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Abstract: Global warming and the urban heat island effect has aroused the attention of research
on the outdoor thermal environment. As outdoor spaces often used by citizens, streets play an
important role in improving the thermal environment. In this study, six factors relating to street
geometries and tree configurations in Busan are measured and quantified to form 32 typical scenarios.
The degree of importance of these six factors is evaluated based on ENVI-met simulation results,
and GeoDetector is introduced to evaluate the interactions between the factors and their impacts
on the outdoor thermal environment. This study confirms the significantly higher impact of street
geometry factors on the air temperature and physiological equivalent temperature compared to tree
configuration factors. Particularly, Hb/Ws shows the most significant impact during the research
period. The impact of interactions between any two factors of street geometry is much higher than that
of interactions between the geometry and tree configuration factors and that of interactions between
the tree configuration factors. We recommend dynamically adjusting the relationship between street
geometry and tree configurations in different situations to improve the outdoor thermal environment,
especially at noon and in the afternoon.

Keywords: street canyon; microclimate; thermal comfort; ENVI-met; GeoDetector

1. Introduction

By 2050, approximately 70% of the population is predicted to live in cities, continuing
the current trend of increasing urban populations [1]. Due to rapid urbanization, newer
cities have become centers of stronger urban heat island effects rather than older ones [2].
Meanwhile, city expansion changes local atmospheric circulation [3], causing frequent
occurrences of extreme weather including heatwaves and floods [4,5], which have a variety
of adverse effects on human health [6,7] and ecosystems [8]. The existing urban-planning
strategies require transformation to create sustainable cities and communities (SDG 11) that
adapt to global climate change. Streets constitute > 80% of urban open space and play an
important role in urban infrastructure [9]. As a social space, streets provide a platform for
social behavior and experiences [10].

The microclimate of a city’s local districts forms the urban climate, significantly as-
sisting in determining the urban physical environment [11]. Various biometeorological
indices describe the outdoor thermal environment by linking the microclimate and human
activity [12,13], including the predicted mean vote [14], PET [15], and universal thermal
climate index [16]. The efficiency of using the PET for measuring tropical, subtropical, and
temperate regions has been verified by existing studies on the widely used thermal comfort
index [17]. Street canyons form basic geometric units [18], and their key properties can
be expressed with Hb/Ws values [19]. From the perspective of vegetation configurations,
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increasing public green space [20], planting street trees [21–23], and roof greening [24,25]
are considered good solutions to improve the outdoor thermal environment. However,
street trees have a better cooling effect than grass and shrubs [22,26], as tree canopies block
solar radiation, and reduce the TA in shadowed areas [27]. Meanwhile, transpiration by
tree canopies increases environmental humidity [28,29]. Research on street trees mainly
concentrates on the tree height [30,31], planting distance [11,32,33], canopy shapes [34–36],
and green-cover ratios [37,38]. Geometric patterns and vegetation configurations have
been proven to induce stronger effects than surface material and water body changes on
improving the outdoor thermal environment [39,40]. Additionally, most existing studies
have only focused on some factors, e.g., Dbt and Dt [11], or Hb/Ws and Os [41], in different
districts and weather conditions [40] when evaluating the outdoor thermal environment.
Moreover, the effects of factor interactions on the outdoor thermal environment have also
not been analyzed in detail.

Recently, numerous evaluation methods including field measurements [35,42], simula-
tions [21,26,31,32,43], combinations of field measurements and simulations [30,37,44–47],
and scaled models [34,48] have been developed to study and assess the outdoor thermal
environment. Toparlar et al. confirmed that 46.7% of research was focused on more than
one meteorological parameter measurement [49]. Microclimate models not only contain
computational fluid dynamics software, including OpenFORM [50], ANSYS Fluent [51],
and ENVI-met [52], but also involve user development programs such as MMRT [53] and
COSMO-DCEP [54]. Particularly, ENVI-met is considered suitable for use with appropriate
validation in most studies [52], and simulation results show a strong fit with measured
values under different geometrical and meteorological conditions [55–58].

