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Abstract: Power load prediction is fundamental for ensuring the reliability of power grid operation
and the accuracy of power demand forecasting. However, the uncertainties stemming from power
generation, such as wind speed and water flow, along with variations in electricity demand, present
new challenges to existing power load prediction methods. In this paper, we propose an improved
Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BILSTM) model for
analyzing power load in systems affected by uncertain power conditions. Initially, we delineate
the uncertainty characteristics inherent in real-world power systems and establish a data-driven
power load model based on fluctuations in power source loads. Building upon this foundation, we
design the CNN-BILSTM model, which comprises a convolutional neural network (CNN) module for
extracting features from power data, along with a forward Long Short-Term Memory (LSTM) module
and a reverse LSTM module. The two LSTM modules account for factors influencing forward and
reverse power load timings in the entire power load data, thus enhancing model performance and
data utilization efficiency. We further conduct comparative experiments to evaluate the effectiveness
of the proposed CNN-BILSTM model. The experimental results demonstrate that CNN-BILSTM
can effectively and more accurately predict power loads within power systems characterized by
uncertain power generation and electricity demand. Consequently, it exhibits promising prospects
for industrial applications.

Keywords: artificial intelligence; CNN-BILSTM model; power load prediction; uncertain power systems

1. Introduction

In the electricity market, renewable energy offers significant advantages over tradi-
tional fossil fuels, including environmental sustainability, widespread availability, and abun-
dant reserves [1,2]. The development of a renewable energy-dominant power system is
pivotal for achieving the transformation of our energy landscape [3]. However, the inherent
uncertainty stemming from random fluctuations in wind and sunlight renders renewable
energy generation susceptible to variations within the power system [4,5]. These fluctua-
tions can pose significant threats to system reliability and stability, thereby jeopardizing the
seamless operation of power grids. In addition, these fluctuations also potentially lead to
widespread power outages, resulting in substantial economic and social repercussions [6,7].
Power load prediction stands as a crucial undertaking within power systems, serving as a
linchpin for ensuring their reliable and stable operation [8,9]. Therefore, there is an urgent
need to develop precise power load prediction models tailored to the uncertainties inherent
in modern power systems.

In recent years, various data analysis and machine learning methods have surfaced
in the realm of power load prediction within power systems [10,11]. These methods
encompass simulation-based analysis methods, analytical methods, and parallel algorithms.
Simulation-based analysis methods predominantly utilize diverse simulation models to
scrutinize power load data [12,13]. Owing to the flexibility of simulation models, they
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can simulate various power load data scenarios as required. However, the accuracy of
simulation models heavily relies on the precision of input parameters, which may be
challenging to obtain or may harbor uncertainties. In addition, these methods often
necessitate substantial computing resources and time, particularly for intricate power
systems. The second category of analysis methods typically leans on statistical analysis,
data mining, and other techniques to uncover patterns, trends, or anomalies in power load
data [14]. They can swiftly process large volumes of data and excel in exploratory analysis
and prediction. However, such methods frequently overlook the intricate correlations
among power load data, failing to fully exploit the information embedded within the data.
Moreover, for nonlinear and nonstationary data, the accuracy of analytical methods may
be constrained.

Numerous research endeavors are dedicated to leveraging parallel computing tech-
niques for processing large-scale power load data [15,16]. These parallel algorithms can
speed up calculations by distributing tasks to multiple processing units, thereby increasing
efficiency [17]. Nonetheless, the design and implementation of parallel algorithms are more
intricate, necessitating consideration of issues such as data segmentation and communica-
tion overhead. Concurrently, the availability and cost of parallel computing resources may
also delimit the application scope of this method.

To achieve accurate predictions of power load, various machine learning and deep
learning methods have been applied to power load prediction and prediction applica-
tions [18,19]. For instance, Convolutional Neural Network (CNN) models are employed
to extract features from power load data, aiding the model in comprehending the data
more effectively [20]. Long Short-term Memory Network (LSTM) models are suitable for
sequential data and find wide application in time series forecasting tasks [21]. LSTMs
can forecast future power load conditions by learning patterns and trends from historical
power load data [22]. Deep reinforcement learning (DRL) integrates deep learning and
reinforcement learning techniques and can optimize power load prediction and forecasting
strategies within power systems [23,24]. However, these methods necessitate extensive
labeled training datasets and substantial computing power to achieve high accuracy. The
expense associated with acquiring training datasets and training models poses a bottleneck
for these methods.

