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Zofia Pizoń 1 , Shinji Kimijima 2 and Grzegorz Brus 2,*

1 Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuel, AGH University of
Krakow, 30059 Mickiewicza Ave., 30-059 Krakow, Poland

2 Department of Machinery and Control Systems, Faculty of Mechanical Engineering, Shibaura Institute of
Technology, Tokyo 135-8548, Japan; kimi@sic.shibaura-it.ac.jp

* Correspondence: brus@agh.edu.pl

Abstract: Methane steam reforming is the foremost method for hydrogen production, and it has been
studied through experiments and diverse computational models to enhance its energy efficiency. This
study focuses on employing an artificial neural network as a model of the methane steam reforming
process. The proposed data-driven model predicts the output mixture’s composition based on reactor
operating conditions, such as the temperature, steam-to-methane ratio, nitrogen-to-methane ratio,
methane flow, and nickel catalyst mass. The network, a feedforward type, underwent training with
a comprehensive dataset augmentation strategy that augments the primary experimental dataset
through interpolation and theoretical simulations of the process, ensuring a robust model training
phase. Additionally, it introduces weights to evaluate the relative significance of different data
categories (experimental, interpolated, and theoretical) within the dataset. The optimal artificial
neural network architecture was determined by evaluating various configurations, with the aim of
minimizing the mean squared error (0.00022) and maximizing the Pearson correlation coefficient
(0.97) and Spearman correlation coefficient (1.00).

Keywords: methane steam reforming; hydrogen; deep learning; reaction kinetics

1. Introduction

Hydrogen represents a promising alternative energy carrier. It can be produced from
renewable or non-renewable energy sources [1]. Despite the newest reports indicating
possible accumulations of hydrogen in geological formations [2,3], by 2023, 84% of the
hydrogen produced came from fossil sources, including 62% from natural gas, according
to data from the International Energy Agency (IEA) [4]. The steam reforming of methane
is recognized as the predominant technique for hydrogen production. It represents the
oldest and most extensively documented method of generation of H2. The process does not
require an oxygen supply. It is conducted at temperatures lower than those of alternative
methods. Furthermore, the hydrogen-to-carbon monoxide ratio in the post-reaction mixture
always exceeds unity. However, this process is associated with the emission of the highest
amounts of greenhouse gases into the atmosphere [5]. Steam reforming is an endothermic
process, which means that it requires heat and is typically facilitated by catalysts, often
nickel-based [6]. The process is carried out with an excess of steam to prevent the deposition
of soot on the catalyst and reactor walls [7]. The following chemical equations for methane
steam reforming (MSR) and the Water–Gas Shift Reaction (WGSR) capture the core of
the process:

CH4 + H2O = 3H2 + CO, (1)

CO + H2O = H2 + CO2. (2)
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The steam reforming of hydrocarbons was used to produce synthetic gas in the early
twentieth century [7]. The hydrogen produced was used in the synthesis of ammonia and
methanol and also in the petroleum industry for hydrotreating and hydro-cracking [8].
Currently, hydrogen produced by steam reforming is increasingly used as an energy carrier.
The chemical energy stored in hydrogen can be transformed into electricity through the
use of fuel cells. The use of hydrogen in this manner requires the miniaturization of
reforming reactors compared to their industrial counterparts [9]. Consequently, there
is a significant demand for process optimization, for which computer simulations are
necessary [10]. Scientists employ various methodologies to investigate the subject. For
instance, they develop kinetic models based on the Arrhenius equation and reaction rate
equation [11] to accurately predict the composition of post-reaction mixtures. L. van
Biert et al. [12] utilized the Langmuir–Hinshelwood mechanism to simulate changes in
temperature profiles and reactant concentrations during the direct steam reforming of
methane within solid oxide fuel cells. In addition, computational fluid dynamics (CFD) is
employed to simulate methane steam reforming. K. Chen et al. [13] developed a parallel
kinetic model of the reaction in which methane and steam react simultaneously to produce
carbon monoxide and carbon dioxide. Subsequently, they conducted a sensitivity analysis
of the steam-to-methane (SC) ratio, inlet gas flow rate, and temperature. D. Pashchenko
et al. [14] developed a new method based on the Fourier–Kirchoff thermal conductivity
equation. Utilizing the CFD model, the temperature distribution inside the catalyst particle
was determined. It was found to be irregular, and the maximum temperature value did
not occur at the center of the particles. A. Amini et al. [15] developed a CFD simulation of
an industrial reformer tube. Through sensitivity analysis, they investigated the influence
of reformer operating parameters on hydrogen production. Additionally, the optimal
conditions were determined with the reformer tube length set at 11 m, tube diameter at
0.172 m, SC at 1.6, feed flow rate at 0.34 kg s−1, and surface heat flux at 95 kW m−2.

