power generation of PV plants. The above seven machine learning models can achieve the
fitting of PV power generation. Ref. [22] used an inheritance machine learning model for
PV power prediction. The results were verified by actual measurement data of PV power
plants, indicating that the proposed model has good predictive performance.

Existing studies usually use artificial intelligence algorithms to address the problem of
random parameter perturbations in machine learning models and improve the predictive
performance of the model through parameter optimization.
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2.2. Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine

Common machine learning models include support vector machine (SVM) [23], long
short-term memory [24], back propagation neural network (BPNN) [25], and so on. SVM is
a small-sample learning method suitable for processing samples with small amounts of data,
so it is widely used in the field of ultra-short-term and short-term PV power generation
power prediction. BPNN has strong nonlinear mapping ability, high self-learning ability,
adaptive ability, and fault tolerance. However, traditional BPNNs are slightly inferior in
prediction accuracy and need to be improved through optimization.

ELM belongs to an improved neural network model [26]. ELM has been widely
applied in multiple prediction research fields due to its unique advantages of fast learning
speed and good generalization ability. In financial market analysis, ELM can be used to
predict stock prices and market trends [27]. A predictive model for financial market system
risk based on ELM was constructed and the stability of the model was verified through
examples. In terms of healthcare, ELM can help predict the development of diseases and
the recovery process of patients [28]. ELM has also achieved results in the field of traffic
flow prediction. Ref. [29] used ELM to predict traffic flow data and conducted comparative
analysis using different time flows. In the above studies, ELM has demonstrated its
potential and effectiveness in processing complex data and solving practical problems.

In this study, ELM was applied to the method of power generation prediction of
photovoltaic energy. Ref. [30] applied ELM to practical case studies of PV power plants.
After training the ELM model, it was used to predict power generation. The experimental
results indicate that the prediction results of ELM were superior to those of BP. However,
the connection weights and thresholds of ELM were randomly generated, which affected
the predictive ability of ELM [31]. Therefore, Ref. [32] constructed a new prediction model
for predicting power generation output under various meteorological conditions. The
results show that the model had better prediction performance than traditional ELM.

PV output power prediction is relatively complex, mainly due to the difficulty in
controlling the uncertainty of PV power [33]. If a model is directly used for prediction, it
is difficult to obtain ideal prediction results. Therefore, scholars have integrated different
algorithms to improve the model’s ability to characterize the uncertainty of PV output
power [34]. Beluga whale optimization (BWO) is a new type of artificial intelligence
optimization algorithm with good convergence ability [35]. Ref. [36] proposed a high-
performance improved beluga whale optimization algorithm to optimize the DG multi-
objective hierarchical optimization planning model. The proposed method effectively
solved the nonlinear problem of the model. Ref. [37] proposed a multi-strategy to improve
the beluga whale optimization method. In addition, the IEEE CEC benchmark test function
verifies that the proposed method can be used to solve engineering optimization problems.
Therefore, the chaotic mapping strategy, sine dynamic adaptive factor, and disturbance
strategy are introduced to BWO in this study, and the EIBWO algorithm is proposed to
optimize machine learning models.

3. Method
3.1. Beluga Whale Optimization Algorithm

BWO is a population-based mechanism; therefore, each beluga whale is a candidate
solution that is updated during the optimization process. The matrix of the search agent
location is modeled as shown in Equation (1).

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
... · · ·

...
xn,1 xn,2 · · · xn,d

 (1)
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where n is the population size, and d is the dimension. In addition, the corresponding
fitness values are as follows in Equation (2).

FX =


f (x1,1, x1,2, · · · x1,d)
f (x2,1, x2,2, · · · x2,d)

...
f (xn,1, xn,2, · · · xn,d)

 (2)

BWO can transition from exploration to development, depending on the balance factor
Bf. The mathematical model is shown in Equation (3).

B f = B0(1 −
t

2T
) (3)

where B0 randomly changes between (0, 1) during each iteration. T and t are the maximum
and current iteration, respectively. If B f > 0.5, beluga individuals are in the exploration
stage. If B f ≤ 0.5, beluga individuals are in the development stage.

During the exploration phase, the individual position of the beluga whale is deter-
mined by paired swimming, and the updated position is as follows in Equation (4).{

Xt+1
i,j = Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) sin(2πr2), j = even

Xt+1
i,j = Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) cos(2πr2), j = odd

(4)

where Pj(j = 1, 2, · · · , d) is randomly selected in the dimension of d. Xt
i,Pj

is the ith beluga

whale’s new position in the Pj dimension. Xt
i,Pj

and Xt
r,P1

are the ith beluga whale’s and
the rth beluga whale’s current positions, respectively. The updated position reflects the
synchronized or mirrored behavior of the beluga whale during swimming or diving based
on the odd and even selected dimensions. sin(2πr2) and cos(2πr2) are used to average the
random numbers between fish fins.

Beluga whales hunt their prey by sharing information about their location with each
other. Levy flight strategy was introduced in the development phase of BWO to enhance
convergence, as shown by Equation (5).

Xt+1
i = r3Xt

best − r4Xt
i + C1 · LF · (Xt

r − Xt
i ) (5)

where C1 = 2r4(1 − t/Tmax). C1 is used to measure the random jump intensity of Levy
flight intensity.

LF is the Levy flight function, and is expressed in Equations (6) and (7).

LF = 0.05 × u × σ

|v|1/β
(6)

σ =

(
Γ(1 + β)× sin(πβ/2)

Γ((1 + β)/2)× β × 2(β−1)/2

)1/β

(7)

where u and v are normally distributed random numbers. β is a constant with a value of 1.5.
To simulate the behavior of whales falling in each iteration and ensure that the pop-

ulation remains unchanged, the updated position is established using the position of the
beluga whale and the step size of whale descent, which is represented in Equation (8).

Xt+1
i = r5Xt

i − r6Xt
r + r7Xstep (8)

where Xstep is the step size of a whale falling, which is expressed in Equation (9).

Xstep = (ub − lb) exp(−C2
t
T
) (9)
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where C2 = 2W f × n, C2 is a step factor related to the probability of whale decline and pop-
ulation size. ub and lb represent the upper and lower bounds of the variable, respectively.

The probability of a whale falling Wf is calculated as a linear function, and is shown in
Equation (10).