This study aims to comprehensively confirm the order of importance of street canyon
factors and evaluate the characteristics of the outdoor thermal environment under heat-
waves through field measurements, experimental design, and ENVI-met software. Mean-
while, the impact of factor interactions on the outdoor thermal environment is evaluated
using GeoDetector through spatial heterogeneity analysis of the simulated results. Further-
more, this study is anticipated to provide a reference for street planning to regenerate old
cities and develop new cities in cases of extremely hot weather conditions.

2. Materials and Methods
2.1. Study Area

Busan (35◦05′ N, 128◦35′ E), located on the south-easternmost tip of the Korean
Peninsula (Figure 1), is the economic, cultural, and educational center of southeast Korea.
For this study, Nampodong, Seomyeon, and Centum City were selected as the targeted old,
present, and new city-center sites to represent the urban development of Busan.
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According to the Köppen–Geiger climate classification, Busan has been classified at
the border of Cfa and Cwa zones [59]. Reportedly, the mean annual temperature of Busan
is 14.7 ◦C and its average summer precipitation is 778.7 mm, accounting for 51.2% of the
annual precipitation. However, Busan was hit by unprecedented heat in August 2016:
the official maximum temperature recorded was 37.3 ◦C (the highest in 112 years), with a
maximum temperature of approximately 40 ◦C in some areas.

2.2. Field Measurements
2.2.1. Field Measurements of the Three City-Center Sites

To explore the existing street canyons of Busan, 15 representative sites were selected
for investigation in the old, current, and new city-center areas. Most of these sites were
situated along main streets and contained large commercial, administrative, or official
buildings. Based on street geometry, the streets were divided into grids with 20 m spacing
in each representative plot. For tree configuration characteristics, the Dbt and Dt were
directly measured. Additionally, the Ht was calculated by estimating the top positions of
tree crowns projected parallel to a building facade through single-story building height
measurements.

The measurement results for the 15 representative sites are presented in Table 1. The
buildings around the main streets of Nampodong are primarily low-rise buildings, but the
scale of buildings gradually increases towards the newer developed parts of the city. The
selected sites were centered on commercial buildings above 6 F. Among them, the Ws of
OC4 was the smallest, but the average Hb/Ws was up to 1.3. Streets in the NS and EW
directions and the SENW and NESW directions were centered on the south side and north
side of Seomyeon, respectively. And most buildings reached heights of 6–12 F. Compared
with Nampodong, the building height and Ws values were greater in Seomyeon. As a new
part of the city, the heights and scale of buildings in Centum City were significantly higher
than those in Nampudong and Seomyeon. The average Hb/Ws of NC2 reached 2.8, and
the Ws of NC5 was 67 m. In terms of tree configuration, Nampudong and Seomyeon had
fewer street trees, most of which were unevenly distributed on both sides of the main street.
To maintain natural lighting for the buildings, the tree crowns were excessively pruned
despite the high Ht due to the low Dbt. In contrast, the street trees in Centum City were
mainly zelkova trees, evenly distributed on both sides of the street, and had a large Dbt.
Additionally, since only shrubs existed in Centum City, which had a weak shading effect,
this study did not consider the impact of shrubs.

Table 1. Field measurement results of the representative sites.

Site ID OC1 OC2 OC3 OC4 CC1 CC2 CC3 CC4

Image
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Ave. Dt (m) 9.9 10.3 6.5 8.1 7.9 7.4 7
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Tree species Platanus Gingko Zelkova Zelkova Zelkova Zelkova Zelkova

Note: Nampodong: old city-center area, OC; Seomyeon: present city-center area, CC; Centum City: new city-center
area, NC.

