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Abstract: Offshore wind power has attracted significant attention due to its high potential, capability
for large-scale farms, and high capacity factor. However, it faces high investment costs and issues
with subsea power transmission. Conventional high-voltage AC (HVAC) methods are limited by
charging current, while high-voltage DC (HVDC) methods suffer from the high cost of power
conversion stations. The low-frequency AC (LFAC) method mitigates the charging current through
low-frequency operation and can reduce power conversion station costs. This paper aims to identify
the economically optimal frequency by comparing the investment costs of LFAC systems at various
frequencies. The components of LFAC, including transformers, offshore platforms, and cables, exhibit
frequency-dependent characteristics. Lower frequencies result in an increased size and volume of
transformers, leading to higher investment costs for offshore platforms. In contrast, cable charging
currents and losses are proportional to frequency, causing the total cost to reach a minimum at a
specific frequency. To determine the optimal frequency, simulations of investment costs for varying
capacities and distances were conducted.

Keywords: low-frequency AC; offshore wind farm; high-voltage AC; high-voltage DC; submarine
cable; offshore platforms; optimal frequency

1. Introduction

To keep pace with the global paradigm shift in the power sector, renewable energy
transition policies are being implemented to reduce reliance on coal-fired power generation.

Wind power is considered one of the most important renewable energy resources, and
in some countries, wind power accounts for over 20% of their total energy capacity [1].
Offshore wind power, which has potential for large-scale development, low environmental
impact, and high capacity (30–50%), has seen increased deployment [2,3]. Europe’s offshore
wind power capacity reached 25 GW by 2020, with a target set to reach 70 GW by 2030.
Additionally, global analyses suggest that 500 GW of offshore wind capacity must be
installed by 2030 and a total of 2500 GW is needed by 2050 to curb global warming [4,5].
Such turbines are being constructed farther offshore to maximize wind energy potential.
Despite its many advantages, offshore wind power faces challenges such as higher initial
investment and operational costs compared to onshore wind power, especially as the
distance from the shore increases, posing challenges for long-distance, large-scale power
transmission [6,7].

Traditionally, the solution for long-distance alternating current (AC) transmission
has been high-voltage alternating current (HVAC). However, offshore wind farms require
submarine cables for grid integration with onshore systems. Submarine cables have a higher
charging capacity than overhead lines, reducing the maximum transmission capacity is
and necessitating compensatory equipment [8]. To address these challenges, high-voltage
direct current (HVDC) systems have been proposed as a solution for interconnecting
offshore wind farms with the onshore grid [9]. DC transmission, lacking frequency, offers
greater flexibility in cable charging capacity and higher transmission capacity compared
to AC at the same voltage level. However, the installation of expensive power conversion
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equipment on offshore platforms and onshore platforms results in higher initial investment
costs. Compared to DC, HVAC has lower platform costs but suffers from a sharp increase
in costs with distance due to cable transmission capacity limitations. Therefore, HVAC
systems are preferred for short distances, but beyond a certain threshold distance, HVDC
systems are advantageous. With the increasing installation of offshore wind power, studies
on economic analysis considering power conversion equipment, cable costs, and losses
for selecting offshore wind power interconnection platforms are actively underway. The
threshold distance for the overall cost of HVAC and HVDC systems is 80 km for submarine
cable systems [10–12], while for overhead-line systems, it exceeds 700 km [13,14]. The
economic feasibility of distance is not always the determining factor. For example, in
overseas offshore wind power projects, while Hornsea [15] and Dogger Bank [16] are in the
same region, Hornsea opted for HVAC, whereas Dogger Bank chose HVDC.

LFAC, also known as a fractional frequency transmission system [17–20], is an in-
termediate system between HVAC and HVDC. Typically, it operates at one-third of the
standard frequency of HVAC, which is 20/16.7 Hz, instead of the typical 60/50 Hz. Its
lower frequency reduces the impact on the inductive reactance of overhead lines or the
capacitive susceptance of cables, resulting in decreased losses and increased transmission
capacity. Moreover, it reduces voltage sensitivity to reactive power fluctuations, enhancing
voltage stability. LFAC systems were initially applied to overcome joule losses due to the
standard frequency in railway systems with increasing distances in countries like Germany,
Austria, and Switzerland. They offer improvements in long-distance and submarine power
transmission, making them subject to extensive research. Notably, by leveraging the bene-
fits of offshore wind power, research on LFAC systems for interconnecting offshore wind
farms addresses issues such as the charging capacity problem of submarine cables in HVAC
and the high investment cost of HVDC as installation locations move farther offshore.
Figure 1 illustrates the interconnection configuration of offshore wind farms achieved using
the aforementioned methods.
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Figure 1. Structure of (a) HVAC, (b) HVDC, and (c) LFAC connection systems.

