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Abstract: Isolated bidirectional DC–DC converters are becoming increasingly important in various
applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional
power flow and their safety features. This paper aims to review the switch strategies and topologies
of isolated bidirectional DC–DC converters, with a specific focus on their applications in the field
of electric vehicles. From the perspective of topology, PWM-type isolated bidirectional DC–DC
converters, dual active bridge converters, and resonant-type isolated bidirectional DC–DC converters
constitute the three main categories of these converters. The paper further examines the traditional
switch strategies of these converters and discusses how specific switch technologies, such as single-
phase shift, expanding-phase shift, double-phase shift, and triple-phase shift, can enhance the overall
performance of isolated bidirectional DC–DC converters. The paper meticulously examines the
characteristics of each topology and control scheme, as well as their typical use cases in practical
applications. Particularly, the paper delves into the applications of isolated bidirectional DC–DC
converters in the electric vehicle sector and draws conclusions regarding their potential and trends in
future electric vehicle technology.

Keywords: isolated bidirectional DC–DC converters; topological configuration; switching strategies;
electric vehicles

1. Introduction

As research into electric vehicle [1–3] systems deepens, the critical role of isolated
bidirectional DC–DC converters (IBDCs) [4] becomes evident. IBDCs not only manage the
energy exchange between the battery [5,6] and other electrical systems in the vehicle, such
as converting kinetic energy into stored electrical energy during braking or providing the
required energy during acceleration, but also ensure that the voltage of the battery pack
matches the high voltage required by the electric motor. Furthermore, IBDCs play a core role
in energy recovery, particularly during regenerative braking, where they convert electrical
energy generated by the electric motor into a form suitable for battery storage. In terms of
charging [7] control, they optimize the charging efficiency by adjusting the charging current
and voltage while protecting the battery from the risks of overcharging or overheating.
IBDCs also enhance the compatibility between electric vehicles and different charging
stations and grid systems [8], improving charging flexibility. Their high energy conversion
efficiency means minimal energy losses during conversion, thereby enhancing overall
system energy efficiency. Their fast response characteristics ensure timely adjustments in
energy supply during acceleration or braking. Research on IBDCs is crucial for driving the
widespread adoption and development of electric vehicles. In addition, IBDCs are often
used as key components in connecting power systems due to their excellent performance.
IBDCs are widely used in smart grids [9], uninterruptible power supplies (UPSs) [10],
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aerospace applications, and renewable energy systems [11–13], such as photovoltaic (PV)
arrays [14–17], fuel cells (FCs) [18,19], and other renewable energy systems [20], as shown
in Figure 1.
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IBDCs can match different voltage levels by adjusting the turns ratio of the primary
and secondary sides of the high-frequency transformer. The turns ratio can be used as
an additional degree of freedom, which broadens the regulating range of the converter,
and, therefore, it is very suitable for use in applications with a large voltage gain, high
safety level, and high reliability. Most IBDCs are realized by adding a transformer to
the topology of a bidirectional non-isolated DC–DC converter, such as the bidirectional
forward converter, bidirectional flyback converter, and bidirectional push–pull converter;
while some of them are hybrid structures which are combined by various switching power
supply topologies.

As shown in Figure 2, the main working principle of IBDCs is to convert the input
DC voltage into AC voltage, then convert it into another voltage level of AC voltage after
the high-frequency transformer, and then rectify the AC voltage into DC voltage, so as
to realize DC–DC conversion. In this paper, the IBDC is divided into the PWM isolated
bidirectional DC–DC converter, and DAB and bidirectional resonant converter, according
to the switching strategy of the converter and the presence of the resonant cavity, among
which we find the following: the PWM isolated bidirectional DC–DC converter is divided
into the isolated bidirectional forward converter, isolated bidirectional flyback converter,
and isolated bidirectional push–pull converter; and the DAB-type bidirectional DC–DC
converter is divided into the DAB bidirectional DC–DC converter, bidirectional series
resonant DC–DC converter, bidirectional parallel resonant DC–DC converter, bidirectional
LLC resonant converter, bidirectional LCC resonant converter, bidirectional LCL resonant
converter, bidirectional CLLC resonant converter, and bidirectional CLLLC resonant con-
verter, as shown in Figure 3. There are interconnections between the different classifications,
which will be described in detail in Section 2.
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This paper is organized as follows: Section 1 is the introductory part. Section 2
describes the IBDC and its topologies and analyzes the characteristics of the topologies,
including the PWM, DAB, and bidirectional resonant DC–DC converter. Section 3 describes
the conventional switching strategies of the IBDC, including PWM, phase-shift control, and
frequency control. Section 4 describes the application of IBDCs in electric vehicles. Finally,
the conclusion of this paper is given in Section 5.

2. Topological Classification of IBDC

The IBDC can be divided into the PWM bidirectional DC–DC converter, DAB DC–
DC converter, and bidirectional resonant DC–DC converter. The working principle of
a bidirectional isolated DC–DC converter topology is basically to convert the input DC
voltage into AC voltage, which is then rectified into DC voltage through the transformer.
The classification and summary of these topological structures are as follows.

2.1. PWM-Type Isolated Bidirectional DC–DC Converter Topology
2.1.1. Bidirectional Forward Converter

As shown in the Figure 4, the bidirectional forward converter [21] has a simple struc-
ture and is easy to control and is mostly used in small- and medium-sized power situations.
As illustrated in Figure 4, the circuit employs three switching tubes, labeled as S1, S2, and S3.
The isolation forward transformer, indicated by T, serves to electrically isolate the primary
and secondary sides of the circuit, enhancing the safety and performance. The energy
storage inductor, denoted by L, plays a critical role in maintaining the energy integrity
throughout the switching cycles. For the purpose of voltage smoothing, filtering capacitors
C1 and C2 are strategically placed within the circuit. V1 and V2 are the input and output
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voltages, respectively. However, the transformer always operates in the unidirectional
excitation mode, which has a low utilization rate, and requires another magnetic reset
winding to work normally, which is more difficult to design [22].
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In order to solve the magnetic reset problem of the isolated bidirectional forward
converter, the existing solutions are mainly to combine the forward converter with other
converters, so that the advantages and disadvantages of different converters can be com-
plementary. A forward–flyback bidirectional DC–DC converter has been proposed to
combine the forward converter and the flyback converter, which solves the problem of the
unidirectional excitation of the forward converter, as well as the problem that the switch of
the flyback converter has voltage spikes [23]. Another converter consists of two identical
forward switching converters combined by a shared transformer; this structure reduces
the number of switching tubes and saves cost while solving the problem of the forward
converter itself [24]. A new PWM ZVS bidirectional forward DC–DC converter has been
proposed. It uses the transformer’s leakage inductance for power transfer, allowing it to
reset the PWM-controlled transformer core and satisfy the ZVS soft switching condition.
The proposed converter is also inexpensive and straightforward [25].

In general, the development trend of the forward converter is as follows: high effi-
ciency and high reliability. In the development of the forward converter, there are many
efficiency improvements, and, with the progress of the integrated circuit process and pas-
sive component process, the integration of the forward converter will be higher, while
its efficiency and reliability will continue to improve, along with having a smaller size,
higher frequency, and modularity. In the forward converter, the transformer plays the role
of energy transfer, with the switching frequency and passive components manufacturing
process improvements, and the volume of the transformer and the volume of the vice side
filtering inductance; the capacitance can also be greatly reduced, thus reducing the volume
of the entire switching power supply.