The integration of artificial intelligence algorithms further enhances the efficiency of
this optimization process. N. Dat Vo et al. [16] generated and validated a mathematical
model of a methane steam reforming reactor. Then, the model was used to generate a
dataset on the impact of the operating parameters (the inlet flow rate, the steam-to-carbon
ratio of the reactor side, temperature, and the inlet flow rate of the furnace side) on the
reactor’s performance. The dataset was used to train a feedforward-backpropagation
artificial neural network (ANN) to map the relationship between the operating parameters
and the predicted outputs. The results generated with the ANN were characterized by
high accuracy (98.91%) and a short computational time of 2 s. Ayodele et al. [17] used
a multilayer perceptron–artificial neural network (MLP-ANN) and a nonlinear response
surface method to predict the hydrogen concentration in the post-reforming mixture based
on the values of temperature, methane, and steam partial pressures. The network was
trained using experimental measurements. The MLP-ANN model obtained better pre-
diction results than the nonlinear response surface method, with R2 equal to 0.988. In
the article by Nkulikiyinka et al. [18], ANN and random forest models were used as soft
sensor models to predict gas concentrations in reformer and regenerator reactors in the
process of sorption-enhanced steam methane reforming. The prediction was based on
the following operating parameters: pressure, temperature, steam-to-carbon ratio, and
sorbent-to-carbon ratio. Both models were characterized by an R2 value higher than
0.98, but the random forest model was more accurate with a lower mean absolute er-
ror value (0.002–0.014) than the ANN model (0.005–0.024). Z. Liu et al. [19] proposed
a universal microkinetic–machine learning method to screen bimetallic catalysts. First,
a microkinetic model was designed to search for descriptors and activity ranges. Then,
four machine learning models were built to predict the formation energies of key descrip-
tors. The obtained results were used as input data to optimize the microkinetic model.
Finally, bimetallic catalysts from the database were compared in terms of activity, stabil-
ity, and cost. The authors selected the best learning model, which was XGBoost, with
an R2 coefficient value of 0.973. Of the eight metallic catalysts, Rh, Ni, and Ir exhibited
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high activity, which is consistent with the experimental results. Furthermore, the de-
signed model identified 48 active, stable, and cost-effective methane-reforming catalysts.
Y. Wang et al. [20] conducted the performance optimization of a solid oxide fuel cell (SOFC)
in which direct internal steam reforming takes place. Initially, they created a cell model,
which they used to generate a dataset to train an artificial neural network. The network was
able to describe the relationships between the cell operating conditions and its performance
parameters. Subsequently, the ANN was integrated with a sensitivity analysis algorithm to
determine the importance of the cell operating conditions and optimize them. The applied
algorithm enables a significant reduction in the carbon deposition rate while maintaining
a high power density and a safe temperature gradient (below 10 K cm−1). An artificial
network was also used to optimize integrated sorption-enhanced steam methane reforming
(SESMR) [21]. After conducting a sensitivity analysis of the system, it was concluded
that the pressure swing adsorption variables distinctly affected product quality, while the
cyclic fluidized bed variables mainly contributed to other performance parameters. The
ANN-based optimization model was integrated with the economic model. Under optimal
conditions, the cost of 99.99% purity hydrogen production using the SESMR process is
equal to 1.7 USD ·kg−1. The cost is 15% lower compared to the process without carbon
dioxide capture. The ANN can also be used to optimize the steam-to-biogas ratio in a
biogas-fueled solid oxide fuel cell [22]. The authors of the article studied the correlation
between the steam-to-biogas ratio as a function of the operating temperature and biogas
composition. They found that for the temperature range of 873 K–1273 K and the biogas
methane-to-carbon dioxide ratio range of 0.82–3, the optimal steam-to-biogas ratio is equal
to 0.3–1.3. Hossain et al. [23] compared two artificial neural network models, one based
on a multilayer perceptron (MLP) and the other based on a Radial Basis Function (RBF).
They found that the MLP performed better than the RBF in predicting syngas composition
resulting from reforming over Ni/CaFe2O4 catalysts. The MLP-based model showed a
higher coefficient of determination (R2) values for the prediction of H2 yield, CO yield, CH4
conversion, and CO2 conversion. Statistical analysis further confirmed the significance of
the MLP-based model, demonstrating superior predictive capability. Deng and Guo [24]
used an artificial neural network to predict the products of methane reforming using CO2
and steam under varying conditions. The study demonstrated that the best-performing
network was capable of making reliable predictions even when operating conditions were
beyond the training ranges. This study shows how artificial intelligence can be used to
optimize the methane bi-reforming process for syngas production with a flexible H2/CO
ratio, contributing to the efficient utilization of methane-rich gases. Pajak et al. [25–27] used
a genetic algorithm to propose an optimal catalyst distribution in a small-scale methane
steam reformer. Their algorithm screened hundreds of solutions to select those that best fit
the maximum conversion rate and uniform temperature distribution criteria. The fitness
function consists of a two-dimensional computational fluid dynamics model of a small-
scale reformer, which could benefit from faster machine learning solutions such as deep
learning in place of classical numerical simulation.