W f = 0.1 − 0.05t/T (10)

3.2. EIBWO Proposal and Validation

During the exploration and development stages of BWO, there was a lack of search
capability, resulting in low population diversity and decreased solution accuracy. Based
on the shortcomings of the original BWO, this study proposes an enhanced and improved
beluga whale optimization (EIBWO). The improvement measures for EIBWO are as follows:

(1) Initialization of beluga whale population based on chaotic mapping strategy

To obtain high-quality positions of the first-generation population, accelerate the
convergence speed of EIBWO, and reduce the computational cost, this study uses the
randomness and traversal of the chaotic mapping strategy to obtain the positions of the
first-generation population. The details are shown in Equations (11) and (12).

PS = Pmax
S + rM × (Pmax

S − Pmin
S ) (11)

rM = α × rM × (1 − rM) (12)

where rM represents the scale of chaotic mapping. When α = 4, the model is in a chaotic
state. Pmin

S and Pmax
S represent the minimum and maximum boundaries of the search

space, respectively.

(2) Sine dynamic adaptive factor

To improve the local search capability of EIBWO, a sine adaptive factor is added to the
position update formula, and its expression is defined in Equation (13).

S = 1 + sin
π(2T + t)

2T
(13)

By introducing the sine dynamic adaptive factor S into Equation (4), the improved
position update equation can be obtained as follows in Equation (14).{

Xt+1
i,j = S ∗ Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) sin(2πr2), j = even

Xt+1
i,j = S ∗ Xt

i,pj
+ (Xt

r,p1
− Xt

i,pj
)(1 + r1) cos(2πr2), j = odd

(14)

(3) Individual position disturbance strategy in the population of beluga whales

To fully ensure that the population maintains high diversity during the optimization
process, a random position perturbation strategy is proposed. The detailed improvement
strategy is as follows: During the iteration process of EIBWO, the disturbance frequency
fr is set to a random number rp within the [0, 1] interval, and the values of fr and rp are
compared to determine whether the population position has been disturbed.

Specifically, when fr ≤ rp, individual positions are updated according to Equation (14);
when fr > rp, individual positions are updated according to Equations (15) and (16).

XS(x + 1) = aw × XS(x) + randn(0, σ2)× (Xbest − XS(x))× e fbest− fP (15)

aw = awmax × e−35×( t
Miter

)
5

+ awmin (16)

where aw is convergence coefficient and is used to guide individuals towards convergence
direction, with a value range of [0.3, 0.7]. randn (0, σ2) follows the Gaussian distribution of
a mean of 0 and a variance of σ2.
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To verify the convergence and optimization effect of EIBWO, the traditional BWO
algorithm, multi-verse optimization (MVO), the seagull optimization algorithm (SOA), and
particle swarm optimization (PSO) were selected as comparative algorithms. In the same
testing environment, this study selected 6 benchmark testing functions to test all algorithms.
The detailed benchmark testing functions are shown in Table 1. Some algorithms have
unique parameters, and their set values are shown in Table 2.

Table 1. Benchmark functions.

Function Range Fmin

F1(x) = ∑n
i=1 xi

2 [−100, 100] 0
F2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| [−10, 10] 0

F3(x) = ∑n
i=1

(
∑i

j−1 xj

)2 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0
F6(x) = ∑n

i=1
[
xi

2 − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0

F7(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e [−32, 32] 0

Table 2. Parameter setting in some algorithms.

Algorithm Value Iteration Population
Size Dimension

MVO Vmax = 1, Vmin = 0.2 300 50 30

PSO
Cmax = 0.9, Cmin = 0.4 300 50 30
C1 = C2 = 2 300 50 30

SOA
d = 2 300 50 30
u = 1, v = 1 300 50 30

As shown in Table 2, the Vmax and Vmin are the wormhole existence rates in MVO.
Cmax and Cmin are the inertia factors in PSO. C1 and C2 are the acceleration constants in
PSO. d is the control factor in SOA. The population size was set to 50. The number of
iterations for all algorithms was set to 300. The dimension was set to 30.

To ensure the objectivity of testing, each test function was tested 50 times for each
algorithm, calculating the average value and standard deviation of the convergence values
after each run. The algorithm test results under different test functions are shown in Table 3.

Table 3. Convergence values of algorithms under different test functions.

Algorithm
F1 F2 F3

Ave. Std. Ave. Std. Ave. Std.

EIBWO 1.45 × 10−228 0 2.44 × 10−196 0 0 0
BWO 3.96 × 10−155 2.08 × 10−154 9.96 × 10−80 5.96 × 10−79 4.89 × 10−166 0
SOA 2.76 × 10−6 2.94 × 10−6 4.41 × 10−5 2.51 × 10−5 6.23 × 10−2 0.18
PSO 1.33 × 10−14 2.59 × 10−14 3.22 × 10−8 3.14 × 10−8 9.95 × 10−5 1.20 × 10−4

MVO 2.04 0.59 12.13 31.49 314.63 143.66

Algorithm
F4 F5 F6

Ave. Std. Ave. Std. Ave. Std.

EIBWO 1.19 × 10−190 0 0 0 8.88 × 10−16 0
BWO 2.80 × 10−146 1.86 × 10−145 0 0 8.88 × 10−16 0
SOA 7.66 × 10−2 0.12 7.34 9.01 19.96 1.48 × 10−3

PSO 1.45 × 10−4 1.38 × 10−4 5.69 2.66 8.21 × 10−8 8.34 × 10−8

MVO 0.10 0.03 125.71 36.56 2.06 0.53

From the statistical results in Table 3, it can be seen that EIBWO achieved the optimal
convergence value in the case of unimodal test function F3 and multimodal test function F5.
Although EIBWO did not obtain the optimal value in other test functions, it can be seen
from the standard deviation of the test results being 0 that the EIBWO algorithm had good
optimization robustness and obtained stable convergence results.
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3.3. Extreme Learning Machine

Due to its excellent learning ability, single-hidden-layer feed-forward neural network
(SLFN) is widely used in fields such as lifespan prediction and pattern recognition. How-
ever, there are some inherent problems with traditional SLFN, such as the need to use the
gradient descent method for multiple iterations during the training process to complete the
correction of network thresholds and weights, the sensitivity of SLFN to the selection of
learning rate, and the long training time of the network.

To address the issues in traditional SLFN, scholars have developed a new network
model—extreme learning machine (ELM). Compared to traditional SLFN, ELM has a faster
learning speed and stronger generalization ability. The network structure of ELM is shown
in Figure 2 [38,39].
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As shown in Figure 2, ELM consists of an input layer, a hidden layer, and an output
layer, with neurons in each layer connected in sequence.