2.2.2. Scenarios Setting Based on Field Measurement Results

Mainly, the Taguchi method [60] is used to select an appropriate orthogonal array
based on design parameters, including control factors and level values, obtain a large
amount of data from the least number of experiments, and obtain the degree of influence
through ANOVA [61]. This method finds extensive applications in engineering, biology,
agriculture, and advertising.

For this study, the L32 (49) orthogonal array was used to generate 32 different street
canyon scenarios. Generally, an orthogonal array can select up to nine factors with
four study parameters; however, only six factors with four parameters were selected
for this study. The remaining three unused columns were left empty to verify the corre-
lations between the factors. The selected factors, including the Ws, Os, Hb/Ws, Dbt, Dt,
and Ht, were set in an order, as listed in Table 2, based on field measurements and street
landscape guidelines from other countries. In addition, the leaf area index is not considered.
The level values of the simulation scenario runs were allocated in L32, as presented in
Table 3.

Table 2. Values of factor settings.

Factors Level 1 Level 2 Level 3 Level 4

Street
geometry

Ws 24 m 36 m 48 m 60 m
Os NS EW NESW SENW

Hb/Ws 0.5 1.5 2.5 3.5

Tree
configuration

Dbt 4 m 8 m 12 m 16 m
Dt 5 m 7 m 9 m 11 m
Ht 6 m 9 m 12 m 15 m

Table 3. L32 (49) orthogonal array.

No. Os Ws (m) Hb/Ws Dbt (m) Dt (m) Ht (m) No. Os Ws (m) Hb/Ws Dbt (m) Dt (m) Ht (m)

1 NS 24 0.5 4 5 6 17 NS 24 0.5 12 7 12
2 EW 24 1.5 8 7 9 18 EW 24 2.5 16 5 15
3 NESW 24 2.5 12 9 12 19 NESW 24 1.5 4 11 6
4 SENW 24 3.5 16 11 15 20 SENW 24 3.5 8 9 9
5 NS 36 1.5 12 9 12 21 NS 36 1.5 4 11 6
6 EW 36 0.5 16 11 15 22 EW 36 0.5 8 9 9
7 NESW 36 3.5 4 5 6 23 NESW 36 3.5 12 7 12
8 SENW 36 2.5 8 7 9 24 SENW 36 2.5 16 5 15
9 NS 48 2.5 8 5 9 25 NS 48 2.5 16 7 15



Energies 2024, 17, 2223 5 of 24

Table 3. Cont.

No. Os Ws (m) Hb/Ws Dbt (m) Dt (m) Ht (m) No. Os Ws (m) Hb/Ws Dbt (m) Dt (m) Ht (m)

10 EW 48 3.5 4 7 6 26 EW 48 3.5 12 5 12
11 NESW 48 0.5 16 9 15 27 NESW 48 0.5 8 11 9
12 SENW 48 1.5 12 11 12 28 SENW 48 1.5 4 9 6
13 NS 60 3.5 16 9 15 29 NS 60 3.5 8 11 9
14 EW 60 2.5 12 11 12 30 EW 60 2.5 4 9 6
15 NESW 60 1.5 8 5 9 31 NESW 60 1.5 16 7 15
16 SENW 60 0.5 4 7 6 32 SENW 60 0.5 12 5 12

For this study, street canyon models were developed based on the street geometry and tree
configuration feature characteristics of Busan for outdoor thermal simulation and analysis.

2.3. ENVI-Met Simulation
2.3.1. ENVI-Met Description

Developed by Bruse and Fleer [62], ENVI-met is a widely used prognostic, three-
dimensional model software based on CFDs and thermodynamics for modeling air, surface,
and vegetation interactions and simulating turbulence, moisture, radiation fluxes, and
microclimates in outdoor environments. The analytical model adopts Navier–Stokes equa-
tions for wind flow, atmospheric flow turbulence, energy and momentum, and boundary
condition parameter calculations [63].