Morlanes et al. [28] developed a methodology that uses artificial neural networks to
fit a kinetic model for the steam reforming of hexane and heptane with a NiMgAl catalyst.
The versatility and strength of this data-driven approach were demonstrated by validating
the models under a wide range of experimental conditions and with different feeds. This
methodology offers a promising alternative for the kinetic modeling of steam reforming
processes. In a recent review of artificial neural networks applied to model hydrogen
production by Bilgic et al. [29], the authors demonstrated improvements in the modeling
accuracy and overall results when hybrid models incorporating ANNs are used. The
review highlights the critical role of ANNs in simulating hydrogen production due to their
nonlinear programmability and suggests that experimenting with new ANN combinations
could further enhance prediction performance. The conclusion emphasizes that ANNs offer
a cost-effective strategy for optimizing and controlling hydrogen production processes. It
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also stresses the urgent need for further research and experimental data to improve ANN
models, invoking a sense of importance and urgency in contributing to this field.

As evidenced in the literature review, accurate neural network simulations of the
reforming process play an increasing role in predicting reactor performance and optimizing
operational parameters, thus enhancing efficiency and reducing costs. The reliability of
these simulations ensures the development of effective energy production strategies, partic-
ularly in hydrogen generation through steam reforming. This study contributes to these
efforts by proposing a neural network simulation of the reforming process that can correctly
reproduce the empirical data using a combination of numerical simulation and empirical
datasets. Unlike previous simulations, our approach utilizes a genetic algorithm to fine-
tune the empirical parameters within the reaction kinetic model, ensuring the best fit with
experimental observations. This article is organized as follows: The Introduction presented
above (Section 1) sets the context for the research, focusing on the methane steam reforming
process as a widespread method for hydrogen production; it presents machine learning
techniques, particularly deep learning, which can improve reaction kinetic simulations and
thereby contribute to new reactor designs. Research Methodology, presented in the next
section (Section 2), discusses the methodology and development of the proposed artificial
neural network model. This includes the design of the ANN to predict the composition
of the post-reaction mixture based on variable reactor operating parameters and the use
of data augmentation techniques involving experimental, interpolated, and theoretical
data. Section 3, Results, presents the outcomes of the ANN predictions, comparing them
with experimental data and test data. It discusses the dependencies of the molar fractions
of components at the reactor outlet on the steam-to-methane ratio and the effect of the
reaction temperature on the post-reaction mixture composition. The conclusion, Section 4,
summarizes the findings, emphasizing the ANN’s ability to predict the post-reaction mix-
ture composition based on reactor operating parameters. It also mentions the selection of
the optimal network structure based on statistical analysis and suggests areas for future
model improvement.