It is assumed that the number of neurons in the input layer, hidden layer, and output
layer is ni, nh, and no, respectively. The corresponding number of input and output variables
is ni and no, respectively. The connection weight matrix between the input layer and the
hidden layer is wi, as shown in Equation (17).

wi =


wi

11 wi
12 · · · wi

1ni
wi

21 wi
22 · · · wi

2ni
...

...
...

...
wi

nh1 wi
nh2 · · · wi

nhni


nh×ni

(17)

where wi
jk is the connection weight between the jth neuron in the hidden layer and the kth

neuron in the input layer.
It is assumed that the connection weight matrix between the output layer and the

hidden layer is wo according to Equation (18).

wo =


wo

11 wo
12 · · · wo

1no
wo

21 wo
22 · · · wo

2no
...

...
...

...
wo

nh1 wo
nh2 · · · wo

nhno


nh×no

(18)

where wo
jk is the connection weight between the jth neuron in the hidden layer and the kth

neuron in the output layer.
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It is assumed that the hidden layer neuron threshold matrix is q, as shown in Equation (19).

q =
[
q1, q2, . . . , qnh

]T (19)

For a training set containing nm samples, the input matrix X* and output matrix Y* are
as shown in Equations (20) and (21).

X* =


x∗11 x∗12 · · · x∗1nm
x∗21 x∗22 · · · x∗2nm

...
...

...
...

x∗ni1
x∗ni2

· · · x∗ninm


ni×nm

(20)

Y* =


y∗11 y∗12 · · · y∗1nm
y∗21 y∗22 · · · y∗2nm

...
...

...
...

y∗no1 y∗no2 · · · y∗nonm


no×nm

(21)

G(·) is the activation function of the hidden layer; then, the output matrix O is as
follows in Equations (22) and (23).

O = [o1, o2, . . . , ono ]no×nm
(22)

oj =


o1j
o2j
...

onm j

 =



nh
∑

k=1
wo

k1G(wi
kx∗j + qk)

nh
∑

k=1
wo

k2G(wi
kx∗j + qk)

...
nh
∑

k=1
wo

kno
G(wi

kx∗j + qk)


(23)

where wi
k =

[
wi

k1, wi
k2, · · · , wi

kni

]T
, x*

j =
[

x∗1j, x∗2j, · · · , x∗ni j

]T
.

The above equation can be expressed in Equation (24).

HY* = OT (24)

where H is the output matrix of the hidden layer, as shown in Equation (25).

H =


G(wi

1 · x*
1 + q1) G(wi

2 · x*
1 + q2) · · · G(wi

nh
· x*

1 + qnh)

G(wi
1 · x*

2 + q1) G(wi
2 · x*

2 + q2) · · · G(wi
nh

· x*
2 + qnh)

...
...

...
...

G(wi
1 · x*

nm + q1) G(wi
2 · x*

nm + q2) · · · G(wi
nh

· x*
nm + qnh)


nm×nh

(25)

In ELM, if the number of hidden-layer neurons is equal to the number of samples in
the training set, it is possible to achieve zero error approximation of the network output to
the training set. The details are expressed in Equation (26).

nm

∑
j=1

∥∥∥oj − y∗
j

∥∥∥ = 0 (26)

where y∗
j =

[
y∗1j, y∗2j, · · · , y∗no j

]T
(j = 1, 2, . . . , nm).

When there is a large number of samples in the training set, in order to reduce
computational costs, the number of hidden-layer neurons is usually smaller than the
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number of samples in the training set. At this point, the network training error can
approach an arbitrary value ε, as shown in Equation (27).

nm

∑
j=1

∥∥∥oj − y∗
j

∥∥∥ < ε (27)

The least-squares solution in the following Equation (28) can be solved to obtain q.

mi
q

n
∥∥∥Hq − OT

∥∥∥ (28)

The solution is as shown in Equation (29).

q̂ = H+OT (29)

where H+ is the Moore Penrose generalized inverse matrix of H.
ELM is the basic model for PV prediction selected in this study. Similar to other

machine learning models, the performance of ELM is also affected by random parameters.
Considering the strong randomness and volatility of PV power, there is a high requirement
for the regression ability of the model. In the process of predicting PV power, improper
selection of random parameter values will directly affect the regression effect of ELM.
To accurately characterize the uncertainty of PV power in ELM, EIBWO is proposed to
optimize the connection weight and threshold in ELM, thereby improving the predictive
performance of ELM and enhancing the accuracy of the model in predicting PV power.

4. Establishment of PV Power Generation Prediction Model
4.1. Selection of Input Variables for Prediction Model

Due to strong temporal variability, meteorological factors have the most significant
interference on photovoltaic power generation. Therefore, when constructing a PV power
generation prediction model, meteorological factors are selected as the input, and the output
is PV power. However, different meteorological factors have varying degrees of impact on
photovoltaic power. It is necessary to measure the degree of correlation between various
factors and power generation, select the meteorological factors that have the greatest impact
on power generation, and use them as input features for the model.

To quantitatively describe the impact of various meteorological factors on power
generation, Pearson coefficients and correlation coefficients are used to comprehensively
measure the correlation between various meteorological factors and PV power generation.
The Pearson coefficient judgment criteria are shown in Table 4.

Table 4. The judgment criteria of the Pearson coefficient.

Range of ρ Degree of Association

0.0–0.2 Extremely weakly correlated or uncorrelated
0.2–0.4 Weak correlation
0.4–0.6 Moderate correlation
0.6–0.8 Strong correlation
0.8–1.0 Strongly correlated

The Pearson correlation coefficient ρ is expressed in Equation (30).

ρ =
N∑ XY − ∑ X∑ Y√

N∑ X2 − (∑ X)2
√

N∑ Y2 − (∑ Y)2
(30)

where N represents the number of calculated samples, and X and Y represent the two
variables that need to be validated for correlation, namely, the input and output variables
of the predictive model, respectively.
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Due to the impact of weather conditions on PV power generation, it is recommended
to analyze the correlation between different meteorological indicators and PV power
generation under sunny and cloudy weather conditions.

The meteorological indicators studied include radiation intensity, environmental
temperature, and relative humidity. The relationship curves between output power and
different meteorological indicators on sunny and cloudy days are shown in Figure 3.
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Figure 3. The relationship curves between output power and different meteorological indicators.

