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Abstract: Drying agricultural produce consumes a considerable amount of energy. As an energy-
efficient system, a heat pump can improve the energy efficiency of the drying process and hence
reduce the energy consumption, especially in South Africa, where both sub-tropical and temperate
weather conditions dominate. The objective of this research is to experimentally investigate the
impacts of weather conditions on the operational conditions and thermal performance of an open-
loop air-source heat pump drying system. The experimental investigation was conducted in a climate
chamber where the climate conditions were simulated from −10 ◦C to 20 ◦C with an interval of 10 ◦C
for the typical temperature range of the harvesting season in South Africa. The findings indicate
that ambient temperatures have a significant impact on both the operating conditions and thermal
performance of an open-loop heat pump system; the change in ambient temperatures from −10 ◦C
to 20 ◦C leads to a 141.6% improvement in the suction pressure, a 214.2% increase in the discharge
pressure, and 30.1% increase in the compression ratio, as well as a consequent increase of 130.6% in
the refrigerant mass flow rate (from 0.0067 to 0.0155 kg/s), resulting in a corresponding increase in
the coefficient of performance (COP) of the heat pump drying system by about 42.1%. Therefore, this
study suggests that, while using an open-loop air-source heat pump drying system utilising R134a
refrigerant is feasible in South Africa, it may be practically limited to regions with warm climates or
during warmer seasons.

Keywords: heat pump drying; ambient temperatures; thermal performance; mass flow rate; COP

1. Introduction

South Africa generates about 85% of its electricity from coal combustion, making
it responsible for 42% of emissions in Africa, which is the largest emitter in Africa, the
world’s 11th most significant greenhouse gas emitter, and the most carbon-intensive non-
oil-producing developing country globally [1]. Therefore, due to the stringent global
environmental standards and high fuel costs, using energy-efficient and environmentally
friendly systems is crucial for all South African industries. One of the significant energy
consumption processes is the drying of agricultural produce such as fruits, vegetables, and
nuts. The energy consumption for food preservation consumes 7–15% of total energy in
developed countries and presents about 10–15% of the overall world industrial energy
consumption [2–4].

However, the drying of fruits, grains, and vegetables in South Africa is still dominated
by traditional drying methods such as electrical heating, diesel engine heating, and fossil
fuel burning [5]. Therefore, improving the energy efficiency of drying systems should
focus on the benefit of the economy, environmental protection, social sustainability, and
energy supply, with a collective effort toward using energy-efficient technologies to solve
the current challenges of high fuel prices, carbon dioxide emissions, and climate change
facing South Africa and the rest of the world [6,7].
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Heat pump drying (HPD) systems are one of the technologies used in the transition
towards sustainable energy systems due to their ability to provide electricity-based drying
processes at high energy efficiencies. Moreover, researchers working on food preservation
recommend heat pump drying systems due to their high energy efficiency and minimal
environmental impact [8–10]. It is evident that HPD systems are the future of drying
systems in general, and a continuous improvement in the energy efficiency of these systems
is crucial.

South Africa has sub-tropical and temperate climate conditions suitable for heat pump
applications. The harvesting season, which spans from May to August, with its lower
average temperature range of between 3 and 10 ◦C and the extreme lower temperature of
about −5 ◦C, will, in principle, reduce the performance of a heat pump drying system to
a certain degree. However, these energy-efficient and environmentally friendly systems
have not been widely investigated and used in South Africa as they should have, even
though the research has shown that HPD systems, which exhibit twice the efficiency of
traditional hot air dryers, have the potential to substantially reduce energy consumption
during drying operations [11].

An air-source heat pump (ASHP) extracts thermal energy from a low-temperature
air source and transfers it to a high-temperature heat sink with less power input. The
quality of the heat source is related to the temperature at which the heat can be transferred,
and for an energy-efficient HPD system, the compressor should be highly efficient and
well-optimised with other system components [12,13]. Therefore, enhancing the efficiency
of the heat pump system involves reducing the compressor energy usage, improving the
condenser heat-dissipation capability, and minimising the pressure difference between the
evaporator and condenser [14].