2. Research Methodology

In this study, the methane steam reforming process is modeled using an artificial
neural network. The effectiveness of this model depends on the architecture and efficiency
of the training method, which is a process of adjusting the weights and biases of the network
to best represent the provided training data. A model with insufficient layers and neurons
may struggle with the training process. Moreover, an oversimplified model might lead to
methodological errors and a prediction that does not align well with the problem it aims to
solve. However, a model that is too large can slow the optimization process and prolong
the training duration. In addition, a model that is too large can lead to overfitting, where it
becomes overly tailored to the training data, rendering it ineffective for tasks outside the
training. Therefore, it is crucial to select a network architecture that fits the specific issue of
methane steam reforming.

The presented work focuses on numerical experiments to choose a suitable network
architecture to simulate the methane steam reforming process, which requires a complex
model to process input data on the catalyst load and operational conditions without
overfitting the training data. The first stage of the work was to prepare a set of training
data. The set consisted of three types of training data: experimental [30], interpolated, and
theoretical [30] data.

2.1. Experimental Dataset

The present studies reused experimental data from our previous studies published
elsewhere [30]. The following is a brief description of the experiment used to obtain the
experimental dataset. The experimental framework is shown in Figure 1. A stainless steel
reformer was located within an electric furnace and capable of reaching temperatures up
to 1000 oC. The preheater and afterheater within this system have a maximum operating
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temperature of 400 oC, although for the purposes of our experiments, they were kept
consistently at 200 oC. The thermal conditions were monitored with four thermocouples
placed as depicted in Figure 1 (indicated as “T”). A thin layer of catalyst was as shown in
Figure 1 and covered with alumina balls, which were used for preheating. High-purity
methane served as fuel and was channeled to the reformer through a flow controller,
marked “F” in Figure 1, and an evaporator that also functioned as a preheater and a static
mixer. Water was introduced into the system through a pump and fed to the evaporator.
After reformation, the gas composition was examined using gas chromatography after
condensing the steam by cooling the gas mixture to 2 oC. The reformer reaction tube was
packed with a nickel catalyst supported on yttria-stabilized zirconia, a commercial catalyst
supplied by AGC SEIMI CHEMICAL CO [31]. This catalyst, in fine powder form, consisted
of 60% vol NiO and 60% vol YSZ, aligned with the typical nickel-to-YSZ ratio of 40–60%.
The catalyst particles were spherical, with a diameter of 0.85 µm and a specific surface area
of 5.2 m2 g−1 [31]. Before the introduction of methane, the catalyst was kept at 800 oC for
6 h in a mixture of nitrogen (150 mL min−1) and hydrogen (100 mL min−1) to facilitate
the reduction of NiO to Ni. The reaction tube was modified, including partial filling with
Al2O3, to counteract the cooling effect of the inflow. The gas mixture was preheated to the
reaction temperature by the electric furnace before entering the reaction zone. Ensuring
that the reaction permeated the entire catalyst volume, which is crucial for accurate kinetic
data, necessitated maintaining a low methane conversion rate, achieved by diluting the
methane with nitrogen. Nitrogen, although not a reactant, alters partial pressures, thus
reducing the reaction rate and methane conversion. All experimental data were recorded
under atmospheric conditions, and the geometric specifications of the reactor are detailed
in Table 1.

Table 1. Reactor properties [30] (with permission from Elsevier).

Type Bed Height Radius Length

Stainless steel 1.0 mm 25.4 mm 450 mm

Figure 1. A schematic view of the experimental setup.

The experimental data that describe the relationship between the post-reaction mixture
composition and the temperature were interpolated. Spline interpolation with not-a-knot
end conditions was utilized. This method involves interpolating the value at a query point
based on cubic interpolation using the values at neighboring grid points.