From Figure 3, it can be seen that under both sunny and cloudy conditions, only the
radiation intensity shows a significant correlation with the output power of photovoltaic
power generation. The output power changes in real time with the radiation intensity
curve, while the relationship between environmental temperature, relative humidity, and
output power cannot be clearly obtained from Figure 3. Therefore, the Pearson correlation
coefficient was used to calculate the correlation between the three meteorological indicators
and the output power of photovoltaic power generation. The values between relative hu-
midity and output power, radiation intensity and output power, and ambient temperature
and output power were calculated, as shown in Table 5.
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Table 5. Correlation coefficient values between different meteorological indexes and output power
on sunny and cloudy days.

Meteorological Indexes Sunny Cloudy

Radiance 0.99 0.99
Ambient temperature 0.27 0.53

Relative humidity −0.60 0.62

According to Table 5, regardless of the weather conditions, the correlation coefficient
between radiation intensity and output power is very close to 1, indicating a strong cor-
relation between the two. The correlation coefficient between ambient temperature and
output power is 0.27 on sunny days, showing a weak correlation, and 0.53 on cloudy days,
showing a moderate correlation. The correlation coefficient between relative humidity
and output power is −0.60 on sunny days, showing a moderate degree of correlation, and
0.62 on cloudy days, showing a strong correlation.

In summary, regardless of the weather conditions, the three meteorological factors
of radiance, ambient temperature, and relative humidity all show a certain degree of
correlation with output power. Therefore, all can be used as input variables for the model
in predicting photovoltaic power generation.

4.2. Evaluation Indicators

It is difficult for a single evaluation indicator to effectively evaluate the predictive
performance of a model, so three indicators were selected to comprehensively measure the
predictive performance of the model. The evaluation indicators used are root mean square
error (RMSE), mean absolute percentage error (MAPE), and goodness of fit (R2), and are
shown in Equations (31) and (33).

RMSE =

√√√√ 1
Nsample

Nsample

∑
i=1

(prei − acti)
2 (31)

MAPE =
100

Nsample
×

Nsample

∑
i=1

∣∣∣∣ prei − acti
acti

∣∣∣∣ (32)


R2 =

Nsample
∑

i=1
(prei−actmean)

2

Nsample
∑

i=1
(acti−actmean)

2

actmean=
1

Nsample

Nsample

∑
i=1

acti

(33)

where, Nsample is the number of samples, prei is the predicted value, and acti is the real value.

4.3. PV Power Generation Prediction Model Based on EIBWO-ELM

In this study, the enhanced and improved beluga whale optimization algorithm is pro-
posed to optimize ELM. A PV power generation prediction model based on enhanced and
improved beluga whale optimization algorithm–optimization extreme learning machine
(EIBWO-ELM) is established. The flowchart of EIBWO-ELM is as shown in Figure 4.
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Step 1: Classify the photovoltaic data into a training dataset and a testing dataset.
Step 2: Determine the input and output of the prediction model.
Step 3: Process data normalization according to Equation (34).

AN =
A − Amin

Amax − Amin
(34)

where A represents the variable values to be normalized, Amax is the maximum value, and
Amin is the minimum value.

Step 4: Initialize the EIBWO algorithm population and calculate its fitness value. In
EIBWO-ELM, the variance between the predicted photovoltaic value and the actual value
is defined as the fitness value of EIBWO, according to Equation (35).

Fit =
1

Ntest

Ntest

∑
i=1

(prei − acti)
2 (35)

where Ntest is the number of samples in the test set.
Step 5: Train the model using training data, and at this point, the EIBWO algorithm

begins iterative optimization.
Step 6: Determine whether the termination condition is met. If it is, output the optimal

parameters of ELM. Otherwise, return to the previous step.
Step 7: Use test data for testing to obtain the predicted results of photovoltaic power.
Step 8: Evaluate and analyze the predicted results.

5. Analysis of Photovoltaic Power Generation Prediction Results
5.1. Source and Introduction of Experimental Data

The photovoltaic power generation data were sourced from publicly available data
from the Desert Knowledge Australia Solar Center (DKASC), which records the daily
photovoltaic power output, relative humidity, ambient temperature, radiance, and rainfall
of the Alice Spring photovoltaic power station, recorded every 5 min.

Due to the susceptibility of photovoltaic power generation to weather conditions,
multiple weather conditions such as sunny and cloudy should be considered when making
predictions. The five days between 14 August 2021 and 18 August 2022 were sunny. The
data during this period were used as research data for sunny days. The research data from
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14 August 2022 to 17 August 2022 were used as training data, and the research data from
18 August 2022 were used as testing data. The five days from 7 August 2021 to 11 August 2022
were cloudy. The data during this period were used as research data for cloudy weather.
The research data from 7 August 2022 to 10 August 2022 were used as training data, and
the research data from 11 August 2022 were used as testing data. The above daily research
data are from 8:00 to 17:00, and there are 108 data sample points per day.

5.2. Case 1—Sunny Days

Case 1 is the prediction of PV power generation on sunny days. The EIBWO-ELM,
BWO-ELM, PSO-ELM, and ELM prediction models established in this study were used
to predict the output power of PV power generation on sunny days. The four prediction
models constructed in this study, EIBWO-ELM, BWO-ELM, PSO-ELM, and ELM were used
to predict the output power of PV power generation. The actual output power values and
the predicted values obtained after model prediction are shown in Figure 5.
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Figure 5. The prediction results of four models on sunny days.

From Figure 5, it can be seen that EIBWO-ELM, BWO-ELM, PSO-ELM, and ELM all
achieved the characterization of sunny photovoltaic output power. To better represent the
error between the predicted and true values of the proposed model, the absolute error of
the two at each sample point is presented in the form of a curve. The absolute errors of the
four models’ prediction results on sunny days are shown in Figure 6.
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From the absolute error curve in Figure 6, it can be seen that the PV power prediction
error of the EIBWO-ELM model was closer to 0 on sunny days. Compared to BWO-ELM,
PSO-ELM, and ELM, the prediction error of the EIBWO-ELM model fluctuated more slowly.
The relative error between the two at each sample point is represented by a data statistical
histogram. The calculation equation for relative error δ is shown in Equation (36).