In this paper, we focus on power load prediction within uncertain power systems
and propose a Convolutional Neural Network–Bidirectional Long Short-Term Memory
(CNN-BILSTM) model. Experimental results validated the efficacy of our CNN-BILSTM
model in addressing the computational bottleneck of power load prediction, highlighting
its promising industrial applications. The contributions of our work are outlined as follows:

• We model the uncertain power system and establish a power load model that takes
into account the changes in factors such as market demand, power generation costs,
and supply and demand balance.

• We define feature vectors that effectively represent the power load changes.
• We design the CNN-BILSTM model, where the CNN module is used to extract high-

dimensional feature vectors from uncertain power data and map them to a low-
dimensional feature space.

• We further propose a Bidirectional Long Short-term Memory (LSTM) module to
capture temporal dependencies. The forward LSTM module and the reverse LSTM
module consider factors influencing the timing of forward and reverse power loads
within the entire power load dataset, thereby enhancing model performance.

2. Related Work

Numerical calculation methods play a crucial role in power load prediction within
power systems, encompassing both non-iterative and iterative algorithms. Non-iterative
algorithms include Gauss–Seidel methods and fast-decoupled methods. The Gauss–Seidel
method sequentially updates the voltage magnitudes and angles of each bus until conver-
gence is achieved [25]. While it is computationally less intensive than iterative methods,
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it may converge slowly or fail to converge for certain system configurations, particularly
those with high levels of nonlinearity or ill-conditioned matrices [26]. Fast-decoupled
methods decouple the real and reactive power equations, allowing for faster convergence
by solving each equation separately [27,28]. However, they may lack accuracy in highly
meshed systems and can be sensitive to initial conditions, leading to divergence. Various
iterative algorithms have been developed for power load prediction, such as successive
approximation methods and the original Newton–Raphson method. Successive approxi-
mation methods can update voltage magnitudes and angles simultaneously [29]. However,
they may converge slowly, especially for systems with high-impedance lines or voltage
instabilities. The original Newton–Raphson method can be computationally intensive due
to the need for calculating and inverting the Jacobian matrix at each iteration [30].

Many data mining and machine learning methods are utilized to tackle the challenges
presented by uncertainties in power systems, such as fluctuations in renewable energy
generation, shifts in demand patterns, and unforeseen events. Several probabilistic analysis
methods have been introduced to quantify and manage uncertainties in power systems [31].
Commonly employed techniques include Monte Carlo simulation, polynomial chaos expan-
sion, and Bayesian inference. These methods consider probability distributions of uncertain
parameters, such as renewable energy generation and load variations, to evaluate the prob-
abilities of different system states and associated risks. Monte Carlo simulation provides a
straightforward approach to estimating the probability distributions of system variables by
generating random samples from input distributions and simulating power load under
various scenarios [32,33]. Polynomial chaos expansion represents uncertain parameters
as random variables and approximates the solution using orthogonal polynomials [34].
Bayesian inference techniques offer a flexible and interpretable approach to uncertainty
quantification, enabling the integration of expert judgment and data-driven information.
However, Monte Carlo simulation can be computationally expensive, particularly for
large-scale power systems or when high levels of accuracy are required. Polynomial
chaos expansion may encounter the curse of dimensionality, especially when dealing with
high-dimensional or correlated uncertain parameters [35]. In addition, Bayesian inference
techniques may demand significant computational resources, particularly for complex
power systems with large datasets or non-Gaussian uncertainties.

There is a growing interest in applying machine learning and deep learning techniques
to power load prediction in uncertain systems. Convolutional neural networks (CNN),
recurrent neural networks (RNN), and reinforcement learning (RL) algorithms are utilized
to enhance the accuracy and robustness of power load prediction. CNNs excel in extracting
spatial features from input data, making them particularly useful for analyzing spatially
distributed data in power systems. RNNs, on the other hand, are designed to handle se-
quential data and are adept at capturing temporal dependencies over time. RL algorithms
enable adaptive adjustment of power load control strategies based on feedback from the
environment, thereby improving performance and robustness in uncertain power systems.
These methods leverage historical data to learn complex patterns and relationships, allow-
ing for more accurate power load predictions under uncertain conditions. However, CNNs
may encounter challenges in capturing temporal dependencies in time-series data, which
are crucial for power load prediction where the system state evolves. Additionally, RL
algorithms typically necessitate a large number of interactions with the environment to
learn effective control policies. This requirement may not be feasible in real-time power
systems with safety constraints.

