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Abstract: Many countries have a variety of offshore and onshore wind turbines that face extreme
aging challenges. Issues with harmful vibrations that must be minimized are addressed in this paper.
A new method of wind turbine tower vibration control using piezoelectricity and shunt circuits
is proposed in this paper. The passive vibration control method is shown to improve the tower’s
structural performance under various environmental loads, like wind and seismic excitations. To
examine the effectiveness of the suggested shunted piezoelectric system, a simple surrogate finite
element model of a wind turbine tower is considered, and various investigations at the second
eigenfrequency are carried out. An alternative way of modeling the studied structure is considered
and the results demonstrate better performance. The advantages of setting up structural damping
systems for decreasing tower vibrational loads and boosting their structural stability and resilience
against extreme events are highlighted throughout this work.

Keywords: piezoelectrics; shunt circuits; metamaterials; smart structures; wind turbine tower;
vibration control; feasibility analysis

1. Introduction

Wind turbines are exposed to extreme environments and loads which are responsible
for the reduction of their structural health, lifespan, safety, and wind energy production.
Numerous control techniques were explored in commercial wind turbines to reduce the
influence of external environmental variables, namely vibrations. Vibration mitigation
becomes a critical design issue for larger wind turbines with flexible pylons [1]. Vibrations,
among others, influence fatigue, which is a critical design issue in wind energy structures.
An example of methods for analyzing such vibrations, based on frequency response anal-
ysis, is studied in [2,3]. Specifically, the analysis showed that porous structure fractions
can improve the adaptive characteristics of passive control systems utilized for vibration-
reducing applications in the low and intermediate frequency ranges for unmanned aerial
vehicles. Furthermore, active or classical tuned mass or liquid dampers have been pro-
posed for vibration suppression, which are quite inflexible and expensive solutions as
it is described in detail in [4]. This review includes a wide variety of vibration control
strategies related to passive, active, and semi-active control approaches, with an overview
of the current developments in innovative features and studies of wind turbine tower
performance under different environmental loads, such as wind, waves, currents, and
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seismic excitations. The research work of Machado et al. [5] presents an updated evaluation
of wind turbine vibration challenges and control solutions, including advances from 2015
to the present. From this paper, active and semi-active strategies are primarily used to
reduce vibrations in the drivetrain, blade, and nacelle, while passive approaches are ap-
plied to the tower, support structure, blades, and turbine. In [6], a down-scaled, simplified
aircraft model is used to test and estimate the broadband vibration reduction capabilities
of a semi-active electromechanical Tuned Mass Damper (SATMD). Zhou et al. [7] used
an established blade vibration model to analyze and suppress large-scale wind turbine
blade vibration. They also studied the impact of the tower shadow effect and wind shear
on blade flutter. Various studies have been implemented for applying different vibration
control techniques of offshore wind turbines [8–14].

Particularly, a shunted piezoelectric system is examined and tested for damping in the
eigenfrequency region. The piezoelectric effect converts mechanical energy into electric
energy, which is then damped into an appropriate electric network, provided that piezo-
electric patches are added to the vibrating structure in order to pump energy, which is
subsequently driven into an appropriate electric network. The electric shunted circuit’s pa-
rameters can be certain by way of optimization [15]. For relatively flexible, small structures
and devices, shunted vibration absorbers have been tested [16–19]. They have also been
used in various industrial applications, including [20,21], for the vibration suppression of
wind turbine blades. Shunted piezoelectrics have been proposed for damping and control
of relatively energy-demanding applications like [22–26]. Consequently, the concept of
tuned mass dampers in a recent multiphysics context is followed to obtain passive vibration
suppression [27–31].

The limitations of previous works to small-scale systems are justified by technological
restrictions in producing large piezoelectric patches and the high cost. Both factors have
been changed recently and make the extension to larger systems feasible. Moreover, the
concept of using repeated, smaller elements, both piezoelectric patches and electronic
circuits, allows for the development of metamaterial-like structures which lead to more
powerful applications. Examples of recent developments in this direction have been
reported in [32–38].

Concerning the application studied here, there are two main issues in utilizing the
shunted vibration attenuation approach to the pylon’s vibrations. To begin with, the
structure is relatively large and vibrates at considerably low frequencies. Besides that, huge
piezoelectric transducers and electric circuit values would be required, probably beyond
the industrial abilities of current technology. This work aims to overcome these drawbacks
and propose feasible engineering methods that can improve the system’s performance.