An air-source heat pump system may be considered simple in design compared to the
other heat sources for the heat pumps [15]. However, due to the fluctuations in weather
conditions from season to season, the performance of an ASHP system varies significantly
compared to other heat sources for the heat pump and is strongly influenced by ambient
temperature [16]. Several studies conducted on the performance of ASHP systems as the
climate changes suggest that it is crucial to determine the effect of ambient temperature
on the performance of an ASHP. In cold environments, the efficiency of the ASHP system
tends to decrease severely due to the lower volumetric efficiency of the compressor and
the lower refrigerant mass flow rate [17]. For instance, Koopman et al. [18] conducted a
simulation study on an air-source heat pump system using R410, R32, and R290 to evaluate
the effect of pressure drop on the efficiency at an ambient temperature range from 20 ◦C
to −10 ◦C. Their findings indicated that, at an ambient temperature of 20 ◦C, the COP
increased by 35% compared to 7 ◦C. Conversely, at a −10 ◦C ambient temperature, the COP
decreased by 26%.

Li et al. [19] experimentally evaluated the effect of the opening degree of the electronic
expansion valve, the temperature of the low-temperature heat source at the simulated
temperature ranges from −10 ◦C to 10 ◦C, and the auxiliary hot water temperature on the
performance of a heat pump system. The results showed that ambient temperature was the
second factor influencing the system performance. The results of the study by Bagarella
et al. [20], who investigated the influence of major heat pump component sizing on the
thermal performance of an HP system at varied outdoor temperatures, showed that the
increased outdoor temperatures improved the heating capacity of the HP.

Ji et al. [21] studied the performance of an air-source heat pump system in cold areas,
and the results showed that an air-source heat pump can withstand and operate stably at
ambient temperatures as low as −25 ◦C. A study by Ji et al. [22] showed that the heating
performance of an ASHP system with a finned-tube heat exchanger could be efficiently
improved by increasing the ambient temperature and the airflow velocity. Hamid et al. [23]
investigated the energy efficiency of a heat pump dryer for high-moisture-content materials.
The results showed that the water-removal rate depended on the moisture diffusivity and
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increased with the drying air temperature and velocity, and the higher heat transfer rate
led to a higher COP.

Yu and Chan [24] conducted a study to investigate how adjusting the speed of the
condenser fan impacted the performance of an air-cooled chiller. They devised an algorithm
that utilised a condenser set point to calculate the appropriate fan speed to achieve an
efficient heat rejection airflow. Their findings highlight that it is important to set the
condensing temperature set point based on the ambient temperature and system load to
optimise the system performance.

Notably, most of the available literature evaluating the effect of ambient temperature
is essentially focused on HP systems for space heating and cooling, while most of the
literature on heat pump drying systems mainly focuses on either the product’s drying
characteristics or the dryer’s performance evaluation. A heat pump drying system com-
bines two subsystems (a heat pump and a drying chamber) that work together to remove
moisture from the product or material [8]. Therefore, evaluating the operability conditions
and the thermal performance of heat pump drying systems for accurate sizing and energy
efficiency for South African climatic conditions is crucial.

The limited literature on the operating conditions of HPD systems has left a significant
gap in the guidelines for understanding the effect of several factors, such as ambient
temperatures, which influence the operating conditions and the thermal performance of
the HPD systems. Moreover, it is essential to understand the thermal performance and the
operating conditions of an HPD system at various conditions to determine its feasibility
at specific site temperatures. Hence, this experimental investigation, which assesses how
ambient temperature influences operating conditions and the thermal performance of
open-loop air-source HPD systems within South Africa’s climate context, is valuable for
research studies to analyse the performance of air-source heat pump drying systems in
relation to ambient conditions.

2. Materials and Methods
2.1. Materials and Equipment
2.1.1. Heat Pump

An open-loop air-source HPD system is shown in Figure 1. This system comprises
four main components, i.e., two heat exchangers (the evaporator and condenser), the semi-
hermetic compressor, and the thermal expansion valve (TEV), which are integrated to make
the heat pump system. The HP system was also fitted with accessories, including the liquid
receiver, filter drier, solenoid valve, and sight glass. The HP system was then integrated into
the batch drying chamber, which is suitable for drying agricultural biomaterials through
the air circulation duct.
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2.1.2. Air Duct and Drying Chamber

The diagrams in Figures 1 and 2 depict an air duct system. The air duct and the
drying chamber were fabricated using a galvanised metal sheet and includes a hinged lid
for product loading and unloading; moreover, insulation measures were introduced to
minimise heat loss from the heat pump drying system.