Research in power load prediction has made significant strides with recent advance-
ments spanning non-iterative, iterative, data mining, machine learning, and deep learning
methods. However, a notable research gap persists concerning the application of these
approaches to enhance accuracy and efficiency. Unlike current research, the improved
Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BILSTM)
model can effectively address this gap by amalgamating the strengths of both CNNs and
BILSTMs. The unique combination and optimization of CNN and BILSTM architectures
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in our approach offer a novel avenue for power load prediction, promising enhanced
predictive capabilities and computational efficiency.

3. System Model and Problem Definition

In this section, we will describe the problem definition of power load prediction in
uncertain power systems. We will first describe the features of uncertain power systems.
Then, we define the problem of power load prediction in uncertain power systems.

3.1. Uncertain Power Systems

The power system is a source generation uncertain system. Due to the combined effect
of distributed generation and energy storage, the active distribution network needs to
use a function containing uncertain input variables to determine the system state when
discussing its uncertain power load. When some input variables are uncertain, the power
load calculation equation of the distribution network will also be uncertain. The power
load equation is generally used as the transformation function in the uncertain power load
solution model. Without considering the change in the system wiring mode, the power
load in the next period can be defined as:

Y = f (X), (1)

where X represents the uncertain input variable and Y represents the uncertain output variable.
Regardless of the changes in grid structure and operation mode, the input vector X

of the active distribution network can include load fluctuations and the power generated
by distributed power sources, such as wind turbines, photovoltaic, micro gas turbines, etc.
The output of distributed energy storage contains batteries and electric vehicles, which is
expressed in vectors:

X = [PL, QL, PDER, QDER]
T , (2)

where PL and QL are the active power and reactive power vectors consumed by the
load. PDER and QDER are the active power and reactive power vectors generated by
distributed energy sources. Each element in the output variable Y is also expressed as an
uncertainty vector:

Y = [U, θ, QPV , Pswing, Qswing, Sij]
T , (3)

where U and θ are, respectively, node voltage amplitude and phase angle vectors; Sij is
the branch complex power vector; QPV is the reactive power vector of the PV node; T
represents the transpose of the matrix composed of these vectors. We map these data
into time series space by transposing the matrix to change the dimensions of the data
or reorganize the structure of the data. In addition, Pswing and Qswing are the active and
reactive power vectors of the balance nodes. Note that we neglect losses when calculating
power load in this work.

Figure 1 shows the overall distribution of power load data collected from 2020 to 2021.
In Figure 1, the sample data of each power plant is a polyline, and a total of 5 power

plants are involved in this work. It can be seen from the figure that these power load
data have significant periodic laws. In addition, the distribution patterns are different in
different seasons. By observing the distribution of power load data from different power
plants, we analyze the power usage behavior of the actual power system. It provides a
basis for modeling and problem definition of uncertain power systems.
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Figure 1. Distribution of power load of multiple power plants in China between 2020 and 2023.

Most uncertainty assessment methods directly assume that uncertain variables of the
distribution network can be represented by one or more types of probability distribution
functions, which are determined by the inherent characteristics of uncertain variables.
However, due to incomplete and inaccurate cognition or the lack of some parameter
information of the system, the evaluation of the system model and parameter characteristics
will be inaccurate. This kind of uncertainty is difficult to describe by specific probability
distributions, and it is generally considered to be represented by interval variables. There
are several sources of uncertainty in power systems, including:

1. Renewable energy sources: The output of renewable energy sources such as wind
and solar power can vary due to changes in weather conditions, cloud cover, or wind
speed. This variability introduces uncertainty into the power generation forecast.

2. Demand variability: Electricity demand fluctuates throughout the day and is influ-
enced by factors such as weather, time of day, seasonality, and economic activity.
Uncertainty in demand forecasts can arise from unexpected changes in these factors.