Evidently, LFAC systems, unlike HVDC, have AC/AC converters installed on only
one side, resulting in relatively lower platform costs [21]. Compared to HVAC, LFAC
systems have lower losses and higher transmission capacity, leading to lower cable costs.
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With these characteristics, the threshold distance for LFAC falls between HVAC and HVDC.
Olsen [22] and Hytten [23] analyzed the economic feasibility of offshore wind farm intercon-
nection methods across various distance ranges and suggested that HVAC is economical
for distances up to approximately 100 km, LFAC for distances between 100 and 200 km,
and HVDC for distances exceeding 200 km. Additionally, Xiang [24] divided the costs of
interconnection methods into the terminal cost and route cost and evaluated their economic
feasibility by categorizing them into the capital cost and power loss cost to determine
cost-efficient distance ranges.

Several studies have verified the economic feasibility of offshore wind farm-
interconnecting LFAC systems based on distance. However, in most of these studies,
the conventional frequency, 20/16.7 Hz, which is one-third of the standard frequency
60/50 Hz, has been set as the LFAC frequency. Economic analyses of LFAC systems with
non-standard frequencies have rarely been conducted. Moreover, frequency variations can
impact investment costs related to transformers, offshore platforms, and submarine cables.
According to the “2021 Cost of Wind Energy Review” of the National Renewable Energy
Laboratory [25], the Levelized Cost of Energy ratio of substructure and foundation construc-
tion and electrical infrastructure for offshore wind power has reached 20.6%, indicating
a significant portion of lifecycle costs alongside turbine (22.5%) and maintenance (24%)
expenses. This paper aims to identify the most economically optimal frequency for LFAC
systems by comparing total system costs under non-standard frequency operations. To
achieve this, this study calculates the investment costs of frequency-dependent components
and transmission costs from cables. In the case of transformers, lower frequencies lead
to increased volume and weight to maintain constant flux, while the costs of offshore
platforms are determined based on the weight of the equipment installed on top. As a
result, the costs of transformers and offshore platforms have an inverse relationship with
frequency. As previously mentioned, the primary constraint in subsea power transmission
is the capacity limitation due to the charging current. The charging current decreases with
lower frequency, increasing transmission capacity. Therefore, assuming the same capacity,
the number of cables required decreases as frequency decreases, leading to transmission
costs that are inversely proportional to frequency. Considering these characteristics of dif-
ferent components, there is a specific frequency at which the total cost of the LFAC system
is minimized. This varies with capacity and distance, so simulations were conducted under
different conditions to find the optimal frequency.

2. Frequency Dependence Analysis of LFAC Components for Connection to Offshore
Wind Farms

The components of an offshore wind farm-interconnecting LFAC system can be broadly
categorized as step-up low-frequency transformers, offshore platforms, submarine cables,
and frequency conversion devices. Among these, the frequency conversion device, which
allows the conversion of standard frequencies to low frequencies or vice versa, is one of the
most critical elements of an LFAC system.

A rotary frequency converter, consisting of two electrical machines widely used in
railways, is the most commonly employed frequency conversion device in LFAC sys-
tems [26,27]. However, such a converter exhibits poor mechanical-power transmission
efficiency and is characterized by a fixed input–output frequency ratio, which is determined
by the poles of the machine. To address these issues, back-to-back (BTB) converters based
on power electronics technology have been proposed [21,28,29]. Voltage-type BTB convert-
ers facilitate frequency conversion and power control; however, they use expensive power
electronic components and generate harmonics, which increase their costs. Therefore,
recently, several studies on modular multilevel matrix converters, which are beneficial for
AC/AC conversion, have been reported [30–32].

Analyzing LFAC systems requires frequency conversion devices, and considering
integration with offshore wind farms, these devices should be installed at the connection
point with the existing grid. Assuming the power conversion equipment operates reliably
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at frequencies above 10 Hz, the investment cost of frequency conversion devices generally
varies based on the rated voltage and capacity. Consequently, it can be assumed that
investment costs do not change with frequency variation. Taking these characteristics
into account, this study focuses its analysis on frequency-dependent elements such as
transformers, offshore platforms, and subsea cables.