δ =
ŷi − yi

yi
× 100% (36)

In addition, the statistical results of the number of sample points in each error range
of prediction models on sunny days are shown in Figure 7. The detailed statistical results
of the data are shown in Table 6.
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Figure 7. Statistical results of the number of sample points in each error range of the prediction
models on sunny days.

Table 6. Statistical results of the number of sample points in each error range on sunny days.

Error Range
EIBWO-ELM BWO-ELM

Number Proportion (%) Number Proportion (%)

[−5%, 5%] 96 88.89 89 82.41
[−10%, 10%] 108 100 105 97.22
[−15%, 15%] 108 100 106 98.15
[−20%, 20%] 108 100 108 100
[−30%, 30%] 108 100 108 100

Error Range
PSO-ELM ELM

Number Proportion (%) Number Proportion (%)

[−5%, 5%] 92 85.18 90 83.33
[−10%, 10%] 108 100 97 89.81
[−15%, 15%] 108 100 103 95.37
[−20%, 20%] 108 100 107 99.07
[−30%, 30%] 108 100 108 100

From Table 6, it can be seen that on sunny days, the relative error range of all models
was between [−30%, 30%]. There were 96 sample points with a relative error range
between [−5%, 5%] with EIBWO-ELM, accounting for 88.89% of the total number of
samples. However, the relative error range of ELM prediction results was more dispersed,
and there was one sample point within the range of [−30%, 30%]. Therefore, on sunny days,
the EIBWO-ELM model had the highest number of sample points in the low error range
and had good prediction accuracy. The effectiveness of the proposed EIBWO optimization
ELM is proven in this study.
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To objectively analyze the prediction results of each model, the evaluation indica-
tors RMSE, MAPE, and R2 were used to comprehensively and objectively evaluate the
predictive performance of the proposed EIBWO-ELM. The evaluation index values of the
prediction results of each prediction model on sunny days were calculated separately, and
the calculation results are shown in Table 7.

Table 7. Statistics of prediction result indicators of the models on sunny days.

Model RMSE (kW) MAPE (%) R2

EIBWO-ELM 0.0787 1.83 0.9968
BWO-ELM 0.0982 2.34 0.9951
PSO-ELM 0.1089 2.23 0.9940
ELM 0.1269 3.21 0.9918

From Table 7, it can be seen that the RMSE values of EIBWO-ELM and BWO-ELM
were both less than 0.1 kW. However, the RMSE value of ELM was the highest, at 0.1269 kW.
In terms of R2, EIBWO-ELM had the highest R2, reaching 0.9968. This indicates a high
degree of fit between the predicted values of EIBWO-ELM and the real values. In terms of
MAPE, EIBWO-ELM, BWO-ELM, and PSO-ELM decreased by 1.38%, 0.87%, and 0.98%,
respectively, compared to ELM. It has been proven that using algorithms to optimize the
internal parameters of ELM is the main solution to improving model prediction accuracy.
The MAPE of EIBWO-ELM was reduced by 0.51% and 0.4% compared to BWO-ELM and
PSO-ELM, respectively. This indicates that the EIBWO proposed in this study has efficient
optimization capabilities.

5.3. Case 2—Cloudy Days

Case 2 is the prediction of PV power generation on cloudy days. EIBWO-ELM, BWO-
ELM, PSO-ELM, and ELM were used to predict the output power of PV power generation.
The actual output power values and the predicted values obtained after model prediction
on cloudy days are shown in Figure 8.
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Figure 8. The prediction results of the four models on cloudy days.

The prediction curve of EIBWO-ELM was very close to the true value curve, which
means that EIBWO-ELM had high prediction accuracy. On the contrary, the difference
between the predicted curve of ELM and the true value curve was significant, indicating
that the prediction accuracy of ELM was low. The relative error between the predicted
values and the true values of the prediction models at each sample point for cloudy days
was calculated, and the relative error curve is presented in Figure 9.
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Figure 9. The absolute errors of the four models’ prediction results on cloudy days.

From Figure 9, it can be intuitively seen that the prediction models performed differ-
ently at different sample points. During 8:00–10:00, the predicted relative error curve of
EIBWO-ELM was closer to 0, which indicates that during this time period, the predicted
values of EIBWO-ELM were very close to the actual observed values and the prediction
error was smaller. In contrast, the error curves of other models fluctuated significantly,
deviating from the straight line with an error of 0. this means that BWO-ELM, PSO-ELM,
and ELM had lower accuracy.

In addition, Figure 10 shows the statistical results of the number of sample points
for the four prediction models within each error range, which helps analyze the error
distribution of the models and visualize the performance of different models. Table 8
provides the specific number of sample points within each error range, which helped to
quantitatively analyze the predictive stability of the prediction model.
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In Table 8, within the relative error range of [−10%, 10%], EIBWO-ELM had 81 samples,
which accounted for 75% of the total samples. This indicates that EIBWO-ELM provided
predictions close to the true values with a high probability on cloudy days, demonstrating
excellent prediction accuracy. Furthermore, all sample points of EIBWO-ELM fell within
the error range of [−30%, 30%]. In contrast, ELM had a sample point proportion of 24.07%
within an error interval of over 30%, which is significantly higher than that of EIBWO-ELM.
This indicates that the prediction results of ELM were more prone to significant deviations
on cloudy days, and that the prediction stability and accuracy were relatively low. In
summary, the prediction performance of EIBWO-ELM was significantly better than that of
ELM, especially in the low error range, where the number of sample points had a significant
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advantage. The statistics of prediction results indicators of the models on cloudy days are
shown in Table 9.

Table 8. Statistical results of the number of sample points in each error range on cloudy days.

Error Range
EIBWO-ELM BWO-ELM

Number Proportion (%) Number Proportion (%)

[−5%, 5%] 55 50.93 35 32.41
[−10%, 10%] 81 75 65 60.19
[−15%, 15%] 91 84.26 79 73.15
[−20%, 20%] 102 94.44 84 77.78
[−30%, 30%] 108 100 91 84.26

Over 30% 108 100 108 100

Error Range
PSO-ELM ELM

Number Proportion (%) Number Proportion (%)

[−5%, 5%] 34 31.48 34 31.48
[−10%, 10%] 51 47.22 47 43.52
[−15%, 15%] 63 58.33 55 50.93
[−20%, 20%] 82 75.93 69 63.89
[−30%, 30%] 97 89.81 82 75.93

Over 30% 108 100 108 100

Table 9. Statistics of prediction result indicators of the models on cloudy days.