2.1.2. Bidirectional Flyback Converter

Figure 5 shows a bidirectional flyback DC–DC converter, which is also suitable for
low power applications. In Figure 5, the switching devices S1 and S2 are strategically
positioned to regulate the current within the circuit. The isolation flyback transformer,
denoted as T, ensures the electrical separation between the primary and secondary sides.
The capacitors C1 and C2 are integrated to smooth out the voltage ripple, functioning as
filtering components within the system. V1 and V2 are the input and output voltages,
respectively. The flyback converter has many advantages such as a simple circuit topology,
few electronic components, low cost, easy control, high safety of input or output galvanic
isolation, and good output voltage or current characteristics. The output can be designed
in boost or buck mode, featuring a wide regulation range and easy implementation of
multi-output designs. Compared to other switching power supply circuits, its energy
efficiency is low, but its simple topology and low cost make it the preferred choice for
low-power applications.

In addition to this, the switching tube is subjected to high current stresses and voltage
stresses and due to the presence of leakage inductance of the transformer, which causes the
energy on the leakage inductance to resonate with the output capacitance of the switching
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tube, thus generating voltage spikes, which may damage the switching tube [26]. An active
clamped bidirectional flyback converter was investigated to derive a low-frequency behav-
ioral model and a small signal transfer function; the current flow of this converter is directly
controlled by the duty cycle, and the leakage inductance of the transformer has a significant
effect on the control characteristics of the converter [27]. A sub-module level isolated port
differential power processing architecture based on the bidirectional flyback converter has
been proposed to improve efficiency. The bidirectional flyback converter is designed as a
sub-module with discontinuous conditional modes and continuous conditional modeling
modes for light and heavy load conditions to improve efficiency [28]. A new isolated
bidirectional two-tube flyback converter is proposed which integrates two non-dissipative
inductive capacitive diode buffers. In the suggested architecture, in addition to recover-
ing the leakage energy and shielding the power transistors from circulating currents that
would arise in the non-cross-coupled scenario, the primary inverting transformer and the
inductive–capacitive diode buffers are cross-coupled. In a bidirectional flyback converter
with a traditional resistor–capacitor–diode buffer, the same current cycling issue arises.
Additionally, a different circuit is suggested to reduce current cycling and boost conversion
efficiency [29].
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Nowadays, the development trend of industrial flyback switching power supply is
mainly to improve the accuracy, miniaturization, and conversion efficiency, and, because
the power supply belongs to a kind of energy, it is developed towards renewable energy.

2.1.3. Bidirectional Push–Pull Converter

Figure 6 shows a bidirectional push–pull DC–DC converter [30], which has an in-
creased power rating but also a further increase in voltage and current stress on the
switching tubes compared to the two forward and flyback transformers mentioned above,
for applications in low-voltage and medium-voltage high-power situations. As depicted in
Figure 6, the switching transistors S1, S2, S3, and S4 are responsible for modulating the cur-
rent within the push–pull converter’s circuit. The transformer’s primary coil is configured
with a total of Np1 and Np2 winding turns, whereas the secondary coil features Ns1 and Ns2
turns. The inductor L serves as the energy-storing component within the converter’s design.
C1 and C2 are the filtering capacitors. The converter operates between an input voltage V1
and provides an output voltage V2. The bidirectional push–pull converter, in which both
the primary and secondary sides of the transformer are of a push–pull structure, operates
in a bidirectional excitation mode with a significantly higher transformer utilization, and is
suitable for higher power ratings than the bidirectional forward and flyback converter, but
still suffers from the problem of resonance voltage spikes due to leakage inductance, which
restricts its operation to higher power ratings [31,32].

To reduce the amount of switching transistors and the gate drive components that go
with them, a new converter is presented. A higher efficiency can be achieved by using a
phase-shifting control strategy where all switching tubes are operated under zero-voltage
switching conditions [24]. A bidirectional current-type three-phase push–pull DC–DC
converter for DC microgrids is highlighted, and a new modulation technique is suggested
that addresses the issue of voltage spikes created during the clamping of the current-type
devices and allows for soft switching. The three-phase structure can improve the efficiency
of the converter [33]. A new triple anti-excitation current-fed push–pull bidirectional



Energies 2024, 17, 2434 6 of 29

DC–DC converter is proposed, and the working principle of the proposed converter is
analyzed and explained from two aspects, where DC transfer functions are presented for
the continuous, discontinuous, and critical conduction modes [34]. A bidirectional push–
pull DC–DC converter topology with current isolation has been proposed to realize the
wide range of the converter. This topology achieves the full soft switching of all transistors
over a wide input voltage and power range without the need for resonant switches or
snubbers [35].
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The PWM-type isolated bidirectional DC–DC converter topology has the advantages
of having fewer electronic devices, being easy to control, being able to basically meet the
needs of small and medium power, and having push–pull converter power, although the
power can be slightly improved, but, in the high-power occasions, it still seems a little
insufficient. A comparison of several PWM-type isolated bidirectional DC–DC converter
topologies is shown in Table 1.

Table 1. Comparison of several PWM isolated bidirectional DC–DC converters.

Converter Power Control Advantage Inferiority Application
Range

Bidirectional
Transition Speed

Bidirectional
flyback converter

PWM, phase
shifting

Simple structure,
low cost, easy drive

circuitry

Transformer in
unidirectional

excitation state,
low utilization of

transformer

Medium to small
power applications Fast

Bidirectional
forward converter

PWM,
phase-shifting

modulation

Simple structure,
low production

cost, good
dynamic response

characteristics

Large switch stress
when switch is

turned off

Low power
applications Fast

Bidirectional
push–pull
converter

PWM,
phase-shifting

modulation

Simple structure,
easy drive

circuitry design

Serious biasing
issues, high
switch stress

Medium to
low voltage
applications

Fast

2.2. Dual Active Bridge DC–DC Converter Topology

The topology of the dual active bridge (DAB) DC–DC converter is shown in Figure 7. In
Figure 7, V1 signifies the input voltage, while V2 represents the output voltage. The filtering
capacitors, denoted by C1 and C2, are integral for smoothing the output voltage waveform,
thereby reducing ripple and enhancing the quality of the power supplied to the load. On the
primary side, the inverter switching devices S1, S2, S3, and S4 are responsible for modulating
the current flow through the energy transfer inductor L, which is critical for energy storage
and transfer across the converter. On the secondary side, the rectifier switching devices
S5, S6, S7, and S8 are tasked with converting the AC back into DC, ensuring the efficient
energy transfer to the load side. The high-frequency isolation transformer, designated as T,
provides electrical isolation between the primary and secondary sides, which is essential
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for safety and can also help in voltage matching and noise reduction. This topology was
proposed by Prof. De Doncker in 1988 [36], but, due to the limitations of the power
devices at that time, which resulted in low efficiency, this topology did not attract much
attention [37]. In 2007, Prof. Yasufumi Akagi proposed that the DAB converter can be used
as the core topology of the next-generation high-frequency isolation converter, and, with
the development of switching devices, the DAB converter has gradually been emphasized
by more scholars [38]. The DAB converter is made up of full-bridge circuits on both
sides, an auxiliary inductor, and a high-frequency transformer. Because of the full-bridge
circuit construction on both sides, power can flow in both directions and active control
is possible on both sides [39,40]. The number of switching tubes is twice as much, the
converter’s transferred power capacity is greater, and the voltage–current stress on the
switching devices is half that of a bidirectional half-bridge converter. DAB converters
are widely utilized in numerous developing applications, like vehicle-to-grid systems, in
addition to energy storage systems [41] and solid-state transformers [42]. The benefits of
DAB converters’ high-power density, current isolation, soft-switching capabilities, and
adaptability to different power modulation schemes are what make them appealing. The
fundamental method of power control in a traditional DAB converter involves applying
two phase-shifted high-frequency AC voltages (square or quasi-square) to the ends of
the energy-transferring inductors via an H-bridge. This allows energy to move from the
overrunning AC voltage to the lagging AC voltage [43]. In addition, DAB converters are
characterized by a symmetrical topology, high power density, and easy soft switching, and
are widely used in DC distribution grids, electric vehicles, power electronic transformers,
distributed power generation systems, and other fields.