This paper presents a novel concept for vibration control of wind turbine towers [4,39]
based on the piezoelectric effect and proves that the application of passive shunted piezo-
electric systems is feasible for larger structures. To the authors’ best knowledge, no similar
articles can be found in the literature. The novelty in the present manuscript is shown by
the modification of the system under study as a simplified computational model of a wind
turbine tower and the conceptualization of a large piezo patch as a metamaterial periodic
pattern, which can facilitate practical implementation and give further applications in
industry. By using a metamaterial periodic pattern, the large piezoelectric size and the
high values of electrical component parameters can be circumvented. Both can be an effec-
tive solution, as well as an alternative, for facing the described challenges. Technological
factors related to the feasibility of this application are presented in this research using
a relatively simple cantilever beam model that resembles the vibrational properties of a
typical pylon structure.

The present work is divided into six parts: At first, Section 1 was presented. After
that, the theoretical description of systems with multi- and single degrees of freedom
is presented. The methodology, the applications of the shunted system, and the model
are shown in the next sections. Numerical results and the description of a small-scale
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experiment are given in detail. Feasibility and economic studies are also performed. The
discussion of the results follows, and the findings of this research are highlighted at the end.

The present paper is an extension of a concept that has been presented by the authors
in the conference paper [40].

2. Methodology

In this section, the methodology for improving vibration suppression in composite
beam structures via piezoelectric shunt damping is outlined. First, a finite element (FE)
model is presented for describing the electromechanical behavior of a smart beam. Sub-
sequently, a state-space model is formulated, which takes the addition of the shunted
piezoelectric configurations into account. Lastly, the methodology for design optimization
of shunt circuit parameters for control of a vibration mode of the smart beam is presented.
The 1-D FE model is based on the work [15] and the one-degree-of-freedom mass-spring
system has been obtained from [41,42].

2.1. Model of a Smart Beam Structure

The system under investigation, which is illustrated in Figure 1, comprises a cantilever
host elastic beam with two piezoelectric elements partially covering the top and bottom
surfaces of the beam in a bimorph arrangement. The assumption is made that all layers
are perfectly bonded, with a negligible bond thickness between them. The host beam
possesses dimensions of length L, thickness h, and width b. The midplane of the beam is
represented by the xy-plane, while the longitudinal and thickness axes are oriented in the
x- and z-directions, respectively. The piezoelectric elements have opposite polarization
direction along the z-axis. Furthermore, it is postulated that the piezoelectric elements
are coated with fully conductive electrodes of negligible thickness. The electrodes are
connected to a passive shunt circuit as depicted in Figure 1.
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Coupled Electromechanical System

The derivation of the theoretical model of the piezoelectric beam structure follows
the methodology outlined in [15] and it is based on the generalized Hamilton’s principle,
given by

t2∫
t1

[δ(T − Um − UE) + δW]dt = 0 (1)

where T denotes the kinetic energy, Um denotes the mechanical potential energy, UE denotes
the electrical potential energy and W denotes the virtual work done by the external forces.
The definition of each term is given as

T =
1
2

∫
Ωb

ρ(b)
.
u

T .
u dΩ +

1
2

∫
Ωp1

ρ(p1)
.
uT .

u dΩ +
1
2

∫
Ωp2

ρ(p2)
.
uT .

u dΩ (2)

Um =
1
2

∫
Ωb

εTσ(b)dΩ +
1
2

∫
Ωp1

εTσ(p1)dΩ +
1
2

∫
Ωp2

εTσ(p2)dΩ (3)
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UE =
1
2

∫
Ωp1

E(1)D(p1)dΩ +
1
2

∫
Ωp2

E(2)D(p2)dΩ (4)

δWe =
∫
Γ

δuTfLds + ∑
i

δviqi (5)

In the aforementioned formulae, u represents the vector of mechanical displacements, ε
and σ are the strain and stress tensor, respectively. Additionally, E, D, fL, and q denote
the electric field, the electric displacement, the force on the beam, and the electric charge,
respectively. The symbol ρ represents the mass density, v denotes the electric potential, and
Ω signifies the volume under consideration. The superscripts (b) and (p) specifically refer
to the beam structure and the piezoelectric layers, respectively. Following the assumptions
of the Timoshenko beam theory, the components of displacement can be expressed as.

u1(x, y, z, t) = u0(x, t) + zψx(x, t), u2(x, y, z, t) = 0, u3(x, y, z, t) = w0(x, t) (6)

where u1, u2, and u3 are the total displacements along the coordinate directions, t denotes
time, u0, w0 represent the axial and transverse displacements of the middle line of the
beam, respectively, and ψx is the rotation of the beam cross-section about the positive y-axis.
Assuming small deformations, the strain ε =

{
εx, γxy

}T is related to the deformation
through the following relations:

εx =
∂u0

∂x
+ z

∂ψx

∂x
, γxy =

∂w0

∂x
+ ψx (7)

The linear constitutive equations of the piezoelectric layers can be expressed in terms
of the 3-1 mode of piezoelectric constant operation and the 3-3 effect of piezoelectric
permittivity as

σ(p) =

{
σx
τxz

}(p)

=

∼
Q

(p)

11 0

0 ksc
∼
Q

(p)

55

{ εx
γxz

}
−

{
∼
e
(p)
31
0

}
E(p)

z (8)

D(p)
z =

∼
e
(p)
31 εx +

∼
ξ
(p)

33 E(p)
z (9)

where σx and τxz represent the normal and shear stress, respectively, while εx and γxz

correspond to the normal and shear strain, respectively. Moreover, D(p)
z signifies the trans-

verse electric displacement and
∼
Q

(p)

11 and
∼
Q

(p)

55 stand for the reduced stiffness coefficients.

Additionally,
∼
e
(p)
31 denotes the piezoelectric constant and

∼
ξ
(p)

33 represents the electric permit-
tivity constant. Finally, ksc is the shear correction coefficient which is taken equal to 5

6 . The
constitutive equations governing the behavior of elastic beams can be derived by setting

their piezoelectric constants
∼
e
(p)
31 and

∼
ξ
(p)

33 to zero.
For a thin piezoelectric layer that is polarized in the thickness direction, the dominant

component of the electric field can be expressed as

Ez = − v
hp

≡ Bvv (10)

where v is the electric potential difference between the electrodes covering the piezoelectric
layer’s surface and hp denotes the thickness of the piezoelectric layer.
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In this study, the beam has been discretized using two-node super-convergent elements
with one electrical degree of freedom per piezoelectric layer and three mechanical degrees
of freedom (DoF) per node. Discretizing the generalized displacement vector is given,

u = {u0, w0, ψx}T = N(x)de(t) =
{

Nu, Nw, Nψ

}Tde (11)

where Nu, Nw, Nψ are the super convergence shape functions [15].
Substituting Equations (7)–(12) into the energy expressions for Hamilton’s Principle

and using standard finite element procedure, the following coupled electromechanical
equations can be obtained:

Mu
..
d + Cd

.
d + Kud + Θ1v1 + Θ2v2 = Fm (12)

−ΘT
1 d + Cpv1 = Q1 (13)

−ΘT
2 d + Cpv2 = Q2 (14)

In the Equations (12)–(14), the symbol d represents the vector of the mechanical degrees
of freedom (DoF), Mu stands for the mass matrix of the system, Ku stands for the stiff-
ness matrix, Fm corresponds to the mechanical force terms, Θ = [Θ1, Θ2] denotes the
electromechanical coupling matrix, and Cp the piezoelectric capacitance, identical for both
piezoelectric sheets. The elements of these matrices are not shown here for conciseness.
Readers who are interested in more details about the FE formulations can consult to
Ref. [15].

In the case where both piezoelectric layers are short-circuited, the difference of the
electric potentials between their electrodes vanish (v1 = v2 = 0). Therefore, Equation (13)
becomes

Mu
..
d + Kud = Fm (15)

The components of the two piezoelectric patches are represented by the matrices Mu and Ku.
Since we are interested in vibration control, a powerful representation of the system in

state space form will be developed, which contains both frequency and actuation responses
of different shunt configurations and electrical components. The short-circuit Equation (15)
is therefore converted into a state space form as shown below.

.
x = Ax + Bwy = Cx + Dw (16)

where

A =

[
0 I

−M−1
u Ku 0

]
, B =

[
0

M−1
u

]
(17)

x =

{
d
.
d

}
, w = {Fm} (18)

The matrices C and D depend on the choice of the observed inputs, which are given as

C = [I1×N01×N ], D = 0 (19)

where all the elements of the matrix I1×N are zero except for the N − 1 element.
In the case where an R − L circuit is connected to the piezoelectric patches (Figure 1),

the global output charge q is equal to each output charge generated by each piezoelectric
layer, Q1 = Q2 = q, whereas the global output voltage is the sum of the individual output
voltages, that is, v = v1 + v2. Summing up Equations (13) and (14), we obtain

Cpv − 2q −
(

ΘT
1 + ΘT

2

)
d = 0 (20)
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Applying Kirchhoff’s voltage law, the second-order equation for the electrical dynam-
ics reads

v = −R
.
q − L

..
q (21)

Solving Equations (13) and (14) for v1 and v2, respectively, substituting into (12) and using
(20) and (21), we get the final electromechanical system equations:

..
d = −M−1

u Cd

.
d − M−1

u Kod − M−1
u C−1

p (Θ 1 + Θ2

)
q + M−1

u Fm (22)

..
q = − 1

LCp

(
ΘT

1 + ΘT
2

)
d − 2

LCp
q − R

L
.
q (23)

where
Ko = Ku + C−1

p

(
Θ1ΘT

1 + Θ2ΘT
2

)
(24)

Using the state vector x =
{

d,
.
d, q,

.
q
}T

the following state space form is obtained

.
xsh = Ashxsh + Bshwsh (25)

where the state matrices and the input vector are given by

Ash =


0N×N IN×N 0N×1 0N×1

−M−1
u Ko −M−1

u Cd −M−1
u C−1

p
(
ΘT

1 + ΘT
2
)

0N×1
01×N 01×N 0 1

− 1
LCp

(
ΘT

1 + ΘT
2
)

01×N − 2
LCp

− R
L

 (26)

and

Bsh =


0N×N
M−1

u
01×N
01×N

, wsh = {Fm} (27)

The output can be defined by

ysh = Cshxsh+Dshwsh (28)

The matrices Csh and Dsh depend on the choice of the outputs. For the present analysis, the
output of interest is the tip displacement and the matrices, Csh and Dsh are written as

Csh =
[
I1×N 01×N 0 0

]
, Dsh = 0 (29)

where all the elements of the matrix I1×N are zero except for the N − 1 element.
In order to derive the frequency response of the system, we must transform the state

space model (26), (29) to transfer function representation. Taking the Laplace Transform
of (26) and (29) (with zero initial conditions) and performing some trivial mathematical
manipulations, the transfer function Hsh(s) between the output and the input of the system
is given by

Hsh(s) = Csh
(

sI − Ash
)−1

Bsh + Dsh (30)

The frequency response Hsh(jω) of a system is widely recognized as a function that estab-
lishes the relationship between the output response and a sinusoidal input of frequency
ω. Specifically, the system’s frequency response at a given frequency ω can be obtained
by substituting s = jω into its transfer function. It should be noted that the elements
Hij(ω) within the matrix Hsh(jω) represent the frequency response of the system for the
i-th degree of freedom when subjected to a force at the j-th degree of freedom, at specific
forcing frequency ω.
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2.2. Piezoelectric Shunted Systems

A shunted piezoelectric circuit contains a piezoelectric transducer that is connected
to an electric impedance, equivalent to a resistance, an inductance, a capacitance, or a
suitable combination of them [43] and it is typical to connect on intelligent structures
like beams. Resonant shunts can provide satisfactory solutions for single-mode control
problems since they are adjusted to a reference natural frequency. They are effective, but
additionally, they have certain drawbacks. For instance, very high inductance values might
be required, particularly at low frequencies. Furthermore, multiple modes are difficult to
control simultaneously via resonant shunts [41].

Several additional vibration control strategies, similar to tuned mass dampers, have
features with some shunt circuit types in terms of their dynamic behavior [28]. Besides
what is found with a tuned mass damper, electric resonance improves energy transfer
while tuned to the mechanical mode under control. As a way to demonstrate the resonant
piezoelectric shunt, a spring-mass system is used as a structural model [42]. The description
of single degree of freedom mass-spring system has been derived from [41,42].

Simple mechanical systems and similar electric-powered circuits are used to model a
control system according to resonant shunt piezoelectric circuits. To establish the coupled
model, consider a shunted piezoelectric element connected in parallel with a spring of
stiffness KE (a single DOF mass-spring system). This element represents the stiffness of
the entire structure when the piezoelectric transducer is short-circuited, as is shown in
Figure 2a. The electromechanical coupled system is derived from

N = KEU − eVQ = eU + CpV (31)

where V is the voltage between the material’s electrodes, N is the longitudinal force
within the piezoelectric material, and Q is the displacement of the electric charge. The
global piezoelectric coefficient, e, is given in N/V or C/m, while Cp is the capacitance of
piezoelectric element, which is measured when the mechanical system is not displaced
(U = 0).
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Assuming m is the total mass of the system and F is the external force applied to it, as
in Figure 2a, Newton’s second law equation states that m

..
U = F − N, which can be obtained

by inserting F from Equation (31).

m
..
U = F − KEU + eVQ = eU + CpV (32)

While the electrodes of the piezoelectric elements are coupled, the eigenfrequency of
the short circuit is determined as, ωs =

√
KE/m. The last step is to substitute Equation (21)

into Equation (32) which leads to:

m
..
U = F − KEU + eV−L

..
Q = R

.
Q +

1
Cp

(Q − eU) (33)
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Equation (33) takes into consideration the electric parameters R and L; on the other hand, it
is most effectively applied to systems with one mechanical DOF.