3. Equipment failures: Unexpected failures or outages of power generation or trans-
mission equipment, such as turbines, transformers, or transmission lines, can lead to
sudden changes in power flow and system reliability.

4. Market conditions: Uncertainty in market conditions, including fuel prices, regulatory
changes, and electricity market dynamics, can affect investment decisions, generation
planning, and power flow within the system.

5. Environmental factors: Natural disasters, such as hurricanes, earthquakes, or wildfires,
can damage power infrastructure and disrupt power supply, leading to uncertainty in
power system operation and restoration efforts.

6. Human factors: Operator errors, cyber-attacks, or sabotage can also introduce uncer-
tainty into power system operation and security.

These sources of uncertainty pose challenges to power system planning, operation,
and control, highlighting the importance of robust forecasting, risk management strategies,
and resilient infrastructure design to ensure grid reliability and stability.

3.2. Problem Definition

In uncertain power systems, multiple factors contribute to variability and unpre-
dictability in generation and demand. Two core characteristics of such systems are the
power frequency characteristics of the load and the generator. The presence of different
types of loads with varying power frequency characteristics increases the complexity of
power load prediction, as the system’s behavior will differ under different load condi-
tions. Simultaneously, the power frequency characteristics of the generator play a vital
role in maintaining system stability and regulating the power load in the grid. The impact
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of uncertain power conditions on power load prediction is significant and multifaceted,
including grid stability, voltage and reactive power control, and operational planning.

(1) Power frequency characteristics of load.
When the system is in a steady state, the active power load will change with the

change in frequency. This change characteristic of the load is called the static frequency
characteristic of the load. The relationship between load power and frequency of the whole
system is calculated as:

PowL = δ0PowLN + δ1PowLN(
f

fN
) + δ2PowLN(

f
fN

)2, (4)

where PowL represents the active load of the whole system at f ; PowLN represents the
active load of the whole system when the power system frequency is the rated value fN . In
addition, δi(i = 0, 1, 2, . . . ) is the proportion of the load in PowL proportional to the degree
i of the frequency. It can be seen from this equation that when the frequency of the power
system decreases, the active load also decreases.

(2) Power frequency characteristics of the generator.
In uncertain power systems, once the active power balance rate of the system is lower

than a predetermined threshold, the frequency will change and the speed control system
will automatically adjust. The amount of water input to the generator (for a hydroelectric
generator) will change accordingly, adjusting the generator’s output accordingly. Once the
adjustment process is complete, the system will establish a new stable state. The relationship
of the generator is called the power frequency static characteristic of the generator set. The
difference adjustment coefficient and the unit regulating power of the unit are reciprocal,
as defined as:

KG =
PowGN
f0 − fN

=
PowGN
fN × µ

, (5)

where the coefficient µ of adjustment is the difference between the unit’s no-load fre-
quency f0 and the operating frequency fN under rated conditions expressed as a percent-
age, namely:

µ = − f0 − fN
PowGN

. (6)

When the reference value of KG is taken as KGB = PowGN
fN

, the unit value is calculated as:

KG∗ =
1
µ

. (7)

Therefore, in uncertain power systems, limited by the speed governing mechanism of
the generator set, the adjustment coefficient or the corresponding unit regulating power can
be set, but its setting range is also very limited. The frequency deviation is greatly affected
by the adjustment coefficient, that is, the smaller the adjustment coefficient is, the smaller
the frequency deviation is. Based on the feature of uncertain power systems, we can define
the problem of this work as below.

Problem Definition: Given the time series data X = {x1, x2, x3, . . . , xt} of power load
in a period T = {1, 2, 3, . . . , t}, the task of power load prediction is to predict the value of
power load xt+1 of the next period t + 1 according to the data of this period.

4. Proposed Method

In this section, we will present the proposed improved CNN-BILSTM model for power
load prediction. We will introduce the overall architecture of the CNN-BILSTM model
and then detail the CNN module and LSTM module, respectively.
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4.1. Overall Architecture of CNN-BILSTM Model

We design an improved CNN-BILSTM model for the power load prediction of un-
certain power systems. The model includes a data-driven power load model of a power
system’s source load change and a low-dimensional feature vector that can effectively
represent the source load change. On this basis, we build a deep neural network power
load prediction model to realize the fast calculation of the power system’s basic power
load prediction, taking into account the numerical characteristics of the power system’s
power load prediction, such as different input and output properties and different variation
ranges. Using the stack noise reduction automatic encoder to intelligently identify the
constraints of sparsity, the computational efficiency is greatly improved on the premise of
ensuring accuracy. The overall architecture of the proposed CNN-BILSTM model is shown
in Figure 2.