2.1. Design of Power Transformers

Variations in frequency can significantly impact the design of power transformers.
The magnetic flux of a transformer can be expressed as follows:

E = 4.44 f NBm Acore, (1)

where f represents the rated frequency, N is the number of turns, Bm denotes the maximum
magnetic flux density, and Acore represents the core area. If the frequency decreases, then the
number of turns, maximum magnetic flux density, and core area must increase to maintain
the same power. Therefore, in such cases, large and wide low-frequency transformers are
required to maintain the same power level. These changes in the number of turns and core
area imply an increase in the use of copper and iron in the transformer, and therefore its
weight and price.

The cost of transformers designed for standard frequencies can be calculated based on
transformer rated power using the following formula [33]:

LV/MV : Ctr50 = −0.162 + 0.139 × S0.447
tr ,

MV/HV : Ctr50 = 0.045 × S0.751
tr ,

(2)

where Ctr50 represents the cost of a 50 Hz transformer (in M$), and Str denotes the rated
power of the transformer (in MVA).

As mentioned earlier, the size, weight, and cost of low-frequency transformers are ex-
pected to increase compared to transformers designed for standard frequencies. Assuming
that the maximum magnetic flux density is kept constant for the regular operation of the
transformer, we can define the changes in volume and overall area of the core and winding
due to frequency variation through first-order approximation as follows [34].

Vcore, Vwinding ∝ 1
fr

,
Aenc ∝ 1

3
√

f 2
r

, (3)

where Vcore represents the volume of the core, Vwinding denotes the volume of the winding,
Aenc indicates the overall area, and fr represents the non-standard frequency ratio (standard
frequency/nominal frequency). Therefore, the amount of raw material required for the
transformer varies according to the nominal frequency. Considering the percentage of
transformer cost presented in Table 1, the transformer cost according to frequency can be
calculated as follows [34]:

Ctr =
0.325 fr + 0.22 fr + 0.164 3

√
f 2
r

0.325 + 0.22 + 0.164
× Ctr50. (4)

Figure 2 illustrates the cost variation for a 100 MVA power transformer from 10 to
120 Hz. As the frequency increases, the transformer cost decreases, with approximately a
ninefold difference in cost between 10 and 120 Hz.
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Figure 2. Power transformer cost versus frequency.

Table 1. Percentages of overall costs of materials used to manufacture a transformer [35].

Transformer Material Cost (%)

Magnetic steel 32.5 ± 5.5
Windings 22.0 ± 6.0
Insulation 14.1 ± 5.5

Carbon steel 16.4 ± 8.5
Fabricated parts 15.0 ± 9.0

2.2. Offshore Platforms

Offshore wind power requires offshore platforms, such as offshore substations, to
transmit the generated power to the onshore grid. Owing to their construction in the sea,
the selection of substructures is crucial and can be divided into fixed and floating types
depending on the water depth. Fixed structures are used for depths below 60 m, while
floating structures are applied for depths exceeding 60 m. Approximately 99.8% of the
offshore wind turbines installed before 2022 worldwide are fixed structures, indicating that
floating structures are still in the early stages of development. Even within fixed structures,
variations due to water depth and ground conditions occur; such variable structures are
categorized into gravity-based, monopile, jacket, and tripod types, whose characteristics
are outlined in Table 2 [36].

Table 2. Comparison of fixed substructure types of offshore wind turbines.

Gravity Monopile Jacket Tripod

Depth of water [m] ~30 ~30 10–60 20–60

Advantages
Simplicity of structure

Ease of installation
High safety

Lightweight/simple
structure

Ease of installation

Lightweight
High strength

Lightweight
High safety

Disadvantages

Constraints on the ground
Heavy weight

Long construction
duration

Constraints on the ground
Induces terrain changes

Constraints of weather
conditions

Constraints on the ground
Fixed offshore installation

platform is required

Currently, over 70% of fixed structures are of the monopile type, while jacket-type
structures are commonly used in relatively deep waters (30–60 m). However, the average
water depth for offshore wind farms is approximately 33 m, and there is a trend toward
venturing into deeper seas to maximize the potential of offshore wind energy. Considering
this trend, we assume a water depth of 40 m and select jacket-type substructures. Figure 3
illustrates the critical elements of a jacket-type structure [37].
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The factors influencing the substructure of offshore platforms are water depth and
weight, and the cost for each essential element can be expressed as follows [37]:

Ctopside = topside mass [ton]× 0.00795, (5)

Cjacket = jacket mass [ton]× 0.00371, (6)

jacket mass [ton] = water depth [m]× 1.7 × topside mass [ton]0.4557, (7)

Cpile/ f oundation = ((0.0235 × (jacket mass [ton] + topside mass [ton])+
534)× 0.00159,

(8)

where Ctopside, Cjacket, and Cpile/ f oundation represent the cost (M$) of the topside, jacket, and
foundation, respectively.