Energies 2024, 17, x FOR PEER REVIEW 7 of 29 
 

 

DC, ensuring the efficient energy transfer to the load side. The high-frequency isolation 

transformer, designated as T, provides electrical isolation between the primary and sec-

ondary sides, which is essential for safety and can also help in voltage matching and noise 

reduction. This topology was proposed by Prof. De Doncker in 1988 [36], but, due to the 

limitations of the power devices at that time, which resulted in low efficiency, this topol-

ogy did not attract much attention [37]. In 2007, Prof. Yasufumi Akagi proposed that the 

DAB converter can be used as the core topology of the next-generation high-frequency 

isolation converter, and, with the development of switching devices, the DAB converter 

has gradually been emphasized by more scholars [38]. The DAB converter is made up of 

full-bridge circuits on both sides, an auxiliary inductor, and a high-frequency transformer. 

Because of the full-bridge circuit construction on both sides, power can flow in both di-

rections and active control is possible on both sides [39,40]. The number of switching tubes 

is twice as much, the converter’s transferred power capacity is greater, and the voltage–

current stress on the switching devices is half that of a bidirectional half-bridge converter. 

DAB converters are widely utilized in numerous developing applications, like vehicle-to-

grid systems, in addition to energy storage systems [41] and solid-state transformers [42]. 

The benefits of DAB converters’ high-power density, current isolation, soft-switching ca-

pabilities, and adaptability to different power modulation schemes are what make them 

appealing. The fundamental method of power control in a traditional DAB converter in-

volves applying two phase-shifted high-frequency AC voltages (square or quasi-square) 

to the ends of the energy-transferring inductors via an H-bridge. This allows energy to 

move from the overrunning AC voltage to the lagging AC voltage [43]. In addition, DAB 

converters are characterized by a symmetrical topology, high power density, and easy soft 

switching, and are widely used in DC distribution grids, electric vehicles, power electronic 

transformers, distributed power generation systems, and other fields. 

V1 C1

S1 S2

S3

V2C2

L
T

S4

S5 S6

S7 S8

 

Figure 7. Dual active bridge DC–DC converter. 

The characteristics of the DAB converter are shown in Table 2. The DAB-IBDC has 

drawn increasing interest in recent years because to its benefits, which include the easy 

implementation of soft switching, bidirectional power transfer capability, modular sym-

metrical structure, etc. The two full-bridge converters, two DC capacitors, an auxiliary 

inductor, and a high-frequency transformer comprise the topology of the DAB-IBDC. The 

necessary voltage matching and current isolation between the two voltage levels are sup-

plied by the high-frequency transformer. An additional inductor is employed as a tempo-

rary energy storage mechanism. Research on the DAB-IBDC has so far concentrated on 

the following topics: hardware design and optimization, soft-switching methods and var-

iants, control strategies, and fundamental features. 

Table 2. Characteristics of DAB converter. 

Converter Power Control Advantage Inferiority 
Soft-Switching 

Range 

Bidirectional 

Transition Speed 

DAB converter 
Phase-shift modulation/Frequency 

modulation 

Simple structure, easy drive 

circuitry design 

Serious biasing issues, 

high switch stress 
Narrow Fast 

  

Figure 7. Dual active bridge DC–DC converter.

The characteristics of the DAB converter are shown in Table 2. The DAB-IBDC has
drawn increasing interest in recent years because to its benefits, which include the easy
implementation of soft switching, bidirectional power transfer capability, modular symmet-
rical structure, etc. The two full-bridge converters, two DC capacitors, an auxiliary inductor,
and a high-frequency transformer comprise the topology of the DAB-IBDC. The necessary
voltage matching and current isolation between the two voltage levels are supplied by the
high-frequency transformer. An additional inductor is employed as a temporary energy
storage mechanism. Research on the DAB-IBDC has so far concentrated on the following
topics: hardware design and optimization, soft-switching methods and variants, control
strategies, and fundamental features.

Table 2. Characteristics of DAB converter.

Converter Power Control Advantage Inferiority Soft-Switching
Range

Bidirectional
Transition Speed

DAB converter
Phase-shift modu-
lation/Frequency

modulation

Simple structure,
easy drive

circuitry design

Serious biasing
issues, high
switch stress

Narrow Fast
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2.3. Resonant Isolated Bidirectional DC–DC Converter Topology

The bidirectional resonant converter is a special type of IBDC, and it is also one of
the topologies that can achieve bidirectional energy conversion. This type of converter is
usually applied to systems with a bidirectional energy flow, such as electric vehicle charging
piles, renewable energy systems (e.g., wind and solar energy systems), grid energy storage
systems, and so on. The basic working principle of the bidirectional resonant converter
is to realize the conversion of the input electric energy in a resonant state by means of
reasonably designed inductive and capacitive components. One of the characteristics of the
bidirectional resonant converter is the ability to achieve high-efficiency bidirectional energy
conversion as shown in Figure 8 with a low level of electromagnetic interference. The
development of bidirectional resonant converters has been driven by the needs of electric
vehicles, renewable energy, and grid intelligence, and its performance and application range
have been expanded and improved with the continuous progress of power semiconductor
devices and control technologies. Therefore, as an important energy conversion technology,
the bidirectional resonant converter has a broad application prospect in the field of energy
and power electronics. Common bidirectional resonant converter topologies include the
bidirectional series resonant converter, bidirectional parallel resonant converter, bidirec-
tional LLC resonant converter, bidirectional LCC resonant converter, bidirectional LCL
resonant converter, bidirectional CLLC resonant converter, bidirectional CLLLC resonant
converter, and so on.
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2.3.1. Bidirectional Series Resonance Converter

The bidirectional series resonant converter is based on the traditional bidirectional
full-bridge DC–DC converter and introduces LC series resonance on the primary side of
the converter, and the topology of the converter is shown in Figure 9; the resonant inductor
L can be set separately.
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In order to prevent transformer saturation brought on by the switching devices’ volt–
second imbalance, the resonant capacitor C can also function as an isolation capacitor. This
allows it to effectively separate the DC component of the resonant current. Due to the low
probability of saturation of the series capacitor DBSRC transformer, the disadvantage of the
DBSRC is the size of the resonant loop, which brings additional size and cost. However, this
converter can only operate in buck mode and cannot achieve boost; there is a maximum
voltage gain when the converter operates at the resonant frequency, but the output voltage
regulation characteristics of this converter are not ideal for application in scenarios where
the output voltage regulation range is large. A technique for the optimal design of a series
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resonant converter based on a frequency domain analysis is proposed to analyze the ZVS
and ZCS operations in the bidirectional power transfer process and to describe in detail
the working principle of the converter in order to improve the efficiency of the entire
system. Resonant loop current minimization in the isolated resonant converter is a matter
of interest [44].