Figure 2. Overall architecture of the improved CNN-BILSTM model for power load prediction.

The detailed structure and the parameters of the improved CNN-BILSTM model are
listed in Table 1. Among them, the model parameters of the CNN module include the size
of the convolution kernel, the number of filters, and the pooling size, which determine
whether the extraction of data features is specific. The model parameters of the LSTM
module mainly include the number of gated units in each neural network layer.

Table 1. Structure and parameters of the proposed CNN-BILSTM model.

No. Modules Layers Parameters Vaules

1 CNN Conv1D-1 kernel size 3
2 CNN Conv1D-1 filters 100
3 CNN Conv1D-2 kernel size 3
4 CNN Conv1D-2 filters 64
5 CNN MaxPooling1D-1 pool size 2
6 CNN MaxPooling1D-2 pool size 2
7 LSTM LSTM-1 units 32
8 LSTM LSTM-2 units 16
9 Dense Dense-1 units 128
10 Dense Dense-2 units 32
11 Dense Dense-3 units 2

4.2. Convolutional Neural Network Module

The convolutional neural network (CNN) module is used for feature extraction out of
our model. The CNN model is usually stacked by the convolution layer and pooling layer.
The convolution layer uses a set of convolution cores to extract abstract features, and the
convolution operation is realized by the feature mapping of the input layer or intermediate
layer through a convolution check. The structure of the CNN feature extraction module is
illustrated in Figure 3.
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Figure 3. Structure of the convolutional neural network (CNN) module.

For each calculation unit of the CNN module, we can use the following equation to
obtain the feature value of power load data:

Cl
i,j = φ(kj

n×1 × xi
i:i+n + bi,j), (8)

where xi is the i-th channel of X, kj
n×1 represents (i, j) convolution kernel. Operation × represents

convolution operation, and bi,j is offset.
Each convolution kernel processes the feature mapping of each channel, so the convolu-

tion layer can learn the representation in the time–frequency domain. Batch standardization
and the ’Relu’ activation function can be used to process the output of each layer of convo-
lution. Both can improve the convergence speed of CNN, and batch standardization can
also improve the stability of CNN.

After the batch standardization and ’Relu’ activation function are added to the convolu-
tion layer, the local maximum pooling layer can be added to down-sample the eigenvalues
to reduce the computational complexity, and the robustness of CNN in processing input
variables is also improved. Therefore, we add a local maximum pooling layer after each
convolution layer to optimize the performance of the CNN network.

4.3. Long Short-Term Memory Module

Long short-term memory (LSTM) neural networks have improved the neuron structure
based on the cyclic neural network. LSTM uses the increased cell memory units to memorize
and store the historical information of the distant past time. It also uses the gate structure
to add, delete, and process information, ensuring that the cell information processing of the
current iteration time has a strong time correlation with the distant past time information.
In this way, the gradient disappearance phenomenon of RNN in long-time span sequence
data processing can be solved. The detailed structure of LSTM is shown in Figure 4.

As shown in Figure 4, Xt and Yt are cell input and output, respectively. LSTM has a
memory unit Clst to maintain cell state Yt and also has three fully connected nonlinear units.
According to different weight matrices W and bias term b, and combined with the sigmoid
function ϑ(), a nonlinear conversion gate structure is achieved. The forgetting gate converts
the current time input and the previous time output into 0 to 1 under the action of the
sigmoid function. To control the amount of information transferred from the previous time
to the current time, the forgetting gate Forgett is used, for which the calculation equation is
defined as:

Forgett = ϑ(W f orget[Ht−1, Xt] + b f orget). (9)
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Figure 4. Structure of the long short-term memory (LSTM) neural network model.