Figure 2b depicts an analogy between the electric shunt piezoelectric circuit and
the mechanical system. The introduced equivalent mass L and damper R constitute the
inductance and resistance of the shunt circuit. The capacitance of the piezoelectric element
is equal to an additional equivalent spring with a constant equal to 1

Cp
.

2.3. Optimization of the Shunt System

The selection of the appropriate resistance and inductance allows for the optimum
attenuation performance of the dynamic system. Various methods of determining optimal
values for inductance L and resistance R have been suggested for one degree of freedom
system, such as [44–46].

The coupling factor is calculated as kc =

√
e2

KECp
. Also, the resonant shunt angular

frequency is given by ωe = 1√
LCp

, ωo =
√

KD

m is the natural angular frequency in open

circuit. The stiffness of the structure when the shunt system is open-circuited is calculated

as KD = KE + e2

Cp
. The short circuit’s eigenfrequency ωs =

√
KE

m , which is the natural

angular frequency in a short circuit. The damping ratio is determined as ξe =
R
2

√
Cp
L . Thus,

the coupling factor can be defined from the open- and short-circuit natural frequencies as:

kc =

√
e2

KECp
=

√
KD−KE

KE =

√
ω2

o−ω2
s

ω2
s

(34)

The resonant shunt is optimized by employing the approach defined by way of [45].
This approach is in fact a min-max optimization of the mass’s displacement parameter U.
For an activated F, the maximum of the transfer function H(ω) must be minimized.

H(ω) =
U

F/KD =
1 − ω2

ω2
e
+ 2jξe

ω
ωe

ω2
S

ω2
O
+

(
1

ω2
O
+ 1

ω2
e

)
ω2 + ω4

ω2
Oω2

e
+ 2jξe

ω
ωe

(
1 − ω2

ω2
O

) (35)

The tuning of the resonant shunt consists in determining the values of ωe and ξe
that minimize the maximum of |H(ω)| Analytic calculations presented in [45] which are
referred to maximum of |H(ω)| around the vicinity of critical ω and gives

ωe = ωO and ξe =

√
3
8

kc (36)

In the end, Equation (36) leads to the optimal inductance and resistance:

L =
1

Cpω2
O

and R =

√
3
2

kc

CpωO
(37)

It should be noted that the previously described one-dimensional model is a rough
simplification real-world systems and it is used herein for demonstration of the shunted
piezoelectric concept, since vibrating pylons with considerable point masses at the top,
lead to more complicated models of structural dynamics [47]. Nevertheless, the numerical
example is based on a frequency-domain simplified finite element model. This can be
helpful, provided that a geometric model of the pylon is used. In fact, the system under
consideration is referred to as a multi-degree of freedom system according to [15,48] which
has presented in the previous subsection and after that the optimization problem of our
study will be described in detail.
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Optimization Problem of the Present Study

The main goal of this work is to find the optimal values of the shunt circuit parameters
to enhance attenuation at a single mechanical mode of the piezoelectric beam using the
particle swarm optimization technique. This optimization procedure is performed by
minimizing the maximum amplitude of frequency response function Hsh(jω) over the
frequency band of interest:

f (x) = ∥H∥∞ = max
ω

∣∣∣Hsh
ii (ω, x)

∣∣∣ (38)

where x denotes the vector of design variable and Hsh
ii (ω) is the tip response of the beam

for an excitation at the same point.
Based on the above considerations, the optimization problem is formulated as follows:
Find the optimal vector of design variable x = {R, L}T to

minimize f (x)
st RL ≤ R ≤ RU

LL ≤ L ≤ LU
(39)

where RL, LL denote the lower bounds of the design variables and RU , LU denote the
upper bounds of the design variables. In order to determine the optimal values of the
design variables, the optimization problem is addressed through the application of the
particle swarm optimization technique. A MATLAB 2021a algorithm has been created to
execute the FE model as well as the optimization problem stated above. Particularly, the
optimization process is simulated within the Matlab environment by utilizing the particle
swarm function.