Model RMSE (kW) MAPE (%) R2

EIBWO-ELM 0.1440 7.40 0.9935
BWO-ELM 0.2373 14.53 0.9823
PSO-ELM 0.3006 13.99 0.9715
ELM 0.3237 20.11 0.9670

Table 9 shows that, among the four prediction models, EIBWO-ELM had the small-
est RMSE of 0.1440 kW, indicating the smallest prediction error. In contrast, ELM had
the highest value of RMSE of 0.3237 kW. The MAPE of EIBWO-ELM was the lowest, at
7.40%, indicating a small difference between its predicted and actual values. The MAPE
of EIBWO-ELM decreased by 7.13% and 6.59% compared to BWO-ELM and PSO-ELM,
respectively. The R2value of EIBWO-ELM was the highest, at 0.9935. Taking these three
indicators into consideration, EIBWO-ELM outperformed the other three models in terms of
predictive performance.

In addition, by comparing the evaluation indicators of sunny and cloudy days, it was
found that almost all models had better predictive performance on sunny days than on
cloudy days. This is because the output power fluctuates greatly on cloudy days, which
increases the difficulty of model prediction. However, regardless of whether it was sunny
or cloudy, the RMSE and MAPE values of EIBWO-ELM were the smallest, indicating the
smallest error. Moreover, the R2 of EIBWO-ELM was higher than 0.99, indicating a high
degree of fit. In summary, the proposed EIBWO-ELM had better prediction accuracy than
other comparative models and is suitable for predicting photovoltaic power generation in
various scenarios.

6. Discussion
6.1. Photovoltaic Power Prediction under Varying Meteorological Conditions

High-precision PV prediction under varying meteorological conditions is of great
significance for promoting the utilization of renewable energy and the development of
clean energy technologies. By adopting advanced prediction models and algorithms, it is
possible to more accurately predict PV power generation under varying meteorological
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conditions, which is of great significance for power grid management, economic efficiency
improvement, and addressing climate change.

This study aims to improve the accuracy of PV power prediction by delving into PV
power generation performance under varying meteorological conditions. The aim is to
reveal the shortcomings of existing technologies and provide direction for the research
into and improvement of new technologies, thereby promoting significant improvements
in the performance and efficiency of PV power generation systems. In this study, the
Pearson coefficient method is used to quantitatively evaluate the correlation between
meteorological parameters such as irradiance, temperature, and relative humidity and PV
power generation. This step is of decisive significance for accurately determining the key
input characteristics of the prediction model. Through this method, it is possible to more
accurately capture the key meteorological factors that affect the efficiency of PV power
generation, thereby constructing a more accurate and reliable prediction model.

6.2. Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine

The enhanced and improved beluga whale optimization extreme learning machine
(EIBWO-ELM) model proposed in this study has achieved significant results in the field of
photovoltaic power generation prediction, thanks to a series of innovations in algorithm
design and optimization.

Firstly, EIBWO, which has strong global search capability and fast convergence speed,
has been proposed to effectively handle complex problems in PV power generation predic-
tion. In Section 3.2, it is verified that compared to other existing algorithms, EIBWO can
quickly find the optimal solution, which not only improves the efficiency but also enhances
its stability and reliability in practical applications.

Secondly, by applying EIBWO to optimize ELM, the proposed EIBWO-ELM signifi-
cantly improves the accuracy and generalization ability of PV power generation prediction.
Based on measured data of PV power generation under sunny and cloudy weather condi-
tions, compared with other models, EIBWO-ELM has good prediction accuracy. In addition,
the adaptive adjustment mechanism and robustness of EIBWO-ELM enable it to maintain
stable predictive performance even in the face of data noise and uncertainty. This opti-
mization not only improves the accuracy of predictions and helps reduce energy waste and
economic losses but also enhances the adaptability of the model in the face of uncertainty
and variability.

Finally, the technological innovation of this study has brought new knowledge contri-
butions to the field of intelligent algorithms. The successful application of the EIBWO-ELM
model not only demonstrates the potential of intelligent algorithms in the field of renewable
energy but also provides a new idea and generalized framework for the development of
intelligent algorithms and the utilization of renewable energy. With further research in the
future, this model is expected to play to its advantages in more fields and make greater
contributions to sustainable development and green energy transformation.

7. Concluding Remarks

This study proposed a PV power generation prediction model based on EIBWO-ELM,
and the main conclusions are as follows:

(1) An EIBWO with high convergence accuracy and optimization robustness was pro-
posed. EIBWO was proposed in this study by introducing the chaotic mapping
strategy, sine dynamic adaptive factor, and disturbance strategy into the traditional
BWO. The convergence value of the proposed method almost reached the optimal
value of 0 through standard testing functions. In addition, the standard deviation of
the results of different testing functions through EIBWO was 0, indicating that the
proposed method had the best optimization robustness.

(2) A PV power prediction model based on EIBWO-ELM was established. The internal
parameters of ELM were optimized by using EIBWO with high convergence accuracy.
The proposed EIBWO-ELM was validated through two weather conditions, sunny and
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cloudy days, and the results show that it achieved high-precision photovoltaic power
prediction. According to the predicted results, the MAPE values of EIBWO-ELM
reached 1.83% and 7.40% on sunny and cloudy days, respectively.

(3) EIBWO-ELM provides a new PV prediction method to improve the integration and
efficiency of renewable energy in energy portfolios. The good performance of EIBWO-
ELM in instance data validation not only demonstrates the potential of intelligent
optimization technology in renewable energy prediction but also provides a universal
framework for developing similar intelligent algorithms.

However, there are still some limitations: (1) the quality of input data is not fully
considered, and (2) the adverse effects of external factors on photovoltaic panels are not
fully considered. In the future, there is an urgent need to address existing limitations and
propose more universal photovoltaic prediction models.