2.1.3. Measurement Equipment Specifications and Data Acquisition

To evaluate the performance of the heat pump drying (HPD) system, refrigerant
temperatures and pressures at various key points, the refrigerant mass flow rate, power
consumption, and the climate chamber temperature were measured and collected.

A total of fifteen T-type copper thermocouples were employed to determine the
refrigerant temperature and air temperatures at different positions within the HPD system
and in the environmental chamber according to the recommendations by ASHRAE standard
41.1 [25], as depicted in Figure 2. The manufacturer claimed the temperature measuring
range of these thermocouples to be from −75 ◦C to 250 ◦C with an uncertainty of ±0.1 ◦C.

As shown in Figure 2, the measurement of low and high pressures on the HP system
and at the suction and delivery lines of the compressor was strategically performed follow-
ing ASHRAE STANDARD 41.3 [26], which provides the frameworks on the methods for
pressure measurement. The pressure transducers of model A-10 with a measuring range
from 0 bar to 40 bar, and the relative uncertainty of ±0.1% at full scale, were used.
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Figure 2. Schematic layout of the open-loop HPD system experimental setup, (a) fresh air inlet at 
the condenser side, (b) hot air discharge from the drying chamber, (c) fresh air inlet at the evapora-
tor side, (d) cold air discharge from the evaporator. 

A Coriolis mass flow meter was used to measure the refrigerant mass flow rate after 
the compressor and before the condenser to ensure that only the gas fluid was measured 
for accuracy. The mass flowmeter has a maximum operating pressure of 25 MPa, a work-
ing fluid temperature range from −50 °C to 150 °C, and an ambient operating temperature 
range from −20 °C to 70 °C. This mass flowmeter has a flow measuring capacity range of 
0 to 100 kg/h, with a manufacturer’s claimed accuracy of ±0.2% at the full scale and a re-
peatability of ±0.1%. 

  

Figure 2. Schematic layout of the open-loop HPD system experimental setup, (a) fresh air inlet at the
condenser side, (b) hot air discharge from the drying chamber, (c) fresh air inlet at the evaporator
side, (d) cold air discharge from the evaporator.

A Coriolis mass flow meter was used to measure the refrigerant mass flow rate after
the compressor and before the condenser to ensure that only the gas fluid was measured
for accuracy. The mass flowmeter has a maximum operating pressure of 25 MPa, a working
fluid temperature range from −50 ◦C to 150 ◦C, and an ambient operating temperature
range from −20 ◦C to 70 ◦C. This mass flowmeter has a flow measuring capacity range
of 0 to 100 kg/h, with a manufacturer’s claimed accuracy of ±0.2% at the full scale and a
repeatability of ±0.1%.



Energies 2024, 17, 2432 5 of 14

2.2. Experimental Procedure

The schematic diagram of an open-loop HPD system configuration is depicted in
Figure 2. This system draws in the air from the ambient environment at (c) as a heat source
using the evaporator fan, passes it through the evaporator, and releases the cooler air to
the ambient environment at (d). Also, the condenser fan draws the air from the ambient
environment at (a) and the air is heated by the condenser. The heated air from the condenser
is then fed into the drying chamber via the same fan to heat the produce, evaporate water
from the produce, and move the moisture away from the produce before the air is released
into the ambient environment.

The experimental setup was created to evaluate the operational conditions and the ther-
mal performance of an open-loop air-source HPD system in different ambient temperature
conditions ranging from −10 ◦C to 20 ◦C at increments of 10 ◦C in a climate chamber.