In an offshore wind power-generation platform, the weight of the topside can vary
per frequency, depending on the transformers and shunt reactors used for reactive power
compensation. The weight distribution of transformers is shown in Table 3, primarily
consisting of electrical steel sheets, steel, copper, and insulating oil. Applying this to the
volume change in transformers according to frequency, the weight of a transformer per
frequency can be represented as follows:

Wtr =

(
0.56 fr + 0.38 3

√
f 2
r + 0.06

)
× Wtr50, (9)

where Wtr and Wtr50 represent the weight of a non-standard frequency transformer and
50 Hz frequency transformer, respectively. Typically, the weight of a transformer with the
same frequency, voltage, and capacity is proportional to approximately 0.7 to 0.8 times the
capacity. Additionally, when the capacity, frequency, and voltage are the same, the weight of
a single-phase transformer is approximately 80% of the weight of a three-phase transformer.
In this study, we assumed the feasibility of transporting transformers; therefore, the weight
was calculated based on a three-phase batch transformer. The weight of a transformer varies
depending on the structure, manufacturer, and materials used, so a general transformer is
assumed (132 kV/20 MVA/40 tons, 220 kV/150 MVA/200 tons).
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Table 3. Percentages of the weights of raw materials used in a power transformer.

Transformer Raw Material Weight (%)

Electrical steel 40
Steel 19

Transformer oil 19
Copper 16
Other 6

The structure of the shunt reactor for power factor correction is similar to that of
a power transformer. Therefore, the weight of a shunt reactor is typically calculated as
two-thirds of the weight of a transformer with the same capacity. Owing to their similar
structures, we assume that the weight and cost changes due to frequency are the same for
shunt reactors and transformers, and thus, the weight of a shunt reactor is estimated to be
two-thirds of the weight of a transformer with the same capacity.

The amount of steel required for the topside structure of an offshore platform should
be assumed to be equal to the weight of the installed equipment, as it needs to support
the weight of the installed systems. Therefore, the topside mass can be calculated as twice
the weight of the equipment. Figure 4 illustrates the variation in the weight of the topside
structure with the application of a 100 MVA power transformer. As the frequency increases,
the weight decreases, and an approximately 6.5-fold difference in weight between 10 and
120 Hz is evident.
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Figure 4. Topside mass versus frequency.

Based on this, the cost of the offshore platform substructure by frequency is calculated
as shown in Figure 5. Because the basic construction costs are not significantly influenced
by frequency, an approximately threefold difference is observed in the substructure cost
between 10 and 120 Hz.
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2.3. Submarine Cable

2.3.1. Transmission Capacity of the Cable

In AC systems, a charging current occurs, which interferes with power transmission
through the cables. The charging current is generated through the shunt capacitance of the
cable and increases with the cable length and voltage levels, playing a crucial role in cable
selection. The charging current of the cable can be expressed as follows:

Ic =
EωCL√
3 × 103

, (10)

where Ic represents the charging current (A), E is the rated voltage (kV), ω is the angular
frequency of the voltage, C is the capacitance per unit length (µF/km), and L is the cable
length (km). The reactive power generated in the cable due to this charging current is
defined as follows:

Qc = IcE × 10−3, (11)

where Qc represents the reactive power (Mvar). Therefore, the effective power transmission
capacity of the cable can be expressed as follows:

P =
√

S2 − Qc 2, (12)

where P represents the effective power at the receiving end (MW), and S represents the
generating capacity (MVA). Equations (10)–(12) show that the effective power transmission
capacity of the cable increases as the frequency decreases. Figure 6 illustrates the effective
power transmission capacity of 132 and 220 kV 1000 mm2 cables according to frequency
and length. As the rated voltage increases, the transmission capacity increases, but the
reactive power also increases, resulting in shorter transmission lengths.
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2.3.2. Transmission Capacity of the Cable