2.3.2. Bidirectional Parallel Resonance Converter

There is less power loss in the switching tubes and less ripple in the output current
of the bidirectional parallel resonant converter. Without sacrificing ZVS conditions, the
conversion employs forced switching across a preset frequency range or self-excited oscilla-
tory switching approaches. High voltage ratios between ports are made possible by the
high-frequency transformer, which makes converters useful for a variety of energy storage
systems, including hybrid cars, that need to be able to transfer power in both directions. LC
parallel structures, on the other hand, are shown in the figure, where a resonant inductor is
connected in series with a capacitor in the resonant cavity, and the transformer’s primary
side is subsequently connected to the two ends of the resonant capacitor to form a parallel
relationship. The LC parallel resonant structure has large output current fluctuations and
is prone to energy circulation between the resonant capacitor and the equivalent load, so
parallel resonance is not common. As application requirements increase, simple series or
parallel structures are no longer suitable for some applications, and more complex and
variable resonant structures have been created. Figure 10 depicts the circuit structure of the
shunt resonant converter, which also has an inductor L and a capacitor C connected in series
to form a resonant network. The shunt resonant converter differs from the traditional series
resonant converter in that the resonant capacitor and the primary side of the transformer
are in parallel, and an inductive element must be added to the vice side of the transformer
in order to match the impedance, and the output of the rectifier network is filtered by the
filtering inductance and the filtering capacitors, and then the energy will be transferred to
the load side. The output of the rectifier network is filtered by the filter inductor and filter
capacitor to transfer the energy to the load. The advantages of the shunt resonant converter
are as follows: in the operating frequency range greater than the resonant frequency, it
can realize the ZVS of the primary switching tube, and, compared with the series resonant
converter, its adjustment range is wider; in the case of a light load, the output voltage is
very sensitive to the change in operating frequency; when the output voltage fluctuation
occurs, it is only necessary to increase the switching frequency accordingly to make it
stable again.
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At the same time, the parallel resonant converter also has the following disadvantages:
when the load is zero, due to the parallel resonant converter resonant capacitor and the
load being a parallel structure, at this time, it is equivalent to the case where only the
resonant element is working; the impedance is very small, resulting in the switching-off of
the current and a loop energy rise; switching losses increase; the efficiency decreases; the
resonant slot current is not affected by the load; and the circuit’s pass-state loss is basically
unchanged, so the efficiency of a light load is very low. A very low load, mostly used for a
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relatively constant load and output voltage range of narrower occasions, due to the increase
in the output side of the converter filter inductor, will not be conducive to improving the
power density of the switching power supply.

It was suggested to use a resonant push–pull inverter in parallel with a multi-output
bidirectional DC–DC converter in series with a high-frequency current source to control
load variations. Alternatively, a straightforward photovoltaic power generation system
with a bidirectional converter and a current-fed inverter was suggested [45]. A low-current-
ripple, high-voltage-gain shunt resonant isolated bidirectional DC–DC converter for a
battery storage system was proposed in order to increase efficiency. It makes use of a
transformer shunt resonant capacitor to achieve the soft switching operation and recover
the leakage inductance energy [46].

2.3.3. Bidirectional LCC Resonant Converter

The LCC resonant converter combines the advantages of both the parallel resonant
converter and series resonant converter [47]. Therefore, it is also often called the LCC
resonant converter [48,49]. The typical topology of an LCC resonant converter is shown in
Figure 11. One possible application for the transformer’s leakage inductance is in the series
resonant inductance or in the inductance of the LCC converter, and the shunt parasitic
capacitance of the transformer can be used as a part of the shunt resonant capacitance or
part of the shunt resonant capacitance, which further reduces the circuit components.
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Since the 1980s, researchers have paid attention to the above characteristics of LCC
resonant converters and have conducted a lot of studies [50–52], giving a series of analysis,
design methods, and application methods. Among them, the high-voltage DC power
supply has become a very important application of the LCC converter. High-voltage DC
power supplies usually need to convert input voltages of tens or hundreds of volts into
output voltages of tens or even hundreds of kilovolts. This must be a high-turns-ratio
high-voltage transformer to meet the boosting demand, and, in order to increase the power
supply’s safety, simultaneously rely on the transformer to offer the primary and secondary
isolation of the high-voltage side and low-voltage side. The transformer has a large parallel
parasitic capacitance due to the high turns ratio [53] and high voltage isolation requirements
on the primary and secondary sides result in a substantial leakage inductance [54,55]. The
leakage inductance can be part of the series resonant inductance of the LCC transformer, the
shunt parasitic capacitance can be part of the shunt resonant capacitance, and the parasitic
parameters of the high voltage transformer do not negatively affect the LCC transformer.
Conversely, the substantial shunt parasitic capacitance of the LLC transformer makes it
more likely to become a fourth-order resonant transformer, which is undesired in real-world
applications. Therefore, the LCC resonant converter has more obvious advantages over the
LLC converter in the application of a high-voltage DC converter. The LCC converter can
utilize the above-mentioned transformer parasitic parameters as resonant elements, and
also has the advantages of soft switching and a wide input–output range [56].
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2.3.4. Bidirectional LCL Resonant Converter

As seen in Figure 12, the bidirectional LCL resonant converter substitutes an LCL
resonant network for the DAB converter inductor L. The return power can be eliminated
by controlling the voltage and current on both sides of the resonant network to be in the
same phase when the operating frequency of the converter is the same as the resonant
frequency. It is suggested to utilize an isolated three-port bidirectional DC–DC converter
to control several energy sources at once. The advantages of this converter are the use of
a minimum number of switches and the possibility of soft switching, which is achieved
by using an LCL resonant circuit. The proposed converter is constructed to manage PV
panels, rechargeable batteries, and loads simultaneously [57]. In order to improve the
efficiency of the converter and reduce losses, a single-stage isolated bidirectional DC–DC
converter for general-purpose electric vehicle charging has been proposed, that includes
an LCL resonant network, which uses a fixed-frequency phase-shift control that allows
for the simple design of passive components and soft switching of all the transistors in
constant-current, constant-power, and constant-voltage charging modes, with a minimum
of circulating current [58].
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In addition, the LCL-DAB converter is a common converter. The relationship between
the current harmonics and returned power when the converter is modulated by TPS
modulation is analyzed, and it is pointed out that the smaller the current harmonics are,
the smaller the returned power is. However, this paper only analyzes the qualitative
relationship between them and does not give a specific quantitative relationship [59].
Another multilevel LCL-DAB converter topology has been proposed with a four-level
modulation method, which effectively improves the efficiency of the converter at light
loads [60].