2.4. Applications of the Technology

Recent research in passive shunted piezoelectric systems has highlighted their diverse
applications in engineering domains such as vibration damping, energy harvesting, struc-
tural health monitoring, and acoustic noise reduction. These are summarized in Figure 3.
In vibration damping, passive shunt circuits integrated with piezoelectric materials offer
an effective means to attenuate unwanted vibrations in mechanical structures. By dissi-
pating mechanical energy through impedance, these systems enhance structural stability
and performance, mitigating the risk of fatigue and failure. For instance, in the study
of Pernod et al. [49], a resonant piezoelectric shunt system is used for passive vibration
mitigation of a marine lifting surface under hydrodynamic flows.
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Moreover, passive shunted piezoelectric systems have emerged as promising solutions
for energy harvesting, converting ambient mechanical vibrations into electrical energy for



Energies 2024, 17, 2420 10 of 19

powering various devices and sensors. Through optimized shunt tuning techniques, these
systems maximize energy conversion efficiency, enabling sustainable and autonomous oper-
ation in remote or inaccessible environments. Additionally, in structural health monitoring,
passive shunted piezoelectric systems facilitate real-time detection and assessment of struc-
tural damage, ensuring timely maintenance and enhancing safety. Lastly, in acoustic noise
reduction applications, these systems generate anti-noise signals to cancel out unwanted
noise, improving acoustic comfort and reducing environmental impact. An example is
described in [50], where a shunted piezoelectric system is implemented for the reduction of
the squeal noise level in railway wheels. Through their multifaceted capabilities, passive
shunted piezoelectric systems continue to advance engineering solutions across diverse
fields, addressing critical challenges and driving innovation forward.

3. Shunted Piezoelectric Systems for Vibration Attenuation of Large Structures

A simplified cantilever beam model of an onshore wind turbine tower has been used
in this paper. This model is based on a flexible, continuous beam which constitutes a good
approach to a real turbine tower in the frequency domain. The steel host beam has a single
PIC151 piezoceramic, which is located 1.82 m horizontally and 1.14 m vertically from the
fixed end [39]. The geometrical characteristics of the structure and the material of the beam
are derived from [39]. The piezo characteristics have been taken from [51] and both of them
are presented in the Table 1. The electrodes are connected in series to a passive electrical
circuit composed of a resistor R and an inductor L, thus constituting a resonant shunt [52].
These shunt dampers are intended to mitigate the vibrations of the turbine tower.

Table 1. The material of the beam and the geometric properties of the structure are taken from [39].

Property Symbol Value

Piezoelectric length (m) lp 4.55
Piezoelectric width (m) bp 2.275
Piezoelectric thickness (m) hp 0.05
Piezoelectric density ( kg/m3) ρp 8500
Piezoelectric Young’s
Modulus (GPa) Yp 66.7

Piezoelectric Poisson Coef. vp 0.34
Patch position x axis (m) xp 1.82
Patch position y axis (m) y _ 1.14
Beam length (m) lb 50
Beam width (m) b 4.55
Beam thickness (m) hb 0.1
Beam density ( kg/m3) ρb 7850
Beam Young’s Modulus (GPa) Yb 200
Beam Poisson Coef. vb 0.3

The self-weight of the tower itself is 1422 kN, according to [53]. The behavior of the
tower for seismic loading is equivalent to a concentrated force at the tip. The load value is
equal to 20% of the tower weight and is depicted in the Figure 4. The calculation follows as
Ft = 1422 kN * 20% = 284.4 kN.
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A cantilever beam is considered with the following mechanical boundary conditions:
fixed support at one end and free at the other, where a harmonic load is applied. The 1-D
in-house application uses a finite element method according to the super-convergent FE
approach pioneered by Foutsitzi et al. [54]. There are 41 one-dimensional beam elements in
the mesh, which provide information on the mesh element quality of the reduced-order 1-D
model. Similarly, 810 hexahedric components make up the Multiphysics 3-D model’s mesh.

4. Numerical Results

This section is divided into five parts. The results of the model of the previous section
are examined as the first case study. Furthermore, a second case study is considered,
in which piezoelectric patches are placed in a metamaterial-like periodic pattern. More
specifically, the four initial parts are obtained from simulations experiments in COMSOL
Multiphysics Environment. At first, an eigenfrequency analysis is implemented, which
provides the first four bending modes in open and short circuit conditions. Next, the
frequency response graph of the dynamic response of the structure is obtained by utilizing
models from two different software to compare the results. After that, the second case
study is investigated. A feasibility and an economic study about the implementation of
this technology is carried out. Finally, the presented passive control method is compared to
the active control method, which is presented in [39].

4.1. Eigenfrequency Analysis—1st Case Study

The frequencies for the first four bending modes of the beam are given in Table 2 and
are derived using the Multiphysics 3-D finite element model [40].

Table 2. Natural frequencies (Hz) from finite element computation (FE).