The input gate uses different weight matrices to control the information state of the
input cell at the current time with the same mechanism, so as to prepare for the state update.
For the input gate Inputt, the calculation equation is defined as:

Inputt = ϑ(Winput[Ht−1, Xt] + binput). (10)

The output gate obtains output based on the cell state, where the sigmoid layer
performs quantitative control on the output part of the cell state. For the output gate
Outputt, the calculation equation is defined as:

Outputt = ϑ(WOutput[Ht−1, Xt] + bOutput). (11)

Finally, the output vector is classified by the ϱ() activation function.

Clst = ϱ(WCls[Ht−1, Xt] + bCls),

Yt = Outputtϱ(Clst).
(12)

To effectively extract the power load features from time-series power load data in
uncertain power systems, we further propose an improvement solution for the LSTM. We
design a bi-directional CNN+ LSTM (CNN+BILSTM) model by changing the network
structure of LSTM. Our proposed BILSTM combines the forward LSTM single model and
the reverse LSTM single model. At the current iteration time, the reverse timing influence
factors can be considered, which improves the model performance and data utilization
efficiency. The forward and backward LSTM neuron layers embedded in the BILSTM
network structure are connected with the sub-node layer, presenting two separate circular
networks forward and backward. It combines the hidden layer states of the two LSTMs
according to a specific combination method to provide more comprehensive information
for the output layer. Then, it obtains the final prediction results of the power load data in
the next period. BILSTM calculation includes forward and reverse processes. The forward
calculation method is similar to the single LSTM model. The difference between the reverse
calculation process and the forward calculation is that the state of the hidden layer at the
next time is used in the reverse calculation.



Energies 2024, 17, 2312 10 of 16

In the improved CNN+BILSTM model, the forward calculation process is updated as:

Forget f
t = ϑ(W f

Forget[Ht−1, Xt] + bb
Forget),

Input f
t = ϑ(W f

Input[Ht−1, Xt] + b f
Input),

Output f
t = ϑ(W f

Output[Ht−1, Xt] + b f
Output),

Cls f
t = ϱ(W f

Cls[Ht−1, Xt] + b f
Cls),

Y f
t = Output f

t ϱ(Cls f
t ).

(13)

In addition, the backward calculation process is defined as:

Forgetb
t = ϑ(Wb

Forget[Ht−1, Xt] + bb
Forget),

Inputb
t = ϑ(Wb

Input[Ht−1, Xt] + bb
Input),

Outputb
t = ϑ(Wb

Output[Ht−1, Xt] + bb
Output),

Clsb
t = ϱ(Wb

Cls[Ht−1, Xt] + bb
Cls),

Yb
t = Outputb

t ϱ(Clsb
t ).

(14)

5. Experiments

In this section, we will carry out comparative experiments to verify the power load
prediction capability of the proposed model in uncertain power systems. In Section 5.1,
we will introduce the environmental setup, including the experimental platform, data sets,
and evaluation indicators. The prediction accuracy and error of different algorithms will
be discussed in Section 5.2. In Section 5.3, we further discuss the prediction accuracy and
robustness of different algorithms in fluctuating power load data.

5.1. Experimental Setup

We used Python 3.9 to implement the proposed algorithm. All the selected algorithms
use the code provided in the original paper and the original algorithm code encapsulated
in the Sklearn library [36]. To reflect the fairness of the comparison experiment, each group
of comparison experiments is conducted in the same hardware environment.

(1) Data sets.
In our comparative experiments, we use the historical power load data of Central

China from 2015 to 2021 [37]. To reflect the uncertainty of the power system and the time
fluctuation of power load data, our data sets include data from mountain areas, towns,
residential areas, and industrial areas. Data sets from different areas have different power
demands and data characteristics. The data from 2015 to 2020 are divided into training sets,
and the data in 2021 are used as test sets.

The original tie-line power data have positives and negatives, which represent the
power transmission direction. To speed up the algorithm convergence, the activation
function of the CNN and LSTM modules uses the Relu function, and its output range
is [0,+∞]. If the original data are directly input into the CNN-BILSTM model without
processing, the reverse power data characteristics may be missed, which will reduce the
prediction accuracy. Therefore, this article uses min–max to standardize the original data
and restrict it into 0 and 1:

x′ =
x − xmin

xmax − xmin
(15)

where x is the tie-line power data, and x′ is the normalized tie-line power data. Equation (15)
is used to normalize the value of the power loads if power losses are not considered. This
is because losses are a quadratic function of the power load. It does not depend on the
direction of the flux but only on its value. By shifting the ’zero’ of the flux towards higher
values, it is no longer possible to adequately account for losses.
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(2) Evaluation Metrics
To evaluate the accuracy of the proposed CNN-BILSTM model, we use the MAPE and

RMSE as our evaluation metrics, as defined as:

MAPE =
1
n

n

∑
t=1

yr(t)− yp(t)
yr(t)

× 100% (16)

RMSE =

√
1
n

n

∑
t=1

(yr(t)− yp(t))2 (17)

where yr(t) is the actual tie-line power, yp(t) is the predicted tie-line power, and n is the
number of time points.