Author Contributions: Writing—original draft, W.D., S.-T.P., P.-S.W. and M.-L.T.; Writing—review &
editing, W.D., S.-T.P., P.-S.W. and M.-L.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the following foundation programs: the China National
Key R&D Program (grant No. 2022YFB2603100), the Guangxi Science and Technology Major Program
(grant No. AA23062054), and the Basic Research Fund of Central Public Interest Scientific Research
Institutes in China (grant No. TKS20230301).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aniello, G.; Shamon, H.; Kuckshinrichs, W. Micro-economic assessment of residential PV and battery systems: The underrated

role of financial and fiscal aspects. Appl. Energy 2021, 281, 115667. [CrossRef]
2. Calil, W.V.; Morozovska, K.; Laneryd, T.; da Costa, E.C.M.; Salles, M.B.D. Determining total cost of ownership and peak efficiency

index of dynamically rated transformer at the PV-power plant. Electr. Power Syst. Res. 2024, 229, 110061. [CrossRef]
3. Anusuya, K.; Vijayakumar, K. Mission profile-based assessment of photovoltaic system reliability for Indian climatic zones.

Energy Sources Part A-Recovery Util. Environ. Eff. 2024, 46, 1779–1799. [CrossRef]
4. Annuk, A.; Jogi, E.; Kalder, J.; Allik, A. Evaluating Electricity Self-Consumption in Different Renewable Energy Supply Con-

ditions. In Proceedings of the 17th International Scientific Conference: Engineering for Rural Development, Jelgava, Latvia,
23–25 May 2018; pp. 1704–1709. [CrossRef]

5. Liu, Z.F.; Liu, Y.Y.; Chen, X.R.; Zhang, S.R.; Luo, X.F.; Li, L.L.; Yang, Y.Z.; You, G.D. A novel deep learning-based evolutionary
model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting.
Appl. Energy 2024, 360, 122785. [CrossRef]

6. Eseye, A.T.; Zhang, J.H.; Zheng, D.H. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model
based on SCADA and Meteorological information. Renew. Energy 2018, 118, 357–367. [CrossRef]

7. Li, L.L.; Wen, S.Y.; Tseng, M.L.; Wang, C.S. Renewable energy prediction: A novel short-term prediction model of photovoltaic
output power. J. Clean. Prod. 2019, 228, 359–375. [CrossRef]

8. Ullah, Z.; Wang, S.R.; Wu, G.; Hasanien, H.M.; Rehman, A.U.; Turky, R.A.; Elkadeem, M.R. Optimal scheduling and techno-
economic analysis of electric vehicles by implementing solar-based grid-tied charging station. Energy 2023, 267, 126560. [CrossRef]

9. Ma, R.F.; Cai, H.; Ji, Q.; Zhai, P.X. The impact of feed-in tariff degression on R&D investment in renewable energy: The case of the
solar PV industry. Energy Policy 2021, 151, 112209. [CrossRef]

10. Kurm, S.; Agarwal, V. Dual Active Bridge Based Reduced Stage Multiport DC/AC Converter for PV-Battery Systems. IEEE Trans.
Ind. Appl. 2022, 58, 2341–2351. [CrossRef]

11. Ahmed, R.; Sreeram, V.; Togneri, R.; Datta, A.; Arif, M.D. Computationally expedient Photovoltaic power Forecasting: A
LSTM ensemble method augmented with adaptive weighting and data segmentation technique. Energy Convers. Manag.
2022, 258, 115563. [CrossRef]

12. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Louzazni, M. Assessment of artificial neural networks learning algorithms and training
datasets for solar photovoltaic power production prediction. Front. Energy Res. 2019, 7, 130. [CrossRef]

13. Hajjaj, C.; El Ydrissi, M.; Azouzoute, A.; Oufadel, A.; El Alani, O.; Boujoudar, M.; Abraim, M.; Ghennioui, A. Comparing
Photovoltaic Power Prediction: Ground-Based Measurements vs. Satellite Data Using an ANN Model. IEEE J. Photovolt.
2023, 13, 998–1006. [CrossRef]

https://doi.org/10.1016/j.apenergy.2020.115667
https://doi.org/10.1016/j.epsr.2023.110061
https://doi.org/10.1080/15567036.2024.2302371
https://doi.org/10.22616/ERDev2018.17.N239
https://doi.org/10.1016/j.apenergy.2024.122785
https://doi.org/10.1016/j.renene.2017.11.011
https://doi.org/10.1016/j.jclepro.2019.04.331
https://doi.org/10.1016/j.energy.2022.126560
https://doi.org/10.1016/j.enpol.2021.112209
https://doi.org/10.1109/TIA.2021.3137371
https://doi.org/10.1016/j.enconman.2022.115563
https://doi.org/10.3389/fenrg.2019.00130
https://doi.org/10.1109/JPHOTOV.2023.3306827


Energies 2024, 17, 2309 21 of 21

14. Tukymbekov, D.; Saymbetov, A.; Nurgaliyev, M.; Kuttybay, N.; Dosymbetova, G.; Svanbayev, Y. Intelligent autonomous street
lighting system based on weather forecast using LSTM. Energy 2021, 231, 120902. [CrossRef]

15. Huang, Y.S.; Wu, Y.H. Short-Term Photovoltaic Power Forecasting Based on a Novel Autoformer Model. Symmetry 2023, 15, 238.
[CrossRef]

16. Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. A Physical Hybrid Artificial Neural Network for Short Term
Forecasting of PV Plant Power Output. Energies 2015, 8, 1138–1153. [CrossRef]

17. Sansa, I.; Boussaada, Z.; Bellaaj, N.M. Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX. Energies
2021, 14, 6920. [CrossRef]

18. Kim, B.; Suh, D.; Otto, M.O.; Huh, J.S. A Novel Hybrid Spatio-Temporal Forecasting of Multisite Solar Photovoltaic Generation.
Remote Sens. 2021, 13, 2605. [CrossRef]

19. Wan, C.; Lin, J.; Song, Y.H.; Xu, Z.; Yang, G.Y. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical
Approach. IEEE Trans. Power Syst. 2017, 32, 2471–2472. [CrossRef]

20. Pandzic, F.; Capuder, T. Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and
Relevant Data Sources. Energies 2024, 17, 97. [CrossRef]

21. Krechowicz, M.; Krechowicz, A.; Licholai, L.; Pawelec, A.; Piotrowski, J.Z.; Stepien, A. Reduc-tion of the Risk of Inaccurate
Prediction of Electricity Generation from PV Farms Using Machine Learning. Energies 2022, 15, 4006. [CrossRef]

22. Raj, V.; Dotse, S.Q.; Sathyajith, M.; Petra, M.I.; Yassin, H. Ensemble Machine Learning for Pre-dicting the Power Output from
Different Solar Photovoltaic Systems. Energies 2023, 16, 671. [CrossRef]