For this study, the model structure and mathematical equations of sub-models pro-
vided by Tsoka et al. [64] and Huttner [65] were considered. The high spatiotemporal
resolution of ENVI-met provided more precise measurements of the TA, RH, WVEL, mean
radiant temperature, and solar radiation, thereby providing a better understanding of
microclimate effects on a street-level scale.

2.3.2. Basic Model Description

According to the field measurement results, most of the street lengths between the
main intersections were approximately 150 m, with secondary or branch roads between
the main intersections. As shown in Figure 2, the main model was sized at 280 × 280 m
and the model height was twice the height of the highest building (h = 2Hb), where the
street length was set to 154 m. The surrounding area (60–70 m) excluding the core model
was set as a buffer zone, and five nesting grids were added outside the model to avoid
interference from wind turbulence and unevenly distributed solar radiation accumulating
near the street corner within the analysis area. On both sides of the street, 12 building units
were set up, and trees were lined in two rows along the street to simplify the simulation.
The street tree model was determined based on the field-measured street tree data. In
different scenarios, as the Ht changed, the diameter at breast height and trunk height of
the street trees were adjusted proportionally. Concrete was used for the building surfaces
and sidewalks, while the surface material of the lanes between two rows of street trees
comprised asphalt pavement to simulate the impermeable surfaces of the city. The surface
material of the buffer zone comprised the same asphalt, whereas concrete was used for the
remaining blocks.

Data collected from a height of 1.4 m above the ground were used as the output data.
The analysis area was located in the pedestrian section between the facades of two middle
building units and lanes. The average analysis area value in each scenario was considered
for further data analysis. Data analysis mainly included the TA, WVEL, MRT, and PET. The
PET was calculated using BIO-met, and the input parameters used default values.

The climatic conditions of Busan from 13 August to 14 August 2016, which were the
hottest days of that summer, were selected for simulation to investigate the street geometry
and tree configuration and configure an acceptable outdoor thermal environment. The
results from 14 August 2016 were selected for analysis and to ensure a stable state for all
components and obtain accurate results. The necessary input parameters for the ENVI-met
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simulation are listed in Table 4, while the TA and RH data for full forcing in the simulation
using data from the Busan meteorological station are listed in Table 5.
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Table 4. Initial settings of the ENVI-met simulation.

General Simulation Settings Parameter

Location Busan, South Korea: 35.05◦ N, 128.35◦ E
Simulation dates 13–14 August 2016

Nesting grids 5
Grid size 2 m × 2 m × 2 m

Initial wind speed 2.8 m/s
Wind direction (N = 0◦, E = 90◦ . . .) 200◦

Roughness length 0.1
Lateral boundary conditions Forced using TA and RH (Table 5)

Table 5. Weather data from the Busan meteorological station for 14 August 2016.

Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

TA (◦C) 29.7 29.4 28.9 28.6 28.7 28.8 28.6 29.5
RH (%) 62.5 65.3 69.1 70.9 70.0 71.2 71.6 69.2

Time 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

TA (◦C) 31.2 33.0 34.3 35.1 36.6 36.4 35.7 34.5
RH (%) 63.1 57.8 54.5 51.8 47.5 49.4 51.7 56.2

Time 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

TA (◦C) 34.0 32.9 32.6 31.3 30.7 30.5 30.5 30.3
RH (%) 57.0 62.6 63.6 68.2 70.5 71.9 70.1 69.4

2.3.3. Simulation Verification

A portable weather station was set at 1.4–1.6 m above the pavement on a mobile cart
to measure the log ambient TA, RH, and WVEL (Figure 3). The instrument parameters
are listed in Table 6. Using the “Stop-and-Go” method [66], the mobile cart was moved as
quickly as possible between monitoring points, where it was stationed at each point for
1 min, and recorded data after 1 min. This process was repeated for four monitoring points
in each area during the measurement period.