Open Circuit Short Circuit

Mode N. Value Value

1st freq. 0.034822 0.034631
2nd freq. 0.21252 0.21182
3rd freq. 0.58504 0.5842
4th freq. 1.1361 1.1358

Furthermore, the finite element model of the structure is depicted in Figure 5a.
Figure 5b presents the first eigenmode in open circuit and Figure 5c shows the first
shorted eigenmode.
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4.2. Dynamic Response of Two Finite Element Models and Comparison—1st Case Study

The goal in the present section is the reduction of the tip displacement. Here, the
second mode is the only one mentioned since it has more authority than other structural
modes because of the piezoelectric patch location. The Frequency Response Graph of
the same electromechanical system has also been computed using a commercial finite
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element analysis package and compared with the results obtained by the in-house 1-D
finite element method in MATLAB. An optimization technique, namely the particle swarm
algorithm, is used to optimize the shunt attenuation parameters for the in-house 1D finite
element model [15]. These values are used as presented in Table 3 and a parametric study is
performed for the 3-D Multiphysics model to take the most suitable electrical circuit values.

Table 3. Shunt element values based on a 1-D and a 3-D FE model.

Matlab 1-D Comsol 3-D

R = 1.8663 × 104 Ohm R = 1.8663 × 104 Ohm
L = 1.2782 × 105 H L =1.66 × 105 H

The impact of damping for both models around the second eigenfrequency is shown
in Figure 6. A similar damping performance is shown when comparing the output of the
commercial FE model with the in-house FE model.
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4.3. Investigation of Metamaterials—2nd Case Study

The above results demonstrate the considerably large size of piezoelectric transducers
as well as the required values of electric parameters of the circuit, leading to hardly feasible
application for real-world systems. Under this consideration, the modeling of piezoelectric
patches as a metamaterial with periodic patterns is conceptualized. Figure 7a illustrates the
proposed modified smart structure. The initial dimensions of the piezo came from Table 1.
Then, the patch is separated into five equivalent parts which comprise the metamaterial
periodic pattern. The distance between each piezo is equal to 0.5 m. The corresponding
five sub-circuits are coupled with the new metamaterial, as shown in Figure 7b. This
modification provides better results in comparison to the previous section, also proving the
applicability of metamaterial approaches to tackle the infeasibility issues discussed in the
previous subsection.

In Figure 8, results corresponding to Section 4.2. (1st case study) and Section 4.3. (2nd
case study) are compared. Despite that, the simulated Frequency Response is similar; as
was expected, the novelty can be found in the design of metamaterial and the values of
electrical parameters. The prices of electrical components are reduced, and they are equal
to 1/5 of the initial. The dimensions of piezo are easier to manufacture and as an overall
conclusion, this modification is a cost-effective solution.
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The current flow from an amperometer connected in series with the last resistance and
inductor is shown in Figure 9. The measurement was conducted at 10 s and a sinusoidal
signal is observed that repeats periodically.
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4.4. Feasibility and Economic Analysis

First of all, the aforementioned findings indicate the large size of piezoelectric trans-
ducers, as well as the infeasible circuit’s electric properties. One additional finding is that
the large structure produces low-frequency vibrations. For the given numerical values,
piezoelectric elements of similar dimensions and passive inductor values are not currently
available in the market. However, there are alternatives like the parallel placement of
piezoelectrics (known as a mosaic) and the series placement of passive inductors. It can be
found in applications like the one shown in the reference [55]. In the work of Sénéchal [55],
the vibration reduction of a turbojet fan blade with piezoelectric patches is studied, con-
nected to a passive electrical circuit, whereas the piezo patches’ positions and dimensions
are optimized for finding the best design. A practical implementation in [56] has been
published and it can be considered in future research efforts.

Furthermore, piezoelectric materials can be ordered by the piece. Each company gives
them different codes and they have other specifications. Generally, they are cheap, and the
price depends on the dimensions and application. Large values of circuit components are
possible, but they are not cost-effective. Typically, a passive inductor cannot be manufac-
tured but can be replaced for example with a semi-passive synthetic inductor (i.e., Synthetic
Inductor Antoniou [55]) or like in [42]. A PSD System is easy to install and does not require
a power source.

4.5. Performance of the Two Vibration Control Methods

For comparison reasons, a piezoelectric shunt damper (PSD) and a Positive Position
Feedback (PPF) controller are tuned using a simplified model of an onshore wind turbine
tower. The first belongs to a passive damping method and the other to an active one.
Table 4 shows that PSD presents better efficiency than PPF with 47.62% of second mode
reduction. One possible reason is that the PPF controller requires a power source, while
PSD does not need external energy.

Table 4. Efficiency comparison of passive and active vibration control method.