2.3.5. Bidirectional LLC Resonant Converter

In order to solve the problem of the high DAB converter turn-off loss and low system
efficiency, scholars have introduced resonant units in isolated DC–DC topologies. The
bidirectional LLC topology shown in Figure 13 is a typical application. The resonant capac-
itor is added on the basis of the DAB converter, and the resonant inductor resonates with
the resonant capacitor, which makes the resonant cavity current waveform present sinu-
soidal characteristics, which can realize the zero-current switching-off of the switching tube
through the resonant current over zero, and also reduce the distortion of the transformer
waveform and reduce its eddy current loss. The structure of the LLC is similar to that of
the series resonant converter, and both of them change the resonant cavity impedance by
adjusting the switching frequency, thus adjusting the gain of the converter. Compared with
SRC, the bidirectional LLC resonant converter can realize an equivalent gain greater than 1,
which broadens the system gain range, but, due to the asymmetry of the LLC structure,
when working in reverse mode, its structure is the same as that of SRC, and it can only
realize the buck voltage.

A bidirectional control strategy for the LLC-LC type of LLC resonant converter has
been proposed, which automatically realizes the bidirectional tidal currents without any
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current detection procedure and always guarantees soft switching. Using the proposed
control strategy improves the starting characteristics under no-load conditions and avoids
the risk of an output voltage rise and current surges [61]. A bidirectional LLC-DCX
converter with a center-tapped transformer has been given a better topology and PWM in
order to prevent voltage spikes and increase efficiency. This converter uses a modulation
strategy that enables ZVS on both the auxiliary and LV side power switching tubes in
order to lower the EMI and switching losses [62]. Another scheme to realize an efficient
stand-alone PV system is investigated, which is achieved by sharing resonant capacitors to
regulate the equivalent resonance conditions of the two phase-controlled resonant loops.
The novel circuit improves the overall efficiency without increasing the cost of the power
components by improving the LLC converter for a fixed-frequency operation and reducing
the number of power conversion stages simultaneously [63].
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LLC converters are often used in conjunction with DAB converters. LLC resonant con-
verters and DAB converters are attractive topologies for bidirectional power applications
due to their respective advantages; here are some examples: An LLC-DAB bidirectional con-
verter is proposed with a reduced number of switches where eight main switching tubes are
used for full-load-range ZVS, four auxiliary switching tubes are used for wide-load-range
ZVS, and switching junction capacitance for different power directions is considered. An
additional DAB circuit receives a fraction of the total power for the purposes of bidirectional
power conversion and voltage regulation. The main power is transferred through an LLC
circuit for high conversion efficiency and to achieve ZVS without a synchronous rectifier
circuit for switching tubes [64]. In order to realize bidirectional power and high efficiency,
an auxiliary DAB converter operating at a fixed frequency and a bidirectional LLC con-
verter with an input-series-output-parallel structure are combined. A new scheme based
on a full-load-range instantaneous transfer power estimation for accurate synchronous
rectification is proposed to achieve the on-line synchronous rectification modulation of
LLC-DCX for bidirectional power applications, which employs an additional auxiliary
DAB converter as a power detector to estimate the power value [65]. To integrate the
DAB and LLC converters into a single converter based on modulated coupled inductors, a
dual-mode bidirectional LLC-DAB converter was proposed. The converter’s LC energy
storage circuit can be altered in both working modes by simply modulating the PWM
signal. It is appropriate for resonating in the LLC mode with a resonant capacitor due to its
small leakage inductance [66].

2.3.6. Bidirectional CLLC Resonant Converter

To improve the voltage regulation and soft-switching problems of the bidirectional
LLC resonant converter in reverse operation, a resonant capacitor Cr2 can be added to the
secondary side of the bidirectional LLC resonant converter to form a bidirectional CLLC
resonant converter, as shown in Figure 14 [67]. This topology allows the circuit to realize
soft switching over the full load range with good voltage regulation regardless of forward
or reverse operation [68,69]. The problem of this structure is the asymmetry between the
primary and secondary sides of the converter, which results in different resonant slots for
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the forward and reverse operation of the converter, and thus different resonant frequency
characteristics and gain characteristics, which makes the parameter design, as well as
the control of the circuit, more difficult. Another bidirectional CLLC resonant converter
has a symmetrical structure, as shown in Figure 15; this topology can solve the problem
of asymmetric power transfer characteristics in the forward and reverse directions, but
there are still some drawbacks in the frequency conversion control, because the frequency
conversion control of the resonant converter is to adjust the equivalent impedance of the
resonance cavity to realize the voltage matching at the output. In other words, when the
output load changes, the operating frequency of the converter will also change, which
results in the dynamic characteristics of the converter being affected. At the same time, in a
wide voltage range of occasions, the converter frequency range will be correspondingly
wide, which is not conducive to the improvement of efficiency and the design of converter
parameters.
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This resonant structure has been proposed in order to realize a wide voltage range
regulation under bidirectional transmission, as well as to easily achieve soft switching and
a high efficiency [70]. The literature [71] gives another CLLC resonant structure, where a
resonant capacitor Cr2 is added to the secondary side of the transformer on the basis of
the LLC resonant structure, constituting an asymmetric CLLC structure, which also solves
the problem of the inverse gain being less than one. From the analysis, it can be seen that
both symmetric and asymmetric CLLC structures can solve the problem of a low inverse
gain, but, due to the addition of an extra resonant element, it brings about the problems
of increased size, design difficulty, and reduced power density. The CLLC design method
based on parametric equivalence and time-domain modeling has been proposed to design
CLLC resonant tank parameters with arbitrary parameters, but it increases the complexity
of modeling and analysis [72].

A bidirectional CLLC resonant converter with a quadratic resonant slot is described,
as shown in Figure 15, which improves on the topology of the above converter by adding a
resonant capacitor Cr2 to the secondary side of the converter, which constitutes different
resonant networks due to the different resonant elements in forward and reverse operation,
and both the primary and secondary switching tubes are capable of achieving soft switching,
so that the converter can be operated in both the forward and reverse directions; both have
a higher efficiency when operating in forward and reverse, and can realize the boost/boost
function. However, the structure of the converter is asymmetric in the forward and reverse
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operation, which makes the converter have different operating characteristics in the forward
and reverse operation and increases the complexity of designing the relevant parameters
of the converter and the difficulty of control [73]. In order to improve the efficiency and
power density, an integrated transformer bidirectional CLLC converter with synchronous
rectification has been proposed, which can be used for plug-in electric vehicles, using
an integrated transformer and simulated using finite element analysis, and synchronous
rectification has also been achieved [74]. For this converter, an optimized adjustable
leakage inductance planar transformer based on stacked printed circuit board windings
was constructed and designed to achieve a high power density and high efficiency [75].