At the beginning of each experiment, all the temperature and pressure measurements
were recorded and compared to ensure that all measuring instruments were accurately
functional. Then, the environment chamber was set and run until the desired ambient
conditions were attained. Subsequently, the HPD system was run for approximately two
hours after reaching stable conditions, and then the data presented in this study were
cross-sectionally sampled from those continuously recorded. The sampling was performed
at increments of 30 min for 90 min after the HPD system had reached stable conditions.

The mean values of the collected temperatures and pressures were used to acquire
and determine secondary data, which mainly focused on the refrigerant properties, such as
the enthalpies and density, at the salient points indicated in Figure 3.
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Figure 3. P-h diagram indicating the salient points used for the HP analysis.

Finally, the secondary data and primary measurements, including the refrigerant
mass flow rate and power input, were used to determine tertiary data, such as the heating
capacity, heating effect, compression ratio, and COP.

3. Experimentation and Uncertainty
3.1. Results and Data Analysis

The thermophysical properties of the R134a were determined at various points in the
HP system, as shown in Figure 3, and the heat pump performance parameters, such as
the enthalpy and density, were acquired and calculated, respectively, using the academic,
professional version 10.836 (2020) of Engineering Equation Solver (EES) software.

Point 0 is the compressor suction, point 1 is the discharge from the compressor, point
2 is the entry to the condenser, point 3 is the middle point surface of the condenser coil,
point 4 is the exit from the condenser, point 5 is at the inlet to the expansion valve, point 6
is the entry to the evaporator, point 7 is the middle point surface of the evaporator coil, and
point 8 is just after the exit of the evaporator.
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The COP for the heat pump dryer was determined by the ratio of the heating capacity
to the total power consumed by the system, including the power consumption by the
evaporator and condenser fans and the compressor, as given in Equation (1), and the
coefficient performance of the heat pump (COPHP) was computed using Equation (3).

COPHPD =

.
QH(

Pcomp + Pf an,cond + Pf an,evap

) (1)

where Pf an is the power consumption by the fan.
The heating capacity is the product of the refrigerant mass flow rate and the enthalpy

difference across the condenser, as given by Equation (3).

.
QH =

.
mre f (h2 − h4) (2)

where h2 is the specific enthalpy of the refrigerant at the inlet to the condenser (kJ/kg), h4
is the specific enthalpy of the refrigerant at the exit of the condenser (kJ/kg), and

.
mre f is

the refrigerant mass flow rate (kg/s).
The COPHP for the heat pump only was determined from Equation (4)

COPHP =
Qcond
Wcomp

(3)

where Qcond is the heating effect or the heat rejected from the condenser (kJ/kg) and Wcomp
is specific work input by the compressor (kJ/kg).

Qcond = (h2 − h4) (4)

Wcomp = (h1 − h0) (5)

where h0 is the specific enthalpy of the refrigerant at suction to the compressor (kJ/kg) and
h1 is the specific enthalpy of the refrigerant at discharge from the compressor (kJ/kg).

3.2. Uncertainties

The data analysis outlined in this article is divided into three categories, with the first
category focusing on directly measured properties such as the ambient temperature, refrigerant
mass flow rate, and pressures and temperatures at the inlet and outlet of all four primary
components of the HP system. The maximum uncertainty in the measurement of a mass flow
rate of the refrigerant is ±0.2% (±0.11 kg/h), the refrigerant and ambient temperature are
±0.1 ◦C (±0.75%), the refrigerant pressure is ±0.1% (±0.02 bar), and power is ±2%. When
considering the controlled ambient temperature variation from −10 to 20 ◦C, the relative
uncertainty of the temperature in the environmental chamber was 0.33%.

The data of the properties using the refrigerant temperature and pressure, such as the
density and specific enthalpy, and the degree of superheat and subcooling, constitute the
second data category. The measured pressure and temperature uncertainty were used to
calculate the uncertainty of the refrigerant properties. The degree of superheat and subcooling
uncertainty was 3.2% and 2.5%, respectively. The uncertainty of the specific enthalpy was
computed by partial derivatives at measured temperatures and pressures. The same method
was adopted to estimate the uncertainty of the refrigerant density, and the uncertainty of the
specific enthalpy was 3.0%, while that of the refrigerant density was 0.8%.