PSD (This Work) PPF Controller [39]

Reduction 47.62% 31%

5. Experiment of a Micro-Scale Shunted Piezoelectric System

An experimental verification of the used concept is presented by following similar
works published in the literature, see, e.g., [48,57]. This experimental study introduces
a setup featuring a steel beam excited through a coil and integrated with piezoelectric
strategically positioned to convert mechanical energy into electrical energy and vice versa.
Two piezo transducers are made from the piezoelectric material PIC255. These piezoelectric
actuators have wrapped electrodes and are installed on the beam with opposite polarization
directions. They are both placed with their electrodes as close as possible to the clamped end
of the beam. The experimental setup is illustrated in Figure 10. The core of this experiment
lies in the application of a shunted circuit comprising a resistor and inductances, carefully
tuned to dampen oscillations at the second natural frequency. According to the literature,
they are called resonant shunt circuits [41,42,46,49].

The experimental procedure requires the generation and amplification of frequency
and power signals, which are then applied to excite the steel beam through the coil. Vertical
displacement measurements, measured by an accelerometer, provide crucial feedback on
the efficiency of the passive damping technique. Concurrently, the generator (Figure 11a)
receives the signal source and generates high accuracy and high stability waveforms that
are based on stored digital data that describes the constantly changing voltage levels of an
AC signal. The oscilloscope (Figure 11b) monitors sensor signals, enabling the observation
of resonance frequencies and the quantification of the reduction in oscillations achieved
through the shunted circuit technology.
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From the obtained measurements, the open and short circuit frequencies around the
second mode are calculated. Using Equation (37), the most suitable values for resistance
and inductance can be calculated, which are presented in the Table 5. The calculations and
the methodology follow the work of Thomas et al. 2009 [51].

Table 5. Piezoelectric capacitance, eigenfrequencies, piezoelectric coupling factor and electric cir-
cuit values.

Cp fs fo kc L R

Mode 2 11.5 nF 294.95 Hz 295.95 Hz 0.082 25.15 H 4720.18 Ohm

Oscillation amplitudes are measured before and after the piezoelectric shunt control for
vibration damping of the second eigenmode. They are shown in Figure 12. The measured
electrical quantity Vpp is related to the difference between the maximum value and the
minimum value of the waveform. Thus, the percentage of amplitude reduction is equal
to 24.4%.

Results from the experiment underpin the effectiveness of the passive damping ap-
proach, showcasing a significant reduction in oscillation magnitude, particularly at the
targeted second eigenmode frequency. This study underlines the potential of passive
damping techniques, offering a cost-effective and energy-efficient solution for vibration
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control in engineering applications. Further exploration into real-world implementations
holds promise for advancing the practical utility of this passive damping method.
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Validation of Computational Models

A 1-D FE model in MATLAB 2021a and a 2-D FE model in commercial finite element
software (COMSOL 6.0), having the same structural and electrical characteristics as the
micro-scale experimental model, are developed [48]. For finding the optimal electrical
circuit values in a MATLAB environment, the particle swarm algorithm has been used.
Similarly, a parametric analysis in COMSOL has been conducted to find the appropriate
electrical circuit values. The electrical circuit values for each model are shown in Table 6.

Table 6. Shunt element values based on a 1-D and a 2-D FE model.

Matlab 1-D Comsol 2-D

R = 10,326.22 Ohm R = 10,953 Ohm
L = 36.28 H L =36.72 H

The frequency response of each model is investigated, and the results are compared.
Figure 13 shows the verification of the two models. Therefore, this comparison has a good
agreement, and the correctness of the models is validated.
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6. Conclusions

Analyses of the utility of piezoelectric shunted systems to reduce wind turbine vibra-
tions were performed in this paper. The primary contribution of this work is that shunted
piezoelectric technology can be used for massive structures and might yield extremely
good outcomes. This analysis proves that the usage of piezoelectric shunted circuits leads
to damping in the eigenfrequency region. A finite element software has been used to create
a simplified model of the turbine’s pylon using connected shunted piezoelectric circuits. In
order to verify the effectiveness of the suggested vibration suppression approach and to
consider its feasibility, a parametric analysis has been performed.

Furthermore, the effectiveness of metamaterial-like periodic patterns is studied. These
findings show significant reductions in both the size of transducers and the values of
electrical components, leading to cost-effective solutions with simplified circuits. This
innovative approach is in accordance with modern developments in smart structures.

Before real life implementation, a number of future research steps can be proposed.
First, experimental validation and FE models on the wind turbine tower itself with all
the necessary details of the structure can be proposed. Concurrent optimization for the
piezoelectric patches (position, materials) and the circuit electric parameters may lead to
innovative results. Feedback from industry and hardware producers will eventually lead
to effective and economically feasible results.
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