2.3.7. Bidirectional CLLLC Resonant Converter

The bidirectional CLLLC resonant converter topology has good soft-switching charac-
teristics and can realize structurally symmetric bidirectional energy flow, which has been
recognized by scholars, and much research has been conducted on this. In terms of applica-
tion, the CLLLC resonant converter structure is applied to energy storage converters, which
improves the energy utilization efficiency and power quality [76]; this topology is applied
to power electronic transformers to realize soft switching, and the immunity performance
of the voltage loop and voltage equalization loop and the power equalization control are
verified to be effective from the parameter design point of view [77]; in order to simplify
the circuit design, an equivalent model of the CLLLC resonant converter is established
using a fundamental analysis, and the converter zero-voltage on-state, voltage gain, and
transmission efficiency are used as the constraints on the parameter selection [78]; in view of
the problem of the CLLLC resonant converter with a large frequency adjustment range and
a small voltage gain range, we used a hybrid boost control strategy [79]; a frequency-shift
hybrid control method was presented to address the low phase-shift modulation efficiency
and short voltage gain range of the CLLLC resonant converter. This method allows for
the simultaneous modification of the switching frequency and switching duty ratio [80];
moreover, in order to improve the efficiency of the CLLLC resonant converter, a new
broadband semiconductor device GaN-HEMT was used [81]; the three-phase interleaved
parallel bidirectional transmission CLLLC resonant converter has been researched in order
to reduce the converter power size [82].

The topology of the CLLLC resonant converter is shown in Figure 16. Compared
with the LLC resonant converter shown in Figure 13, this symmetrical structure adds an
LC resonant network to the secondary side of the transformer. In forward operation, the
excitation inductance Lm of the transformer is equated to the primary side, as shown in
Figure 16, which forms an LLC resonant network with Lr1 and Cr1; when the converter
operates in reverse, Lm can be equated to the secondary side, which forms an LLC resonant
network with Lr2 and Cr2. In fact, the excitation inductor is in the middle of the transformer
and should be in the middle of the two LC resonant networks, so the structure shown in
Figure 16 is completely symmetrical. Inductors Lr1, Lr2, and Lm and capacitors Cr1 and Cr2
combine to form a CLLLC resonant network.
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The symmetric CLLLC resonant converter topology shown in Figure 16 has been
studied in several papers [38,83,84], but some of them consider it as a bidirectional SRC
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structure without considering the excitation inductance. The studied structure, although
formally symmetric, requires the switching of the resonant capacitors in different operating
directions, and the added bidirectional switching increases the complexity and cost of the
structure [85]; Wen wrote a gain expression for the resonant network, which, in turn, yields
several key resonant frequency points. On this basis, the peak voltage gain equation of
the symmetric CLLLC resonant converter is derived, and a simplified design method is
proposed based on this equation, which avoids the complex solution and lengthy simulation
process [86]; the symmetric structure of the CLLLC resonant converter is studied in detail
in terms of the operating principle, operating characteristics, design method, and control
method [87].

However, the above literature assumes that the parameters of the resonant network in
the converter are also symmetric in the analytical process and does not consider the effect of
parameter asymmetry on the converter, while, in reality, there is always a slight asymmetry
in the parameters due to component errors and other reasons. Meanwhile, the actual
operating characteristics of the CLLLC resonant converter, such as the gain characteristics,
soft switching characteristics, light load characteristics, and starting characteristics, are still
to be studied in depth.

Although the increased resonant inductor capacitance on the secondary side of the
symmetrical CLLLC resonant converter affects the fundamental characteristics of the entire
resonant network, this converter is still the structure with a performance closest to that
of the LLC resonant converter and is able to maintain a high degree of consistency in
the bidirectional operation, which is an obvious advantage as a topology for high-power
IBDCs.

A comparison of several bidirectional resonant converter topologies is shown in
Table 3.

Table 3. Comparison of several bidirectional resonant converter topologies.

Converter Resonant Network Structure Power Control Advantage Inferiority
Soft-

Switching
Range

Bidirectional
Transition

Speed

Bidirectional
series resonant

converter
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3. Switching Strategies

In the switch control strategy of IBDC, it mainly includes PWM control, phase-shift
control, and frequency control. PWM control is primarily applied in PWM bidirectional
DC–DC converters within IBDCs, while phase-shift control and frequency control are
mainly used in DAB converters and bidirectional resonant converters. Therefore, in the
following text, PWM control is introduced for each type of PWM bidirectional DC–DC
converter, and phase-shift control and frequency control are discussed in the context of the
DAB converters and bidirectional resonant converters.

3.1. PWM Control

The PWM modulation strategy is adjusted by adjusting the duty cycle of the switching
tubes, as shown in Figure 17 for the basic PWM modulation strategy. This modulation
strategy is mostly used in circuits with a PWM bidirectional DC–DC converter structure
and is used less in resonant circuits because it is difficult to realize soft switching of the
switching tube when the duty cycle adjustment range is large [88–90]. In terms of PWM
switch strategies applied to bidirectional forward converters, as shown in Figure 17a,
switches S1 and S2 are simultaneously turned on and off, while switch S3 and the driving
waveforms of S1 and S2 are complementary. By adjusting the pulse widths of S1 and S2,
control of the output voltage can be achieved, with the same switch strategies applied for
both the forward and reverse directions. For bidirectional flyback converters, the switch
strategy is simpler. As depicted in Figure 17b, the driving signals for switches S1 and S2
are 180◦ out of phase, and, similarly, control of the output voltage is achieved by adjusting
the pulse widths of S1 and S2. The switch strategy for bidirectional push–pull converters
is slightly more complex, as shown in Figure 17c. Different driving signals are applied to
switches S1, S2, S3, and S4. When operating in the forward direction, the driving signals
for switches S1 and S2 on the primary side of the transformer are 180◦ out of phase, while
switches S3 and S4 on the secondary side of the transformer are complementarily conductive.
Control of the output voltage is achieved by adjusting the pulse widths of switches S1
and S2. Conversely, when operating in the reverse direction, the situation is reversed.
The driving signals for switches S3 and S4 on the secondary side of the transformer are
180◦ out of phase, while switches S1 and S2 on the primary side of the transformer are
complementarily conductive. Control of the output voltage is achieved by adjusting the
pulse widths of switches S3 and S4. vT1 refers to the primary voltage of the transformer.
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Figure 17. PWM switching waveforms. (a) PWM switching waveform of bidirectional forward 

converter. (b) PWM switching waveform of bidirectional flyback converter. (c) PWM switching 

waveform of bidirectional push-pull converter. 
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Figure 17. PWM switching waveforms. (a) PWM switching waveform of bidirectional forward
converter. (b) PWM switching waveform of bidirectional flyback converter. (c) PWM switching
waveform of bidirectional push-pull converter.

3.2. Phase-Shift Control

Phase-shift control is the most commonly used switch strategy in DAB converters
and bidirectional resonant converters, as illustrated in Figure 18. By controlling the phase-
shift angle, it regulates the output voltage and current, making it highly suitable for
scenarios involving a bidirectional power flow. There are four commonly used phase-shift
modulation strategies, namely, SPS, EPS, DPS, TPS.
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3.2.1. Single-Phase Shift

SPS is the most classical phase-shift modulation method in the DAB converter and
bidirectional resonant converter, and the key waveforms under SPS modulation are shown
in Figure 19, where vAB is the AC voltage at the primary side of the transformer, vCD is the
AC voltage at the secondary side of the transformer, and iL is the current flowing through
the equivalent inductor L. As shown in Figure 16, the equivalent inductor L represents the
leakage inductance Lm of transformer T and the external series inductance Lr, and the turns
ratio is n:1. Ts denotes the switching period, and Th denotes half of the switching period.
In a typical phase-shift modulation method, two power switching tubes in the same bridge
arm should conduct complementarily with a 50% duty cycle.
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SPS modulation produces a square-wave AC voltage with a 50% duty cycle on both the
main and secondary sides of the transformer by sequentially and simultaneously switching
the cross-connected switches in the two complete bridges. As a result, the phase shift D
between the primary and secondary sides of the transformer can be changed to change
the voltage across the equivalent inductor L. This means that the transferred power and
the associated steady-state performance of the DAB converter and bidirectional resonant
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converter can be easily controlled. Moreover, only when the input and output side voltages
are matched can the DC–DC converter benefit from the SPS modulation method, which
also allows for a broader soft-switching range, lower current stress, and improved transfer
efficiency. If not, it can result in a narrower zero-voltage switching range, higher loop
currents, root-mean-square currents, and current stresses [91–93]. Therefore, when the
input and output voltages are mismatched, the transfer efficiency of the DC–DC converter
will be greatly affected, especially under light load conditions.