2.2. Mathematical Model

The model was based on the following reaction rate equation [30]:

rst = w′
cat · A · exp

{(
− E

RT

)}
· pa

CH4
· pb

H2O, (3)

where rst—reaction rate in mol s−1 m−3; w′
cat—catalyst density in g m−3;

A = 2.582 · 10−4 mol g−1 Pa−(a+b) s−1—pre-exponential constant; E = 115, 255 J mol−1—
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activation energy; R = 8.314472 J mol−1 K−1—universal gas constant; T—temperature of
reaction in K; pCH4 —partial pressure of methane in Pa; pH2O—partial pressure of steam in
Pa; and a = 1.0, b = 0.0—dimensionless coefficients corresponding to the reaction order.
The values of the rate equation coefficients (A, E, a, b) were determined using a genetic
algorithm by fitting them to experimental data. The system of equations to be solved was
based on the methane steam reforming reaction conversion rate and equilibrium equation
for the shift reaction. The obtained set of two equations is presented below:{

xst = 1 −
(

ṅinlet
CH4

− rst

)
/ṅinlet

CH4

y(3xst + xsh)− Ksh(xst − xsh)(SC − xst − xsh) = 0
(4)

where

Ksh = exp

(
−

∆G0
sh

RT

)
(5)

where Gsh is the change in standard Gibbs free energy of the shift reaction. The equilibrium
constant given by Equation (5) is introduced into Equation (4) to calculate the conversion
rate of the shift reaction. The mass production or consumption rate of each chemical species
by the fuel reforming reaction (Equation (1)) and shift reaction (Equation (2)) was calculated
from reaction stoichiometry, as indicated in Table 2.

Table 2. Changes in chemical components inside the fuel reformer [30] (with permission from Elsevier).

Gas Inlet 1 Steam Ref. Shift Outlet

CH4 1 xst 0 1 − xst
H2O SC −xst −xsh SC − xst − xsh
H2 0 −3xst xsh 3xst + xsh
CO 0 xst −xsh xst − xsh
CO2 CC 0 xsh CC + xsh

1 For 1 mol of methane.

The mathematical model was used because of the good agreement between the simula-
tion and experimental results (mean Pearson correlation equal to 0.997). Additionally, it depicts
the course of the process under kinetic conditions consistent with experimental conditions.

2.3. Accounting for Dataset Significance

The dataset contained information about the influence of five variable operating
parameters (temperature, steam-to-methane ratio (SC), nitrogen-to-methane ratio (NC),
nickel catalyst mass, and inlet methane flow rate) on the concentration of post-reaction
mixture components: hydrogen, methane, carbon monoxide, and carbon dioxide. Data
were collected and weighted for significance, prioritizing experimental data to enhance
their importance. Originally, the experimental dataset contained 72 records; this number
expanded to 729 after applying duplication to emphasize their significance. Initially, the
interpolated dataset held 238 records, which later increased to 305 through augmentation.
The theoretical data generated encompassed 9441 records. Due to the limited amount of
experimental data, a large amount of theoretical data had to be utilized. The weights of
the data were selected by trial and error. The data augmentation method is presented
in Figure 2. Subsequently, the data were scaled to the range [0, 1] to facilitate the ANN
training process.
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Figure 2. Used data augmentation method.

2.4. Selecting Network Architecture

Various network architectures were examined and compared using statistical analysis.
The log-sigmoid transfer function for neuron activation was employed in the first hidden
layers, and the softmax transfer function was employed in the last hidden layer. The chosen
activation functions are designed to keep values within the interval [0, 1]. Additionally,
by using the softmax function, the output values are transformed into a probability distri-
bution, improving the model’s physicality. The Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) Quasi-Newton Backpropagation algorithm was selected for the training method.
The MATLAB Software R2023b with Deep Learning toolbox was used.

The mean squared error (MSE) values were compared to select the best network
architecture. Mean squared error is a performance function calculated using the follow-
ing formula:

MSE =
∑n

i=1(xi − yi)
2

n
, (6)

where xi—real value; yi—predicted value; and n—number of values. The details of the
conducted numerical experiment are presented in Table A1 in the Appendix A. The lowest
error value achieved was 0.00020 for the network labeled as number twenty-three. This
network consisted of an input layer, an output layer, and seven hidden layers. The consecu-
tive hidden layers consisted of twelve, fourteen, sixteen, fourteen, twelve, ten, and eight
neurons. The training process lasted for 4000 epochs. For five networks whose simulations
achieved the lowest values of mean squared error, i.e., labeled as numbers eleven, seven-
teen, twenty, twenty-three, and twenty-four, Pearson correlation coefficients and Spearman
correlation coefficients between the simulation results and the values of the test data were
calculated. The Pearson correlation coefficient is defined by the following formula:

rP =
∑n

i=1((xi − x̄)(yi − ȳ))
(n − 1) Sx Sy

, (7)

xi—test value; x̄—mean test value; yi—predicted value; ȳ—mean predicted value; n—number
of values; and Sx and Sy—standard deviations calculated from test values and predicted
values. The formula for the Spearman correlation coefficient is as follows:



Energies 2024, 17, 2413 8 of 15

rS =
1 − 6 ∑n

i=1(yi − ȳ)2

n (n2 − 1)
, (8)

where yi—predicted value; ȳ—mean predicted value; and n—number of values. Calcula-
tions were performed for each test component of the post-reaction mixture. Subsequently,
the mean values of both coefficients were calculated for each network. The results of the
calculations are presented in Table 3. For all five selected network architecture variants, the
mean Pearson correlation coefficients and Spearman correlation coefficients achieved high
values. The highest mean values of the Spearman correlation coefficient were obtained for
the networks labeled as numbers eleven, seventeen, twenty-three, and twenty-four. The
highest mean Pearson correlation coefficient, equal to 0.965, was obtained for the network
labeled as number eleven. This network consisted of an input layer, an output layer, and
three hidden layers. The hidden layers comprised six, eight, and six neurons, and the
training process lasted for 6000 epochs. The selected model was notable for its versatility
and broader applicability. This allows the model to enhance its robustness during training
and effectively address training data loss errors.

Table 3. Values of mean Pearson correlation coefficients and mean Spearman correlation coefficients
for subsequent variants of network architectures.

No.
Number

of Hidden
Layers

Vector of the Number
of Neurons

in Hidden Layers

Number
of Epochs

Mean Pearson
Correlation
Coefficient

Mean Spearman
Correlation
Coefficient

11 3 [6 8 6] 6000 0.965 1.000
17 5 [6 8 10 8 6] 40,000 0.953 1.000
20 5 [8 10 12 10 8] 25,000 0.964 0.991
23 7 [12 14 16 14 12 10 8] 4000 0.953 1.000
24 7 [12 14 16 14 12 10 8] 36,000 0.955 1.000

Figure 3 shows the change in the mean squared error during the training process of
the chosen ANN architecture (labeled as number eleven). As the model undergoes training
epochs, there is a noticeable downward trend in the MSE values, indicating an improvement
in the model’s ability to fit the data. The absence of overfitting can be observed because
the error values do not increase. The lowest value of mean squared error was marked in
the green circle. This suggests that the model is effectively learning from the training data
and generalizing well to unseen validation and test data, which is a positive indication of
its performance.

Figure 3. The dependence of the mean squared error on the number of epochs in the training process.
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Accurate neural network simulations of the reforming process play a crucial role
in forecasting reactor performance and fine-tuning operational parameters. Therefore,
a falsification endeavor, which involves comparing experimental data with numerical
predictions, will be elaborated on in the following section.

3. Results

The concentrations of individual components of the post-reaction mixture were cal-
culated to investigate the response of the reforming reaction progress with the change in
various reactor operating parameters. The simulations were conducted using the network
labeled as number eleven, and the test data were compared to evaluate the accuracy of the
prediction of the ANN. From various conducted simulations, four cases were selected to
present in this paper.

To investigate the response of the post-reaction mixture to the methane flow rate, the
molar fraction of each gas component was calculated at the outlet of the reactor. Figure 4
shows the results of the ANN simulation, presented as continuous lines, versus the test
kinetic simulation data, shown as dotted lines. As can be seen in the figure, the artificial
neural network could closely reproduce the validation results. Here, we found that the
methane flow rate increases, the concentration of unreacted methane increases, and the
concentrations of reforming products decrease, which is a natural consequence of the
limited reaction rate. This suggests that the network can be used to predict the post-reaction
mixture in the verified flow rate ranges.

0 0.5 1 1.5 2
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Figure 4. Comparison of ANN simulation results with test data (kinetic simulation data) for variable
methane flow rate values and T = 625 ◦C; NC = 3.00; SC = 3.00; mNi = 1.48 g.