5.2. Experimental Results

After the model parameters are ensured, the training set and test set data are entered
into the model. Adam is used as the optimizer, the learning rate is 0.0025, the model is
trained 100 times, and the power load on 30 July 2021 is predicted. To prove the superiority
of the proposed CNN-BILSTM model, we compare the prediction results of tie-line power
on 30 July 2021 with that of the ResNet and the LSTM model.

As seen in Figure 5, all three models can roughly predict the change in the trend of
future tie-line power. Power load prediction in uncertain power systems is an intricate
undertaking, involving the examination of the distribution and movement of electrical
power within a network amid conditions of uncertainty. Given that the ResNet model
is not inherently tailored for sequential data, it encounters challenges in addressing the
temporal nature of power load prediction which heavily relies on time-dependent data.
Consequently, the ResNet model demonstrates lower predictive accuracy in experimental
results. Conversely, LSTM models appear as an appropriate choice due to their aptitude
for capturing temporal dependencies and handling sequential data. Among these, our
CNN-BILSTM model takes into consideration the numerical attributes inherent to power
system power load prediction, yielding the most optimal predictive outcomes.

Figure 5. Comparison of prediction accuracy.

The loss function and error during the training process are shown in Figures 6 and 7.
The loss function is the MSE, and the error is represented by MAE.
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Figure 6. Comparison of loss function.

Figure 7. Comparison of training errors.

From Figures 6 and 7, we can see that among the three models, the CNN-BILSTM
model has the fastest convergence speed and the smallest loss function and error. During
training, ResNet might exhibit relatively higher training errors, especially if the data are
sequential. ResNet’s deep architecture might help reduce training errors by enabling the
model to learn complex relationships in uncertain power systems. However, if the task does
not require such a deep architecture, there could be overfitting concerns. Our CNN-BILSTM
model is well-suited for capturing temporal dependencies in sequential data. They are
expected to yield lower training errors compared to CNN-LSTM and ResNet for tasks that
involve time-dependent patterns, as they can effectively model these dependencies.

5.3. Ablation Experiments

We further conduct ablation experiments to analyze the performance of the model
under different configurations and find out the optimal structure of the model to achieve
the best performance. We use the CNN module, LSTM module, bidirectional LSTM module,
and different loss functions respectively. Then, we record the model accuracy under each
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model structure and discuss the comparison results. The results of the ablation experiments
are shown in Table 2.

Table 2. Results of ablation experiments of our CNN-BILSTM model.

Methods Accuracy AUC F1 Score

CNN module 64.25% 72.24% 0.68
CNN + LSTM modules 68.18% 75.73% 0.71

CNN + BILSTM + Huber Loss 89.27% 90.51% 0.85
CNN + BILSTM + Quantile Loss 92.48% 91.34% 0.89

CNN + BILSTM + Cross Entropy Loss 92.87% 93.01% 0.90

We can see from Table 2 that the accuracy of power load prediction results varies with
models of different structures. If only the CNN module is used, the prediction accuracy of
the model is the lowest, only 64.25%. If the CNN module is used to extract the characteristics
of power data first, and then LSTM is used to perform correlation analysis and prediction
on the data in the time dimension, the accuracy of power load prediction is 68.18%. We
improved the LSTM module and proposed the BILSTM module to improve the prediction
accuracy of the model. We use three loss functions to realize reverse learning of the model,
namely, Huber Loss, Quantitative Loss, and Cross Entropy Loss. Huber Loss is a loss
function based on MSE and MAE losses, and the accuracy of its model is 89.27%. Quantile
regression can fit different quantiles of the target value by giving different quantiles. Using
quantile regression as the loss function, the accuracy of the model is 89.27%. In contrast,
if we use Cross Entropy Loss as the loss function of the model, we can obtain the highest
prediction accuracy of 92.87%.