The third category is the parameters calculated from the measured properties, and
their errors were calculated by the uncertainty propagation formula shown in Equation (6).

WR =

√(
∂R
∂x1

w1

)2
+

(
∂R
∂x2

w2

)2
+ · · ·+

(
∂R
∂xn

wn

)2
(6)
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The result R is a function of the independent variables x1, x2, . . .., xn; WR is the
uncertainty in the result; w1, w2, . . ., wn is the uncertainty in the independent variables.

The maximum uncertainties are estimated to be 0.8% and 2.9% for the heating effect
and the specific work input, respectively. In contrast, the maximum uncertainty for the
heating capacity, compression work, heat pump COP, and the heat pump dryer COP were
0.8%, 3.0%, 3.1%, and 3.4%, respectively.

4. Results and Discussions
4.1. Variation in the Operating Conditions of the Open HPD System with Ambient Temperatures

Figure 4 illustrates the impact of varying ambient temperatures, ranging from −10 ◦C
to 20 ◦C, on several critical temperatures within the HP system, such as the evaporator
temperature, suction temperature, discharge temperature, condenser temperature, and
the temperature inside the drying chamber. A notable observation is the increase in the
evaporator temperature, which increased by an average of 9.3 ◦C, moving from its lowest
point of −18.2 ◦C to 7.6 ◦C as the ambient temperature increased from −10 ◦C to 20 ◦C.
Furthermore, it was observed that the evaporator temperature averaged 12.9 ◦C lower
than the ambient temperature when the ambient temperatures were above 0 ◦C. This
difference between the evaporator and ambient temperatures was reduced to 4.7 ◦C at
ambient temperatures of 0 ◦C and below. This disparity in temperature between the
evaporator and ambient environment is an essential factor in facilitating heat energy
extraction from the surroundings. Notably, when the ambient temperature decreased, there
was a corresponding reduction in the heat energy input to the evaporator. This reduction
was attributed to the diminished temperature difference between the refrigerant and the
air passing through the evaporator coil from the ambient environment.
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Consequently, at a lower temperature, the refrigerant absorbed less heat from the
surroundings. This phenomenon is reflected in the trend of the suction temperature, which,
on average, was about 5.7 ◦C higher than the evaporator temperature.

The compressor’s discharge temperature in the system consistently increased by an
average of 10 ◦C, rising from an initial temperature of 60 ◦C at an ambient temperature of
−10 ◦C to 89.9 ◦C when the ambient temperature was at 20 ◦C. Conversely, the increased
ambient temperatures significantly increased the condenser temperatures, as evidenced by
a 10.5 times improvement observed as the ambient temperatures increased from −10 ◦C
to 20 ◦C, and from 53.7 ◦C to 5.1 ◦C, as depicted in Figure 3. The drying temperature
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followed a similar upward trajectory with increasing ambient temperatures from the
lowest reading of 0 ◦C at an ambient temperature of −10 ◦C to 46.1 ◦C at an ambient
temperature of 20 ◦C. Notably, on average, the drying temperatures were 5.4 ◦C lower
than the condenser temperatures. From a drying efficiency perspective, the drying rate
has a strong relationship with the drying temperature and increases with increased drying
temperature [27]. Therefore, the open-loop heat pump drying system performed poorly in
achieving an efficient drying temperature at ambient temperatures of 0 ◦C and −10 ◦C, as
it attained drying temperatures of 15.3 ◦C and 0 ◦C, respectively.

Figure 5 shows the impact of the ambient temperature changes on the pressures in
the heat pump drying system. The results indicate an increase in the suction pressure as
ambient temperatures increased, with increases of 30.4%, 36.5%, and 35.7% recorded across
temperature ranges from −10 ◦C to 0 ◦C, 0 ◦C to 10 ◦C, and 10 ◦C to 20 ◦C, respectively.
Similarly, there was a noticeable increase in the discharge pressure by 46.8%, 51.8%, and
41.1% over the corresponding temperature intervals of −10 ◦C to 0 ◦C, 0 ◦C to 10 ◦C, and
10 ◦C to 20 ◦C, respectively. These improvements in operating pressures on the HP system
were also reflected by the increased condenser pressures, as they improved by 64.5%, 60.2%,
and 51.7% when the ambient temperatures increased from −10 ◦C to 20 ◦C by increments
of 10 ◦C.