As shown in Figure 6, even with the same cable specifications, increasing the frequency
results in a change in the charging current, leading to a decrease in the current delivered to
the load. Therefore, for designing cables suitable for transmission distances, the operating
frequency, voltage, capacity, cable capacitance, and other factors need to be considered. As
evident from Equation (10), as the transmission distance increases, the charging current
increases, and the length at which the charging current equals the supply current is defined
as the critical transmission distance of a cable, which is defined as follows:

Lc =

√
3Is

ωCE
× 103, (13)

where Lc represents the critical distance of the cable (km), and Is denotes the supply current
(A). Figure 7 illustrates the critical distance at the rated capacity of the cable.
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At the rated capacity of the cable, as the frequency increases, the critical transmission
length sharply decreases. As mentioned earlier, higher voltages result in larger charging
currents, leading to shorter critical transmission distances. Moreover, with larger spec-
ifications, the capacitance per unit length of the cable increases, further shortening the
critical length.

2.3.3. Number of Cables

Based on the findings from Figure 6, we assessed the effective power transmission
capacity of the cable. As the frequency increases, the transmission capacity decreases,
implying a potential need for an increased number of cables to deliver power from offshore
wind farms. The required number of cables based on the rated capacity of the cable can be
defined as follows:

Nc =
S
P

, (14)

where Nc represents the number of cables. Figure 8 illustrates the number of cables required
at different frequencies based on the cable specifications. These results were determined
by assuming a distance of 120 km, a rated voltage of 220 kV, and a capacity of 500 MVA.
Because the number of cables must always be an integer (fractions are not possible), the
solid lines in Figure 8 represent the calculated number of cables, while the dashed lines
represent the actual number of cables.
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2.3.4. Compensation of Reactive Power

Generally, shunt reactors are applied to compensate for the reactive power generated
by the cables in offshore wind power systems. Typically, reactive power compensation is
considered from the point where the cable utilization is 85%, which corresponds to 15% of
the maximum power [38]. The amount of reactive power generated at this point is given
by Equation (10). In this study, the cost of reactive power compensation was assumed to be
0.031 (M$/Mvar) [24].

2.3.5. Cable Loss

The losses in the cable are primarily due to the heat generated by the resistance within
the cable during current flow. These losses are proportional to the square of the current
flowing through the cable, its resistance, and its length, and can be expressed as follows:

Ploss =

(
Is

Nc

)2
RLNc, (15)

where Ploss represents the cable loss, and R denotes the resistance per unit length of the
cable. Additionally, as the frequency decreases, the skin depth increases, resulting in a
decrease in the resistance of the cable [21]. However, previous studies show that when the
frequency is increased from 0 to 60 Hz, the resistance increases by approximately 0.2%,
and the inductance increases by ~0.1% [39]. However, under steady-state conditions, the
changes in skin effect due to frequency are negligible and can be ignored.

The losses are quantified by considering the offshore wind power selling price, utiliza-
tion rate, and project duration as follows:

Closs = Plossρo f f Co f f Do f f (
Is

Nc
)

2
RLNc, (16)

where Closs represents the cost of losses, ρo f f is the offshore wind power utilization rate
(0.22), Do f f is the offshore wind power project duration (20 years), and Co f f is the offshore
wind power selling price (0.00025 M$/MWh).

2.3.6. Cable Cost

Cables vary in terms of capacitance, rated current, and cost depending on the rated
voltage and specifications. Additionally, cable length and quantity are determined by
distance and capacity. Therefore, cables play a crucial role in the selection of optimal
frequencies for offshore wind power-generation sites. The cable prices referenced in this
paper are shown in Table 4. Figure 9 illustrates the variation in cable costs according to
distance and capacity for a 132 kV, 630 mm2 cable specification. As the frequency increases,
the transmission capacity of the table decreases, leading to an increase in the number of
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cables and, consequently, the investment cost. Evidently, investment costs increase with
increasing capacity and transmission distance.

Table 4. Parameters of cables used in LFAC system.