5.4. Prediction Accuracy Comparison

Considering that the power load model in uncertain power systems has volatility,
to research the forecasting stability of the algorithm proposed in this paper and other
comparison algorithms, we further use more data forecasting algorithms for comparative
experiments. Six kinds of real power load data with different fluctuation frequencies are
used in the comparative experiments. The periods of the data sets are January, March,
May, July, September, and November of 2021, respectively. We select the C4.5 classification
prediction algorithm, Random Forest (RF) classification prediction algorithm, XGBoost algo-
rithm, Convolutional Neural Network (CNN) algorithm, and Residual Network (ResNet)
algorithm as the comparison algorithms. Each algorithm makes predictions in the six
groups of data, records the prediction accuracy, and finally, takes their average value as the
accuracy of the algorithm. For each algorithm, we separately count Accuracy, AUC, and F1
as the performance metrics. The experimental comparison results are shown in Table 3.

Table 3. Prediction accuracy comparison between different algorithms.

Methods Accuracy AUC F1 Score

C4.5 68.36% ± 8.14% 75.42% ± 9.53% 0.70
RF 74.52% ± 7.73% 80.16% ± 6.98% 0.72

XGBoost 76.19% ± 7.49% 83.58% ± 7.75% 0.79
CNN 78.36% ± 3.44% 88.74% ± 3.26% 0.85

ResNet 86.83% ± 3.62% 90.26% ± 3.92% 0.89
CNN-BILSTM 92.15% ± 2.14% 94.87% ± 2.13% 0.95

It can be seen from Table 3 that the prediction effect of the comparison algorithms on
the volatile power load data sets is different. First of all, C4.5, RF, and XGBoost algorithms
have limited feature extraction capabilities, so when the diversity of the power load data
sets becomes greater, the prediction accuracy of these algorithms is not stable. For example,
the average accuracy of the C4.5 algorithm on the six datasets is 68.36%, but the deviation
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is 8.14%. The average accuracy of the RF algorithm on the six datasets is 74.52%, but the
deviation is 7.73%. In contrast, CNN and ResNet algorithms use convolution to extract
data features, which can quickly extract effective data features and achieve higher accuracy.
For example, the average AUC value of the CNN model on the six data sets is 88.74%,
while the deviation is 3.26% and the average F1 value is 0.85. The average AUC value
of the ResNet model on the six data sets is 90.26%, while the deviation is 3.92%, and the
average F1 value is 0.89. Compared with other algorithms, the CNN-BILSTM algorithm
proposed by us can not only extract the static features from the power load data at each
time point but also extract the dynamic features with different time window lengths using
the LSTM module. In this way, it can obtain robust prediction results on data sets with
different volatility. Therefore, the CNN-BILSTM algorithm proposed in this paper has a
high application value for the actual power load data processing.

6. Conclusions

This paper introduced an innovative Convolutional Neural Network–Bidirectional
Long Short-term Memory (CNN-BILSTM) model to address the challenges posed by uncer-
tain power conditions in power load prediction. By analyzing the inherent uncertainties
of real-world power systems, we develop a data-driven power load model that forms the
basis of the CNN-BILSTM architecture. The CNN-BILSTM model combines the advan-
tages of CNN and BILSTM modules to achieve efficient feature extraction and capture the
temporal dependencies in power load data. By integrating forward and backward LSTM
modules, we enhance the model’s ability to predict power load timing, thereby improving
overall performance and data utilization efficiency. Our comparative experiments confirm
the effectiveness of the CNN-BILSTM model in predicting power load under uncertain
conditions. The results demonstrate its potential for practical applications in industrial
settings, providing reliable insights into grid operations and facilitating more accurate
electricity demand forecasting.

In future research plans, we will explore multiple avenues to improve the accuracy and
performance of the proposed CNN-BILSTM model. We will study the model’s performance
under varying degrees of uncertainty and explore ways in which adaptive tuning of its
parameters can provide valuable insights into its robustness and scalability. Additionally,
exploring hybrid architectures that integrate CNN-BILSTM with other advanced deep
learning techniques may lead to more accurate and efficient power load prediction models.
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