Energies 2024, 17, 2223 7 of 24

Energies 2024, 17, x FOR PEER REVIEW 7 of 25 
 

 

Table 5. Weather data from the Busan meteorological station for 14 August 2016. 

Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 

TA (°C) 29.7 29.4 28.9 28.6 28.7 28.8 28.6 29.5 

RH (%) 62.5 65.3 69.1 70.9 70.0 71.2 71.6 69.2 

Time 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 

TA (°C) 31.2 33.0 34.3 35.1 36.6 36.4 35.7 34.5 

RH (%) 63.1 57.8 54.5 51.8 47.5 49.4 51.7 56.2 

Time 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

TA (°C) 34.0 32.9 32.6 31.3 30.7 30.5 30.5 30.3 

RH (%) 57.0 62.6 63.6 68.2 70.5 71.9 70.1 69.4 

2.3.3. Simulation Verification 

A portable weather station was set at 1.4–1.6 m above the pavement on a mobile cart 

to measure the log ambient TA, RH, and WVEL (Figure 3). The instrument parameters are 

listed in Table 6. Using the “Stop-and-Go” method [66], the mobile cart was moved as 

quickly as possible between monitoring points, where it was stationed at each point for 1 

min, and recorded data after 1 min. This process was repeated for four monitoring points 

in each area during the measurement period. 

Table 6. Instrument accuracy used for field measurements. 

Measurement Instruments  Parameter Measured Accuracy  

Testo CO₂ probe (digital) with 

Bluetooth®, including a 

temperature and humidity 

sensor 

TA ±0.5 °C 

RH 

±3%RH (10 to 35%RH) 

±2%RH (35 to 65%RH) 

±3%RH (65 to 90%RH) 

±5%RH (remaining range) 

Testo 417 WVEL ±(0.1 m/s + 1.5% of mv) 

Testo 440 Data logger Logging interval: 1 s to 16 min 

 

Figure 3. Mobile instrument settings (microclimate cart). 

To confirm the simulation’s accuracy, the main streets of Nampodong and Centum 

City were selected, and the measurement and simulation results were compared. The 

selected areas of Nampodong and Centum City were 260 × 160 m and 380 × 320 m, 

respectively. For the street geometry and tree configuration, we referred to OC3 and NC5 

as the representative sites. Pavements in Nampodong mainly comprised asphalt and 

Figure 3. Mobile instrument settings (microclimate cart).

Table 6. Instrument accuracy used for field measurements.

Measurement Instruments Parameter Measured Accuracy

Testo CO2 probe (digital) with
Bluetooth®, including a

temperature and humidity
sensor

TA ±0.5 ◦C

RH

±3%RH (10 to 35%RH)
±2%RH (35 to 65%RH)
±3%RH (65 to 90%RH)

±5%RH (remaining range)

Testo 417 WVEL ±(0.1 m/s + 1.5% of mv)

Testo 440 Data logger Logging interval: 1 s to 16 min

To confirm the simulation’s accuracy, the main streets of Nampodong and Centum
City were selected, and the measurement and simulation results were compared. The
selected areas of Nampodong and Centum City were 260 × 160 m and 380 × 320 m,
respectively. For the street geometry and tree configuration, we referred to OC3 and NC5 as
the representative sites. Pavements in Nampodong mainly comprised asphalt and cement
bricks, while those in Centum City used asphalt, granite bricks, and cement bricks. Table 7
shows the monitoring point locations in the verification area. Meteorological data from the
ASOS were used to provide lateral boundary conditions for the simulation. Nampodong
was close to the weather station, while Centum City was far away. Therefore, the validity
of the weather station data used for this thermal environment research could be tested.

Field measurements were conducted in Centum City and Nampodong from 06:00 to
18:00 on 29 July 2022 and 6 August 2022, respectively. The TA and RH from the ASOS were
simulated as full-forcing conditions, while WVEL and wind direction were determined
from the average WVEL and dominant wind direction measured during 06:00–18:00. No or
few clouds were observed during the measurement period. Details of the input data are
presented in Table 8.