Energies 2024, 17, x FOR PEER REVIEW 8 of 14 
 

 

°C to 20 °C, and from 53.7 °C to 5.1 °C, as depicted in Figure 3. The drying temperature 
followed a similar upward trajectory with increasing ambient temperatures from the low-
est reading of 0 °C at an ambient temperature of −10 °C to 46.1 °C at an ambient tempera-
ture of 20 °C. Notably, on average, the drying temperatures were 5.4 °C lower than the 
condenser temperatures. From a drying efficiency perspective, the drying rate has a strong 
relationship with the drying temperature and increases with increased drying tempera-
ture [27]. Therefore, the open-loop heat pump drying system performed poorly in achiev-
ing an efficient drying temperature at ambient temperatures of 0 °C and −10 °C, as it at-
tained drying temperatures of 15.3 °C and 0 °C, respectively. 

Figure 5 shows the impact of the ambient temperature changes on the pressures in 
the heat pump drying system. The results indicate an increase in the suction pressure as 
ambient temperatures increased, with increases of 30.4%, 36.5%, and 35.7% recorded 
across temperature ranges from −10 °C to 0 °C, 0 °C to 10 °C, and 10 °C to 20 °C, respec-
tively. Similarly, there was a noticeable increase in the discharge pressure by 46.8%, 51.8%, 
and 41.1% over the corresponding temperature intervals of −10 °C to 0 °C, 0 °C to 10 °C, 
and 10 °C to 20 °C, respectively. These improvements in operating pressures on the HP 
system were also reflected by the increased condenser pressures, as they improved by 
64.5%, 60.2%, and 51.7% when the ambient temperatures increased from −10 °C to 20 °C 
by increments of 10 °C. 

Hence, it can be concluded that lower ambient temperatures significantly decrease 
the heat pump drying system’s suction pressure, discharge pressure, and condenser pres-
sure. Notably, the rate at which the condenser pressure increased with increased ambient 
temperatures lowered as the ambient temperatures increased due to the decreased tem-
perature difference between the system and the surroundings. 

Most notably, at ambient temperatures above 0 °C, while the suction pressure signif-
icantly decreased, it was less sensitive to ambient temperature changes than the discharge 
pressure. This differential impact on the pressures led to a slight increase in the compres-
sion ratio, which increased from 3.5 at −10 °C to 4.5 at 20 °C. 

 
Figure 5. Variation in the pressure and pressure ratio with ambient temperature. 

Additionally, there was a decrease in the pressure drop from the compressor dis-
charge to the condenser with lower ambient temperatures due to the decreased refrigerant 
mass flow. The trends observed in the suction pressure closely mirror those of the changes 
in the refrigerant density, as depicted in Figure 6. This correlation suggests that changes 
in the refrigerant properties significantly influence the operating parameters of the HP 
system. Furthermore, the reduced thermal energy absorbed from the environment at 
lower ambient temperatures results in a lower refrigerant density and, consequently, a 
lower suction pressure within the HP system [28]. 

In this study, the displacement volume for the compressor used was fixed. As a re-
sult, the mass flow rate of the refrigerant passing through the compressor depends on the 

Figure 5. Variation in the pressure and pressure ratio with ambient temperature.

Hence, it can be concluded that lower ambient temperatures significantly decrease the
heat pump drying system’s suction pressure, discharge pressure, and condenser pressure.
Notably, the rate at which the condenser pressure increased with increased ambient tem-
peratures lowered as the ambient temperatures increased due to the decreased temperature
difference between the system and the surroundings.

Most notably, at ambient temperatures above 0 ◦C, while the suction pressure signifi-
cantly decreased, it was less sensitive to ambient temperature changes than the discharge
pressure. This differential impact on the pressures led to a slight increase in the compression
ratio, which increased from 3.5 at −10 ◦C to 4.5 at 20 ◦C.