Nominal Voltage
(kV)

Cable Size
(mm2)

Resistance
(mΩ/km)

Capacitance
(nF/km)

Nominal Current
(A)

Cable Cost
(M$/km)

132

500 32.6 192 899 0.787

630 26.2 209 995 0.849

800 21.5 217 1080 0.986

1000 18.2 238 1154 1.066

220

500 32.4 136 890 1.011

630 25.9 151 982 1.054

800 21.1 163 1069 1.209

1000 17.9 177 1145 1.240
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3. Optimal Frequency Simulation of An Offshore Wind Farm-Connected LFAC System

In this study, simulations were conducted to determine the optimal frequency based
on equipment that varies with frequency in the LFAC system-interconnecting offshore
wind power-generation sites. The simulation aimed to identify the frequency at which the
investment and operational costs are minimized. Previous studies evaluating the economic
viability of LFAC systems indicated their viability at distances ranging from 80 to 200 km.
Therefore, in this study, the simulation for selecting the optimal frequency was conducted
for distances of 80, 120, 160, and 200 km. Additionally, considering the decrease in cable
transmission threshold distance with increasing voltage level, rated voltages of 132 and
220 kV were selected, and the capacities were increased from 100 to 1000 MVA to observe
variations in the optimal frequency.
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3.1. Selection of Optimal Frequency and Cable

Previously, transformers and offshore platforms exhibited a characteristic where fre-
quency and cost are inversely proportional. In contrast, the cable and reactive power
compensation costs increase with frequency owing to the proportional charging current,
leading to increased expenses with increasing frequency. Moreover, due to the limitation
on power transmission capacity, an increase in cables leads to increased losses. Therefore,
the total cost of an offshore wind farm-interconnecting LFAC system reaches a minimum
at a specific frequency. Figures 10 and 11 illustrate the total investment costs and optimal
frequency points by distance at a rated voltage of 132 kV, and Figures 12 and 13 present the
simulation results obtained for a rated voltage of 220 kV.
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3.2. Simulation Results

Figure 10a shows that as the transmission distance increases to 80 km, the optimal
frequencies for capacities ranging from 100 to 500 MVA decrease to 42, 37, and 36 Hz. This
decrease in optimal frequency with increasing capacity under the same cable specification
of 630 mm2 suggests that as the capacity increases, the amount of current, cables, and
losses also increase, leading to a lower optimal frequency. For higher capacities such as 700
and 1000 MVA, the largest cable specification of 1000 mm2 exhibits the most economical
performance at 41 and 42 Hz. Similarly, as the capacity increases, the lower specifications
necessitate an increase in the number of cables required for transmission, resulting in
these outcomes.

Figure 11b represents the scenario with a transmission distance of 200 km under the
same conditions. For capacities ranging from 100 to 500 MVA, using 630 mm2 cables, the
optimal frequencies decrease significantly to 18, 15, and 14 Hz compared to the 80 km
scenario. This substantial decrease in optimal frequency with longer transmission distances
can be interpreted as a consequence of cable costs dominating over factors such as trans-
former size, cost, and offshore platform installation. Table 5 summarizes the results of the
optimal frequency simulation for a rated voltage of 132 kV.

Table 5. Results of optimal frequency simulation (132 kV).

Nominal Voltage
(kV)

Transmission Length
(km)

Wind Farm Capacity
(MVA)

Optimal Frequency
(Hz)

Cable Size
(mm2)

Total Cost
(k$)

132

80

100 42 630 49,091

300 37 630 131,666

500 36 630 215,784

700 41 1000 246,328

1000 42 1000 299,683

120

100 29 630 70,881

300 25 630 192,922

500 24 630 318,165

700 27 1000 362,993

1000 28 1000 442,090

160

100 22 630 91,694

300 19 630 253,964

500 18 630 420,251

700 21 1000 479,684

1000 22 1000 584,314

200

100 18 630 112,418

300 15 630 314,848

500 14 630 522,195

700 17 1000 596,111

1000 17 1000 725,881

The results shown in Figure 12a, with a rated voltage of 220 kV and a transmission
distance of 80 km, indicate that the optimal frequencies decrease to 36, 33, and 33 Hz for
capacities ranging from 100 to 500 MVA. This decrease in optimal frequency with increasing
capacity can be interpreted similarly to the previous results; that is, as the capacity increases,
the optimal frequency decreases to maintain the power transmission capacity. Furthermore,
voltages greater than 132 kV result in high reactive power owing to the increase in capacity,
leading to a low frequency.

As explained earlier, losses, reactive power, and the number of cables increase as
capacity increases, necessitating a lower frequency. However, the frequency increases again
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for capacities of 700 to 1000 MVA, which can be attributed to the capacity of the 1000 mm2

cable. Because the rated capacity of the cable is large, while the number of cables remains
similar, the costs of transformers and offshore platforms increase exponentially with capac-
ity. Therefore, unless the transmission capacity significantly exceeds the rated capacity of
the cable, it is interpreted that the optimal frequency increases as the capacity increases.