3.2.2. Expanding-Phase Shift

Figure 20 displays the main waveforms of the EPS modulation strategy, which is a
common way to improve the SPS modulation strategy. As illustrated in Figure 20, the
external phase-shift angle is DE2, and an extra internal phase-shift angle DE1 is added
to either the primary or secondary side, in contrast to the SPS modulation technique.
Consequently, in the EPS modulation strategy, the full bridge’s one side produces a three-
level AC voltage, but, in the SPS modulation strategy, the full bridge’s other side produces
a two-level AC voltage with a 50% duty cycle. When EPS modulation is used instead of
SPS modulation, it not only increases the transmission efficiency but also expands ZVS’s
operational range, lowers reactive power, lowers current stress, and increases regulatory
flexibility [94,95].
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3.2.3. Double-Phase Shift

The key waveform of the DPS modulation strategy, which is comparable to the EPS
modulation strategy, is depicted in Figure 21. It features one exterior phase-shift angle DD2,
and two internal phase-shift angles of equal value DD1. As shown in Figure 21, the DPS
modulation strategy usually contains two different operating modes, i.e., 0 < DD1 < DD2 < 1
and 0 < DD2 < DD1 < 1.
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The operating principle, transmitted power, current stress, power loss, and soft switch-
ing, as well as the optimization design methodology of DPS modulation, are discussed
in the references [42,96–98]. The DPS modulation approach, like the EPS modulation
strategy, can be utilized to improve the ZVS working range, lower reactive power, lower
current stress, and increase transmission efficiency in order to improve the steady-state
performance of DAB converters and bidirectional resonant DC–DC converters.

Since the input and output full bridges of the DPS modulation strategy have the
same internal phase-shift angle of DD1, when the converter shifts between the buck and
boost modes, or when the direction of power transfer changes, there is no need to modify
the working states of the two full bridges. The DPS modulation approach is simpler to
implement than the EPS modulation strategy.

3.2.4. Triple-Phase Shift

Figure 22 displays the main waveforms of the TPS modulation technique. The TPS
modulation method is similar to the DPS modulation strategy in that it features two
independently controlled internal phase-shift angles (D1 and D2) at the secondary-side
full bridge and the primary-side full bridge, respectively, as well as an exterior phase shift
angle D3. Therefore, the TPS modulation contains three optimized control quantities (D1,
D2, and D3) that can be controlled independently, which makes the TPS the most flexible
phase-shift modulation strategy compared to the SPS modulation, the EPS modulation,
and the DPS modulation. Therefore, the TPS modulation strategy has the greatest potential
for performance optimization when compared to the other three phase-shift modulation
strategies. The operating principle, transmitted power, current stress, power loss, and soft
switching, and optimized design methodology of TPS modulation are discussed in the
references. The TPS modulation strategy enables the converter to achieve the minimum
current stress, minimum rms current, minimum power loss, and maximum ZVS range, etc.,
compared to the other three phase-shift modulation strategies [99–102].
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Special cases of TPS modulation include SPS modulation, EPS modulation, and DPS
modulation. The relationship between these four types of phase-shifted modulation is
shown in Figure 22. TPS modulation can be classified as either SPS or EPS depending on
whether D1 = D2 = 1 or D1 = 1; when D1 = D2, it can be classified as DPS modulation.

3.3. Variable Frequency Control

In addition to phase-shifted modulation strategies, frequency modulation strategies
have also become a popular method for optimizing the modulation of the DAB converter
and bidirectional resonant DC–DC converter, especially for wide-range power transmission.
A higher power transfer is possible with a lower switching frequency in a resonant DC–DC
converter and vice versa. Figure 23, where Tss, Tms, and Tls denote the high-, medium-,
and low-frequency cases, respectively, displays the main waveforms of the SPS modulation
method at various switching frequencies. From Figure 23, it can be seen that, for the same
phase-shift angle D, a lower switching frequency can realize a larger inductor current and
transferred power.
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Variable frequency modulation is often combined with phase-shift modulation meth-
ods to optimize the DAB converter and bidirectional resonant DC–DC converter. For
example, reference [80] proposes a variable-frequency phase-shifting scheme to reduce the
reactive power of a DC–DC converter while extending the ZVS range. Furthermore, four
optimization degrees of freedom may be achieved by combining TPS with inverter mod-
ulation, which offers a significant deal of opportunity to further enhance the converter’s
steady-state performance and transmission efficiency [103]. This modulation strategy with
four optimization degrees of freedom puts higher demands on the solution technique.

4. Application of IBDC in EV

The IBDC is widely used in the energy management system of EVs to achieve the
efficient energy conversion and transmission mentioned in the overview [104]. Firstly, it
converts the DC from the battery pack into DC suitable for driving the motor, ensuring
effective energy utilization and management. Secondly, it plays a crucial role in the charging
system of EVs by converting the DC from external power sources (such as charging stations)
into the voltage and current characteristics required by the battery pack, facilitating fast and
safe charging processes. Additionally, the IBDC is employed in the auxiliary power system
of EVs, supplying power to onboard electronic devices, and controlling auxiliary function
modules. Its high-efficiency energy conversion capabilities guarantee a stable operation and
efficient energy utilization across various vehicle systems. Overall, the IBDC significantly
contributes to the efficient, safe, and reliable operation of electric vehicles, thereby driving
advancements and developments in EV technology. Here are a few examples.

4.1. IBDC in EV

In order to obtain reference values of inductors in simulation studies of power induc-
tors in DC–DC converters, experimental schemes and methods for power inductors in
EV applications with large-signal characteristics have been proposed and the use of DC
flux canceling techniques in bidirectional converters and the use of variable inductance
prototypes instead of power inductors in order to adapt to the space requirements of the EV,
and the reduction in core sizes by increasing the ripple content of inductance currents, have
been applied to the EV. The optimization of the power inductor core size in bidirectional
DC–DC converters was investigated [105].

In the review [106], the applicability of various bidirectional DC–DC converters in
EV chargers is evaluated and compared. The circuit performance is analyzed and fully
compared. For use in EV battery charging, converters such as FBCLLC, HBCLLC, FBDAB,
and HBDAB are thoroughly examined and contrasted. For the HBCLLC converter, a
new generalized gain expression is derived. Four DC–DC converters are examined for
their effectiveness and usefulness in EV bidirectional charging systems. Performance
comparisons and a discussion of the topologies, guiding ideas, and design techniques of
the various converters are also included. By comparison, the CLLC converter is slightly
superior to the DAB converter for bidirectional wide-load EV charging system.