Additionally, there was a decrease in the pressure drop from the compressor discharge
to the condenser with lower ambient temperatures due to the decreased refrigerant mass
flow. The trends observed in the suction pressure closely mirror those of the changes in
the refrigerant density, as depicted in Figure 6. This correlation suggests that changes
in the refrigerant properties significantly influence the operating parameters of the HP
system. Furthermore, the reduced thermal energy absorbed from the environment at lower
ambient temperatures results in a lower refrigerant density and, consequently, a lower
suction pressure within the HP system [28].
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In this study, the displacement volume for the compressor used was fixed. As a
result, the mass flow rate of the refrigerant passing through the compressor depends
on the density of gases drawn into the compressor and the volumetric efficiency of the
compressor. The density of a refrigerant is greatly affected by temperature and pressure
variations, as they alter the kinetic movement of the refrigerant molecules and impact its
mass flow rate through the compressor [28,29]. The superheated refrigerant entering the
compressor of an HP system is less dense if it is at high temperatures; similarly, the increased
refrigerant pressure of the superheated gasses with increased ambient temperature results
in a higher density.

Figure 6 illustrates the relationship between changes in the ambient temperature and
their impact on refrigerant density at the compressor’s inlet point and the refrigerant mass
flow rate; as the ambient temperature increased from −10 ◦C to 20 ◦C in 10 ◦C intervals,
there was a corresponding increase in the refrigerant density from 20.2 kg/m3 to 8.4 kg/m3,
causing an increase of 24.0%, 37.4%, and 35.4% in the refrigerant mass flow rate through
the compressor. The increased refrigerant density may have increased the refrigerant mass
flow through the compressor, and the increased compression ratio with increased ambient
temperature resulted in a decline in the volumetric efficiency of the compressor, as shown
in Figure 7. Therefore, the changes in the refrigerant density directly impact the efficiency
of the compressor and, consequently, the mass flow rate [28].
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Since the suction pressure, discharge pressure, and condenser pressure decreased with
the decreased ambient temperature, the HP cycle, as plotted on the p-h diagram shown in
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Figure 8, lowered, consequently increasing the specific enthalpy of evaporation and the
specific enthalpy of condensation.

Figure 8. Effect of ambient temperature on the HP cycle.

Although the operating conditions of the HP system highly influence subcooling,
the performance of a vapour compression system using subcritical refrigerants depends
on the degree of subcooling [13,30]. As shown in Figure 9, the degree of subcooling
increased with the decreased ambient temperature, reaching a maximum of 9.7 ◦C at an
ambient temperature of −10 ◦C. Contrary to that, the degree of superheating was increased
with the ambient temperature. This was due to the insignificant change in the specific
enthalpy at the compressor discharge while the suction temperature increased with ambient
temperature. Similar results were observed by Janković et al. [31]; hence, these results
strongly suggest that decreasing the degree of superheating at the evaporator improves the
COP of the system.
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4.2. Influence of Ambient Temperature on the Thermal Performance of the Heat Pump
Drying System

The impact of decreased ambient temperature significantly increased the specific work
performed by the compressor, as demonstrated in Figure 10. The specific work input
by the compressor increased by 0.38%, 1.02%, and 1.12% as the ambient temperatures
decreased from 20 to −10 ◦C at increments of 10 ◦C. This occurrence was due to the suction
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temperature decreasing more rapidly than the discharge temperature. Also, the heating
effect of the condenser increased with decreased ambient temperatures due to a higher
specific enthalpy of condensation and increased subcooling as the heat pump (HP) cycle
shifted on the pressure–enthalpy (p-h) diagram with a change in ambient temperatures.
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Figure 10. Influence of the ambient temperature on the heating effect and specific work input.

The findings in Figure 11 indicate how the increased ambient temperature affects the
compression work, total power input, and heating capacity. A substantial overall increase
of 116.7% was observed in the compression work as the ambient temperature increased
from −10 ◦C to 20 ◦C, suggesting that, at lower temperatures, less effort was needed by the
compressor to sustain the operation of the system due to the lower compression ratio and
the improved volumetric efficiency of the compressor. Also, the HPD system’s total power
consumption increased proportionally with higher ambient temperatures. More precisely,
the power consumption increased by 2.0%, 11.6%, and 12.0%, respectively, as the ambient
temperature was increased in increments of 10 ◦C from −10 ◦C to 20 ◦C, owing to the low
density of the refrigerant at low temperatures. Consequently, the compressor needed to
consume less power in order to circulate the refrigerant.
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Figure 11. Variation in heating capacity, compression work, and total power input with ambient
temperature.