To ensure the same sheltering effect between the simulated and actual measurements, a
fisheye lens was used to record the SVF values at the monitoring points; we then compared
the measured and simulated SVF values, and revised the ENVI-met model (Table 9). After
these adjustments, the SVF value calculated from the ENVI-met model was <10% of the
measured value for all locations [11,67].
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Table 7. Simplified model of the research area.

Site Current Layout ENVI-Met Model

Nampodong
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Table 8. Initial settings of the ENVI-met simulation for validation.

District Nampodong Centum City

Location in ENVI-met Busan, South Korea: 35.05◦ N, 128.35◦ E
Simulation dates 28~29 July 2022 05~06 August 2022

Analysis time 06:00~18:00, 29 July 2022 06:00~18:00, 06 August 2022
Nesting grids 5

Grid size 2 m × 2 m × 2 m
TA and RH Meteorological data from ASOS

Initial wind speed 3.6 m/s 2.6 m/s
Wind direction (N = 0◦, E = 90◦ . . .) 180◦ 90◦

Roughness length 0.1 0.1
Lateral boundary conditions Full forcing

Figure 4 shows the correlations between the simulated and measured TA and RH.
They are depicted using two indexes, namely Pearson’s r and the RMSE. Pearson’s r is
a statistical measure used to assess the degree of linear correlation between a simulated
value and a measured value. The RMSE is employed as a standard index to quantify the
deviation between the simulated value and the measured value. The simulation results
for Nampodong and Centum City had strong correlations with the measured results. The
Pearson’s r of the TA and RH of Nampodong were 0.88 and 0.91, respectively, and the
corresponding Pearson’s r values for Centum City were 0.84 and 0.87, respectively; all
of these exceed 0.8. The RMSE values for the TA and RH of Nampodong were 1.36 ◦C
and 7.63%, respectively, and these RMSE values for Centum City were 1.18 ◦C and 5.98%,
respectively. Furthermore, based on the field measurement results, the street trees were
modeled using the same approach as that described in Section 2.3.2, demonstrating the
reliability of applying the street tree model to real-world scenarios.
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Table 9. Comparison of SVFreal and SVFmodel results.

Nampodong Point 1 Point 2 Point 3 Point-4

Fisheye image
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In actual situations, the TA and RH were affected by complex parameters including 

cloud cover, wind direction, traffic flow, and heat released from machinery. Thus, the 

actual measured values fluctuated. The weather station was located in a mountainous 

area, north of Nampodong. As the surrounding plant coverage and RH were high, the 

simulated RH value was higher than the actual measured value. The measured TA was 

relatively higher than the simulated results. Thus, the selected street canyons were 

assumed to be on the main street, and the vehicle traffic volume had an impact on the TA. 

Additionally, considering measurement device errors (TA: ±0.5 °C, RH: ±3%), the 

difference between the actual measured and simulated values was within the allowable 

error range. Therefore, our simulations using ENVI-met were reliable. 
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In actual situations, the TA and RH were affected by complex parameters including
cloud cover, wind direction, traffic flow, and heat released from machinery. Thus, the actual
measured values fluctuated. The weather station was located in a mountainous area, north
of Nampodong. As the surrounding plant coverage and RH were high, the simulated
RH value was higher than the actual measured value. The measured TA was relatively
higher than the simulated results. Thus, the selected street canyons were assumed to be
on the main street, and the vehicle traffic volume had an impact on the TA. Additionally,
considering measurement device errors (TA: ±0.5 ◦C, RH: ±3%), the difference between
the actual measured and simulated values was within the allowable error range. Therefore,
our simulations using ENVI-met were reliable.

2.4. GeoDetector
2.4.1. GeoDetector Description

Spatial heterogeneity refers to uneven distributions of traits, events, or their relation-
ships across a region [68] or spatial variation in their attributes. The spatial heterogeneity
between strata or areas, each comprising a number of units, is referred to as SSH [69].