Figure 13b depicts the scenario with a transmission distance of 200 km, showing
a decrease in the optimal frequency to 13–16 Hz as the transmission distance increases.
Table 6 summarizes the results of the optimal frequency simulation for a rated voltage of
220 kV.

Table 6. Results of optimal frequency simulation (220 kV).

Nominal Voltage
(kV)

Transmission Length
(km)

Wind Farm Capacity
(MVA)

Optimal Frequency
(Hz)

Cable Size
(mm2)

Total Cost
(k$)

220

80

100 36 630 42,532

300 33 1000 104,686

500 33 1000 163,302

700 35 1000 181,004

1000 38 1000 213,352

120

100 25 630 58,847

300 22 1000 151,197

500 22 1000 238,158

700 24 1000 263,837

1000 26 1000 311,244

160

100 19 630 74,958

300 17 1000 197,453

500 17 1000 312,743

700 18 1000 346,303

1000 19 1000 408,729

200

100 16 630 90,943

300 14 1000 243,593

500 13 1000 387,090

700 14 1000 428,586

1000 16 1000 506,008

Tables 5 and 6 show that the total cost is lower for a rated voltage of 220 kV than
for 132 kV. Furthermore, as the capacity increases, the difference in cost also increases,
indicating that higher capacities are more advantageous with higher rated voltages. This
occurs because the losses incurred in the cables outweigh the compensating effect for
capacitive reactive power generated by higher voltages.

Similarly, as the transmission distance increases, the losses in the cables become
significant, and thus, higher rated voltages become favorable. However, if the rated voltage
is too high, it can lead to increased reactive power and a shorter power transmission
distance for the cables, necessitating careful selection of the cables to consider these factors.

4. Conclusions

This study introduces a method to identify the economically optimal frequency for
LFAC systems integrated with offshore wind farms. Key components of LFAC systems,
such as transformers, offshore platforms, and subsea cables, exhibit frequency-dependent
characteristics, affecting investment costs due to frequency variations. As a result, this
study calculates the costs of LFAC components and evaluates the impact of frequency,
capacity, and distance on total costs.
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When frequency decreases, transformers require an increase in the number of windings
and core area, necessitating greater amounts of copper and iron for manufacturing and
resulting in higher investment costs. Consequently, there is an inverse relationship between
frequency and costs, with the transformer costs at 10 Hz approximately nine times higher
than those at 120 Hz. The weight of equipment installed on offshore platforms influences
overall platform costs. Given that AC substations, including transformers, must be placed
on the platform, a decrease in frequency leads to higher platform installation costs. Thus,
there is an inverse correlation between frequency and costs, with platform costs at 10 Hz
roughly three times higher than at 120 Hz. Subsea cable costs are determined by the
quantity of cables needed for a given capacity and the need for reactive power compensation
equipment. As the frequency decreases, the charging current decreases, which increases
the transmission capacity and suppresses the reactive power generation. Hence, subsea
cable costs are directly proportional to frequency.

The simulation results revealed that when distance remains constant, increasing
capacity favors lower frequencies due to an increase in reactive power, losses, and the
number of cables required. However, upon reaching a critical capacity, there is a tendency
to shift towards higher frequencies. This shift is attributed to the advantages of utilizing
cables with larger cross-sectional areas, which decrease losses and reduce the number of
cables needed, thus offsetting the installation costs.

A comparison of 80 km and 200 km distances at 132 kV and 500 MVA showed optimal
frequencies of 36 Hz and 14 Hz, respectively, with the optimal frequency for the 200 km
distance being notably lower. This is explained by the considerable increase in cable costs
compared to transformer and offshore platform costs as distance increases. Furthermore, a
comparison of rated voltage levels demonstrated that using 220 kV resulted in lower total
costs compared to 132 kV. This outcome is attributed to the greater impact of loss reduction
in cables compared to the benefits of reactive power compensation from the increase in
rated voltage.

This paper’s analysis does not account for the efficiency of transformers and wind
turbines, the operational conditions and efficiency of power conversion devices, the voltage
stability of LFAC systems, or thermal limits. Operation at non-standard frequencies may
affect equipment designed for standard frequencies, suggesting that future research should
focus on selecting an economical frequency within stable conditions while taking existing
equipment into account.
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