23. Liu, Y.W.; Li, L.L.; Liu, J.Q. Enhancing short-term wind power forecasting accuracy for reliable and safe integration into power
systems: A gray relational analysis and optimized support vector regression machine approach. J. Renew. Sustain. Energy
2024, 16, 013311. [CrossRef]

24. Muhammad, A.; Lee, J.M.; Hong, S.W.; Lee, S.J.; Lee, E.H. Deep Learning Application in Power System with a Case Study on
Solar Irradiation Forecasting. In Proceedings of the 2019 1st International Conference on Artificial Intelligence in Information and
Communication, Okinawa, Japan, 11–13 February 2019; pp. 275–279. [CrossRef]

25. Li, G.Q.; Wang, H.Z.; Zhang, S.L.; Xin, J.T.; Liu, H.C. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach.
Energies 2019, 12, 2538. [CrossRef]

26. Liu, Z.H.; Li, Q.Z.; Wang, D.L.; Zhang, G.F.; Wang, W.; Zhao, Y.; Guo, R. Research on the Harmonic Prediction Method of a PV
Plant Based on an Improved Kernel Extreme Learning Machine Model. Electronics 2024, 13, 32. [CrossRef]

27. Das, S.; Sahu, T.P.; Janghel, R.R.; Sahu, B.K. Effective forecasting of stock market price by using extreme learning machine
optimized by PSO-based group oriented crow search algorithm. Neural Comput. Appl. 2022, 34, 555–591. [CrossRef] [PubMed]

28. Matisone, I.; Kaupe, D.; Matisons, R.; Klavina, D.; Jansons, A. Understory changes in mixed elm stands in response to canopy
dieback in Latvia. Balt. For. 2023, 29, 113–122. [CrossRef]

29. Zhang, Z.Y.; Zhang, A.; Sun, C.; Xiang, S.D.; Guan, J.C.; Huang, X.D. Research on Air Traffic Flow Forecast Based on ELM
Non-Iterative Algorithm. Mob. Netw. Appl. 2021, 26, 425–439. [CrossRef]

30. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, B.R. Extreme learning machines for solar photovoltaic power
predictions. Energies 2018, 11, 2725. [CrossRef]

31. Zhou, Y.; Zhou, N.R.; Gong, L.H.; Jiang, M.L. Prediction of photovoltaic power output based on similar day analysis, genetic
algorithm and extreme learning machine. Energy 2020, 204, 117894. [CrossRef]

32. Liu, Z.F.; Li, L.L.; Tseng, M.L.; Lim, M.K. Prediction short-term photovoltaic power using improved chicken swarm optimizer—
Extreme learning machine model. J. Clean. Prod. 2020, 248, 119272. [CrossRef]

33. Zhang, W.Y.; Li, Q.W.; He, Q.F. Application of machine learning methods in photovoltaic output power prediction: A review.
J. Renew. Sustain. Energy 2022, 14, 022701. [CrossRef]

34. Zhang, J.L.; Tan, Z.F.; Wei, Y.M. An adaptive hybrid model for day-ahead photovoltaic output power prediction. J. Clean. Prod.
2020, 244, 118858. [CrossRef]

35. Zhong, C.T.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl. Based Syst.
2022, 251, 109215. [CrossRef]

36. Li, L.L.; Fan, X.D.; Wu, K.J.; Sethanan, K.; Tseng, M.L. Multi-objective distributed generation hierarchical optimal planning in
distribution network: Improved beluga whale optimization algorithm. Expert Syst. Appl. 2024, 237, 121406. [CrossRef]

37. Jia, H.M.; Wen, Q.X.; Wu, D.; Wang, Z.; Wang, Y.H.; Wen, C.S.; Abualigah, L. Modified beluga whale optimization with
multi-strategies for solving engineering problems. J. Comput. 2023, 10, 2065–2093. [CrossRef]

38. Novykov, V.; Bilson, C.; Gepp, A.; Harris, G.; Vanstone, B.J. Empirical validation of ELM trained neural networks for financial
modelling. Neural Comput. Appl. 2023, 35, 1581–1605. [CrossRef]

39. Yan, P.C.; Li, G.D.; Wang, W.C.; Zhao, Y.T.; Wang, J.B.; Wen, Z.M. A Mine Water SAource Prediction Model Based on LIF
Technology and BWO-ELM. J. Fluoresc. 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.energy.2021.120902
https://doi.org/10.3390/sym15010238
https://doi.org/10.3390/en8021138
https://doi.org/10.3390/en14216920
https://doi.org/10.3390/rs13132605
https://doi.org/10.1109/TPWRS.2016.2608740
https://doi.org/10.3390/en17010097
https://doi.org/10.3390/en15114006
https://doi.org/10.3390/en16020671
https://doi.org/10.1063/5.0181395
https://doi.org/10.1109/icaiic.2019.8668969
https://doi.org/10.3390/en12132538
https://doi.org/10.3390/electronics13010032
https://doi.org/10.1007/s00521-021-06403-x
https://www.ncbi.nlm.nih.gov/pubmed/34413575
https://doi.org/10.46490/BF712
https://doi.org/10.1007/s11036-020-01679-0
https://doi.org/10.3390/en11102725
https://doi.org/10.1016/j.energy.2020.117894
https://doi.org/10.1016/j.jclepro.2019.119272
https://doi.org/10.1063/5.0082629
https://doi.org/10.1016/j.jclepro.2019.118858
https://doi.org/10.1016/j.knosys.2022.109215
https://doi.org/10.1016/j.eswa.2023.121406
https://doi.org/10.1093/jcde/qwad089
https://doi.org/10.1007/s00521-022-07792-3
https://doi.org/10.1007/s10895-023-03575-8

	Introduction 
	Related Works 
	Photovoltaic Power Prediction 
	Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine 

	Method 
	Beluga Whale Optimization Algorithm 
	EIBWO Proposal and Validation 
	Extreme Learning Machine 

	Establishment of PV Power Generation Prediction Model 
	Selection of Input Variables for Prediction Model 
	Evaluation Indicators 
	PV Power Generation Prediction Model Based on EIBWO-ELM 

	Analysis of Photovoltaic Power Generation Prediction Results 
	Source and Introduction of Experimental Data 
	Case 1—Sunny Days 
	Case 2—Cloudy Days 

	Discussion 
	Photovoltaic Power Prediction under Varying Meteorological Conditions 
	Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine 

	Concluding Remarks 
	References