PWM isolated bidirectional DC–DC converters have good switching characteristics
but are not suitable for bidirectional applications because they always operate in “buck”
mode regardless of the power flow direction. A PWM-controlled bidirectional DC–DC
converter for an EV on-board charger has been suggested as a solution to this issue. Using
the structure change method, the gain of the converter can be doubled. The suggested
charger overcomes the gain feature of constantly “bucking” regardless of the direction of the
current by operating under bidirectional currents by employing the structural modification
method. It is taken into consideration as a possible option for the DC–DC stage of a backup
power system or V2G (H) EV charger [107].

A cascaded bidirectional DC–DC converter is proposed for use in multi-output, multi-
voltage-level electric vehicle systems, and its feasibility is verified. The converter is of the
DAB type and features wide-range soft switching, low current stress, minimal reactive
power flow, and a small footprint. Additionally, the advantages and necessity of employing
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bidirectional DC–DC converters in electric vehicles are highlighted, including maintaining
the stable bus voltage, meeting multi-voltage level requirements, and enhancing efficiency
further through appropriate control strategies [108].

The operational efficiency of batteries is influenced by their working temperature,
necessitating their operation within an appropriate temperature range. To regulate tem-
perature levels, a reconfigurable isolated bidirectional DC–DC converter is proposed for
balancing battery temperatures. The inherent characteristics of isolated converters enhance
the safety of the entire system. The proposed converter enables wide-ranging voltage
regulation, and its reconfigurable structure enhances system flexibility to accommodate
diverse scenarios. Additionally, it reduces the overall system footprint, thereby increasing
the available space [109].

Hybrid energy propulsion systems are applicable to electric vehicles, where a hybrid
bidirectional DC–DC converter is proposed, comprising voltage and current-fed paths. The
suggested converter achieves a balance between the fuel cell and supercapacitor outputs,
meeting stable voltage requirements for electric vehicles without occupying substantial
space. Even within a wide input voltage range, it can achieve a high efficiency [110].

The connection between electric vehicle batteries, peripheral energy storage devices,
and the grid in electric vehicle charging applications requires the use of DC–DC converters.
A novel isolated multi-port converter is proposed to maintain the stability of individual bus
voltages under multiple bus voltage inputs, achieving balance across multiple systems. This
reduces unnecessary losses, enhances energy quality, and improves overall safety [111].

Fuel cells possess characteristics such as a high efficiency, high power density, and
clean energy, making them suitable for electric vehicle propulsion systems. An isolated
bidirectional DC–DC converter suitable for this system is proposed, characterized by a high
efficiency, compact size, and simple circuitry. It can draw power from auxiliary batteries
and release surplus loads, effectively meeting system requirements and enhancing the
energy efficiency of electric vehicles [112].

A bidirectional DC–DC converter is required to connect the low-voltage battery and
high-voltage propulsion inverter in electric vehicles. An isolated bidirectional DC–DC
converter and a novel modulation strategy are proposed to meet the demands of high
voltage ratios. This converter achieves wide-range soft switching, saving space within
electric vehicles, increasing their lifespan, and enhancing power density [113].

4.2. Summary

We summarize the existing applications of IBDCs in the electric vehicle field as shown
in Table 4. IBDCs are widely used in various applications within the electric vehicle domain,
including battery temperature regulation, hybrid power control, and maintaining stable
bus voltage, among others. In these scenarios, the IBDC plays an indispensable role. Each
type of converter has its own advantages and drawbacks. The good current isolation
performance makes full-bridge and half-bridge CLLC converters suitable for high-power-
density and -efficiency applications, albeit with a higher voltage stress on components.
On the other hand, full-bridge DAB converters and half-bridge DAB converters feature a
lower voltage stress and high efficiency, making them suitable for medium-power-density
and -efficiency applications, although their current isolation performance is comparatively
weaker. Situations involving the rapid charging of numerous electric vehicles are well-
suited for isolated single-input multiple-output DC–DC modular multilevel converters,
offering fewer components and a lower voltage stress, while also providing the DC fault
blocking capability. Therefore, when selecting isolated bidirectional DC–DC converters, it
is essential to comprehensively consider factors such as the power density, current isolation
performance, voltage stress, and cost to achieve optimal performance and cost-effectiveness.
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Table 4. Converters used in electric vehicle system.

Specific Applications in Electric Vehicle The Topology of the Adopted IBDC The Achieved Results

EV on-board power supply

Bidirectional CLLLC converter High voltage gain and high efficiency

DAB converter
Wide soft-switching range, low current

stress and reactive power loss,
compact footprint

Auxiliary power supply for EV Bidirectional LLC converter High power density, high efficiency, high
system reliability, lightweight

Temperature control of electric
vehicle batteries Bidirectional LLC/CLLC converter High voltage gain, wide soft-switching

range, compact footprint, high safety

Hybrid power balance DAB converter and bidirectional series
resonance converter

High efficiency, wide soft-switching
range, eliminates reactive power loss

EV charging DAB converter High safety, improved power quality

EV drive system DAB converter Low cost, high efficiency

5. Conclusions

In this paper, IBDCs are reviewed in terms of topology and switching strategy. The
IBDC has been very widely used in the field, and each converter has its own advantages and
disadvantages, so, in recent years, because a single type of bidirectional DC–DC converter
in some areas of applications show a slight lack of power, the application of hybrid DC–DC
converters has been a development trend, which can make full use of the advantages
of different types of DC–DC converters, reduce or offset the disadvantages of DC–DC
converters, but this may also lead to some other problems, such as converter size increases,
cost increases, and so on. This can fully utilize the advantages of different types of DC–DC
converters and reduce or offset the disadvantages of DC–DC converters, but this may also
lead to some other problems, such as an increased converter size and cost, which need
to be further investigated and solved. In addition, nowadays, there are more and more
high-power applications; it is difficult for the single-phase IBDC to meet the demand of the
power level, and it is gradually moving towards a multi-phase topology. The three-phase
topology is superior to the single-phase topology in high-power applications because of
its reduced current stress; the low average and root mean square current of the device; its
higher efficiency; its higher power density; and the reduction in the size of the passive
components. The converter’s power density rises as a result of the input/output filters’
reduced size and cost due to an increase in the ripple frequency. The current research on
topologies focuses on minimizing the weight, size, losses, and cost, while maximizing the
reliability and power density. For switching strategies, the current research focuses on
reducing the circulating current, current stress, and conduction losses, and extending the
ZVS range.
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IBDCs Isolated Bidirectional DC–DC Converter
EVs Electric Vehicles
HEVs Hybrid Electric Vehicles
UPSs Uninterruptible Power Vehicles
PV Photovoltaic
FCs Fuel Cells
DAB Dual Active Bridge
PWM Pulse-Width Modulation
ZVS Zero-Voltage Switch
SRC Series Resonance Converter
ZCS Zero-Current Converter
LV Low Voltage
EMI Electromagnetic Interference
SPS Single-Phase Shift
EPS Expanding-Phase Shift
DPS Double-Phase Shift
TPS Triple-Phase Shift
V2G Vehicle-to-Grid
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