Figure 5 shows the concentrations of components in the post-reaction mixture as a
function of the nickel catalyst mass. Kinetic simulation results are presented as dotted
lines, whereas continuous lines represent ANN predictions. As the catalyst mass increases,
hydrogen, carbon monoxide, and carbon dioxide concentrations increase, and the methane
concentration decreases. Again, such a response of the system is consistent with the existing
knowledge of the process chemistry, as all measurements were taken in the kinetic regime
of the reaction [30]. It is important to note that all training data were obtained for the
reaction in a kinetic regime, far from equilibrium; if the amount of catalyst further increases
and the reaction approaches equilibrium, the prediction of the network might differ from
the experiment since it was trained only in the kinetic regime.
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Figure 5. Comparison of ANN simulation results with test data (kinetic simulation data) for variable
catalyst mass values and T = 625 ◦C; NC = 3.00; SC = 3.00; fCH4 = 3.38 · 10−5 mol s−1.

Figure 6 shows the dependencies of the molar fractions of components at the reactor
outlet on the steam-to-methane ratio. Dotted lines illustrate the test data, while the ANN
predictions are depicted by continuous lines. As the parameter value increases, the proportion
of reforming products decreases, while the proportion of unreacted methane in the post-
reaction mixture increases. As evidenced by the results, the network could correctly reproduce
the post-reaction mixture composition for a wide range of steam-to-methane ratios.
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Figure 6. Comparison of ANN simulation results with test data (kinetic simulation data) for variable
steam-to-methane ratio values and T = 700 ◦C; NC = 1.00; fCH4 = 3.38 · 10−5mol s−1; mNi = 1.48 g.

Figure 7 shows the concentrations of components in the post-reaction mixture as a func-
tion of reaction temperature. Experimental results are presented as points, whereas continuous
lines represent ANN predictions. It can be observed that with increasing temperature, the
methane content decreases, while the hydrogen, carbon monoxide, and carbon dioxide con-
tents increase, indicating an increased methane conversion rate. The discrepancy between
the artificial neural network prediction and the experiment is noticeably higher at a higher
temperature. This might be due to using a theoretical dataset obtained with a mathematical
model that has several important simplifications: (1) It assumes that the steam reforming
process consists of two reactions: methane steam reforming and the shift reaction. The use of
a simple model neglects other reactions in the process. (2) It assumes that a kinetic equation
describes the steam reforming reaction, but the shift reaction occurs close to its equilibrium.
This is a widespread assumption, as evidenced by various articles [32,33]; however, it is not
necessarily precise under specific conditions [34]. This indicates that the neural network
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model could be further improved by including results from both kinetic and equilibrium
regimes and theoretical data that can handle both in the dataset.
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Figure 7. Comparison of ANN simulation results with test data (experimental data) for variable
temperature values and SC = 3.00; NC = 3.00; fCH4 = 3.38 · 10−5 mol s−1; mNi = 1.48 g.

When analyzing the trends from Figures 4–7, it is crucial to consider that the data
utilized for training were obtained within a kinetic regime, significantly distant from the
reaction equilibrium. Most importantly, a good agreement between simulation results
and test data is found for those crucial relations. The simulation resulted in a function
that is characterized by continuous derivatives, which builds trust in the prediction of the
proposed neural network.

Figure 8 presents the comparison of the hydrogen fractions in the post-reaction mixture
obtained by the ANN simulation, the experiment, and the kinetic simulation. Experimental
data are presented as blue points, and kinetic simulation data as green ones. There is a
good agreement between the artificial neural network outcomes and both the experimental
and theoretical data. This indicates that the training process proceeded correctly, and
the network was able to accurately predict the composition of the post-reaction mixture.
It can be observed that the predictions of the network exhibit greater consistency with
the results of the kinetic simulation than with the experimental outcomes. The network
has become similar to the kinetic model due to the excessive amount of theoretical data
utilized, resulting from the limited availability of experimental data. The most significant
discrepancy between the experimental data and the ANN prediction results is observed
in the range of higher hydrogen fractions. This could be due to the reaction reaching an
equilibrium state, which was not accounted for in the mathematical model.
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Figure 8. Comparison of ANN simulation results with experiment and kinetic simulation results.
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Table 4 presents the comparison of the mean squared error values obtained by four
different models of reforming reactions. A two-layer ANN with a sigmoid function and
a nonlinear response surface model [17] were used to predict hydrogen yield based on
methane partial pressure, steam partial pressure, and the temperature of the reaction. The
two-layer ANN achieved a lower error (equal to 0.12) than the nonlinear response surface
model (0.23). The mathematical model used in this study yielded an MSE value equal to
0.0032. The designed ANN was characterized by the lowest error value, which was 0.00022.