The heating capacity of the condenser is determined by the product of the refrigerant’s
mass flow rate and the change in the specific enthalpy across the condenser. The heating
capacity exhibited a significant increase of 26.8% from −10 ◦C to 0 ◦C, followed by a further
increase of 25.0% from 0 ◦C to 10 ◦C, and finally increased by 14.3% as the temperature
increased from 10 ◦C to 20 ◦C. The increases in heating capacity closely mirrored the
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refrigerant mass flow rate trend, affirming a similar result trend that was also observed by
Prabakaran et al. [32].

The COP is an essential criterion for measuring the thermal performance of a heat
pump drying system. The COP of the HPD system is defined as the ratio of the heating
capacity of the condenser to the total power consumed by the HP system. A high heating
efficiency of the HPD system is indicated by a high value of the COP [33]. The COP of
the heat pump drying system was lowest at −10 ◦C with a minimum value of 2.3, which
then increased by 24.4%, 12.0%, and 2.0% as the ambient temperature increased in intervals
of 10 ◦C from −10 ◦C to 20 ◦C, as depicted in Figure 12. These results suggest that the
open-loop HPD system has poor thermal performance at ambient temperatures of 0 ◦C and
below, and it increases with increased ambient temperatures.
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Moreover, as noticed in Figure 10, the heating effect decreased with the increase in
the ambient temperature, and so did the specific work input by the compressor. Conse-
quently, the heat pump COP gradually decreased by an average of 6.3% from an ambient
temperature of −10 ◦C to 20 ◦C, as shown in Figure 12.

5. Conclusions

This experimental study investigated the influence of ambient temperatures, ranging
from −10 ◦C to 20 ◦C with 10 ◦C intervals, on the operating conditions and thermal
efficiency of an open-loop air-source HPD system utilising R134a refrigerant. The analysis
of the findings from this study may be summarised as follows:

(i) Lower ambient temperatures result in diminished evaporator, suction, and discharge
temperatures.

(ii) These results have shown that, although the refrigerant density may generally de-
crease with temperature, the second property to determine the state of the refrigerant,
such as the pressure, was also a significant property.

(iii) The higher rate of increase in the discharge pressure with ambient temperatures
compared to the suction pressure, which increased the compression ratio, negatively
influenced the volumetric efficiency of the compressor.

(iv) The power consumption by the compressor is highly dependent on the refrigerant
mass flow rate, and the heating capacity greatly influences the COPHPD.

(v) At ambient temperatures below 10 ◦C, the COP of the open HPD system decreased
significantly, indicating the reduced energy efficiency of an open-loop air-source HPD
system in such conditions.
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Therefore, these results conclude that employing an open-loop HPD system is feasible
in South African climatic conditions. However, its practical use is limited to warmer regions,
or it may be used during warm seasons, because the system’s effectiveness highly depends
on ambient temperature factors, affecting its operating conditions, thermal efficiency, and
moisture-extraction capability. Therefore, further study could explore alternative HPD
system configurations or refrigerants to expand the suitability across various climatic
conditions nationwide.
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Abbreviations
The following abbreviations are used in this manuscript:

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
COP Coefficient of performance
EES Engineering Equation Solver
HP Heat pump
HPD Heat pump dryer
TEV Thermal expansion valve
.

mre f Refrigerant mass flow rate (kg/s)
h Specific enthalpy (kJ/kg)
P Power ((kJ/s) or (kW))
p Absolute pressure (bar, a)
.

Q Heating capacity (kJ/s)
Q Heating effect (kJ/kg)
t Temperature (◦C)
W Work (kJ/kg)
Subscripts
Comp Compressor
Cond Condenser
Evap Evaporator
ref Refrigerant
ρ Density
Ø Diameter
η Efficiency
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