Table 4. Comparison of mean squared error values for selected methane steam reforming models.

Model MSE

3-Layer ANN with sigmoid and softmax
function 0.00022

Mathematical kinetic model 0.0032
2-Layer ANN with sigmoid function [17] 0.12

Nonlinear response surface model [17] 0.23

Based on the presented results, some limitations of the designed model can be ob-
served. The network excessively conformed to the kinetic model. This is caused by the
excessive weight assigned to the theoretical data, which only included the kinetics of the re-
forming reactions. Two solutions could be implemented to enhance the ANN performance.
Firstly, gathering more experimental data would allow for a more accurate consideration of
their significance through augmentation. Additionally, incorporating an equilibrium reac-
tion model would improve the simulation prediction in conditions closer to the equilibrium
state (for example, at higher temperatures).

4. Conclusions

This paper presents an artificial neural network designed as a model for the methane
steam reforming process. The network predicted the composition of the post-reaction
mixture based on variable values of the reactor operating parameters. Augmentation
techniques were used by including experimental, interpolated, and theoretical data in the
training process, with categories of importance assigned to each type of data. The optimal
network structure was selected on the basis of statistical analysis, including a mean squared
error equal to 0.00022, a Pearson correlation coefficient of 0.97, and a Spearman correlation
coefficient of 1.00. ANN predictions were compared with test data to further verify its
performance. The outcomes of the simulation demonstrated a strong correlation with the
test data across all the incorporated operating parameters. The ANN simulation yielded a
function characterized by continuous derivatives. Based on the above, the ANN turned out
to be an adequate model of the process under the investigated conditions. An observable
constraint to the constructed model is caused by the excessive weight assigned to the
theoretical data. The network exhibited an excessive resemblance to the kinetic model. It
will be necessary to gather more experimental data and also include equilibrium and more
generalized reaction models for theoretical data generation to further enhance the model
performance.
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Appendix A

Appendix A.1. Comparison of Mean Squared Error Values for Different Network Architectures

Table A1, presented below, shows a comparison of the mean squared error values
for the tested network architectures. The mean squared error describes the performance
value of the network training process. Variable values of three parameters were tested: the
number of hidden layers, the number of neurons in the hidden layers, and the number of
epochs. The lowest achieved error value was 0.000199 for the network labeled as number
twenty-three. This network consisted seven hidden layers with a configuration of 5-12-14-
16-14-12-10-4, and the training process lasted for 4000 epochs.

Table A1. Mean squared error values for subsequent network architecture variants.

No.
Number

of Hidden
Layers

Vector of the Number
of Neurons

in Hidden Layers

Number
of Epochs

Mean Squared
Error

1 2 [2 2] 300 0.000404
2 2 [2 2] 2000 0.000351
4 2 [4 4] 500 0.000412
3 2 [4 4] 1000 0.00029
5 3 [2 4 2] 2000 0.000389
6 3 [2 4 2] 5000 0.000358
7 3 [2 4 2] 10,000 0.000389
8 3 [4 6 4] 5000 0.000386
9 3 [4 6 4] 20,000 0.000386
10 3 [6 8 6] 5000 0.000248
11 3 [6 8 6] 6000 0.000217
12 3 [6 8 6] 10,000 0.000338
13 4 [2 4 6 4] 5000 0.000413
14 4 [2 4 6 4] 7000 0.000398
15 4 [6 8 6 4] 10,000 0.000458
16 4 [6 8 6 4] 25,000 0.000282
17 5 [6 8 10 8 6] 40,000 0.000237
18 5 [6 8 10 8 6] 20,000 0.000319
19 5 [8 10 12 10 8] 5000 0.000346
20 5 [8 10 12 10 8] 25,000 0.000218
21 6 [10 12 14 12 10 8] 10,000 0.000295
22 6 [10 12 14 12 10 8] 20,000 0.000361
23 7 [12 14 16 14 12 10 8] 4000 0.000199
24 7 [12 14 16 14 12 10 8] 36,000 0.000225
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