Wang et al. developed GeoDetector as a new spatial analysis method to detect the
interactions of two independent factors with a dependent factor [70]. Detailed explana-
tions are available on the GeoDetector website (http://www.geoDetector.cn/ accessed
on 12 December 2023). GeoDetector can be used to separately calculate and compare the
q-statistic of a single factor and that of two factors after overlap to determine occurrences of
interactions between two factors, the strength and direction of these interactions, and their
linearity or non-linearity. For this study, the q-statistic was used to measure the degree of
stratified heterogeneity [69], as follows:

q = 1 − ∑L
h=1 ∑Nh

i=1
(
Yhi − Yh

)2

∑N
i=1

(
Yi − Y

)2 = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST

where SSW denotes within the sum of squares; SST represents the total sum of squares; N
and σ2 denote the unit and population variances; and L denotes the number of strata (h = 1,
2, 3, . . ., L).

The q-statistic ranges from 0 to 1. The larger the q-statistic, the more obvious the
stratified heterogeneity of Y. A q-statistic of “1” implies complete control over the spatial
distribution of the dependent variable Y by the independent variable X, whereas a q-statistic
of “0” indicates no relationship of the independent variable X with the dependent variable
Y. The q-value indicates that X explains q × 100% of the dependent variable Y.

2.4.2. Spatial Heterogeneity Scenario Settings

The Taguchi method was used to obtain the maximum information with the minimum
number of experiments. However, considering the interactions between the factors greatly
increased the number of experiments and weakened the advantages of the Taguchi method.
This study considered 6 factors with a total of 32 scenarios. To evaluate the interactions
between the factors, GeoDetector was introduced.

According to the GeoDetector modeling requirements, the selected 32 scenarios were
arranged continuously and the factors were divided into 6 layouts. The impact of factor
interactions on the TA, WVEL, and PET were analyzed. Similar to the ENVI-met model,
the grid size was set to 2 m. In the 32 scenarios, excluding grids adjacent to building
facades, the total number of grids was 5600 per stratum. An example of the factor layouts
is presented in Figure 5.

http://www.geoDetector.cn/
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3. Results
3.1. Characteristics of the Outdoor Thermal Environment Indices from 08:00 to 18:00

An ANOVA was used to analyze the simulation results of the orthogonal experiments
and determine the important effects of factors on the outdoor thermal environment. Con-
sidering the lack of solar radiation effects at night and in the morning, changes in the street
geometry and tree configuration had less impact on the thermal environment. The selected
time frame lasted from 08:00 to 18:00, and the study focused on analyzing data at 13:00,
when the TA was the highest.

3.1.1. TA

The hourly changes in TA from 8:00 to 18:00 and the results of the ANOVA are shown
in Figure 6 and Table 10. The values of Os and Hb/Ws at all times and Ws after 11:00 were
statistically significant (p < 0.01), indicating a strong correlation with the TA. The value of
the TA for all factors was minimum at 08:00 and reached a peak at 13:00. The variation
range before 13:00 was significantly greater than that after 13:00. At noon, solar radiation
was strong, and the absorbed heat from buildings and the ground was released into the air
through heat exchange. This had the strongest impact on the TA. Excluding the Os, only
slight differences in the change curves at 12:00 and 14:00, 11:00 and 16:00, and 10:00 and
17:00 were observed. The building shadow area increased with Hb/Ws, causing the TA to
gradually decrease. Particularly, the difference between Hb/Ws = 0.5 and 1.5 was the most
apparent. A similar phenomenon was demonstrated by Morakinyo and Lam [31]. The
increase in TA before and after the time of a street’s exposure to direct sunlight was higher
than at other times (SENW was affected by direct sunlight from 10:00 to 12:00, and the
change there was higher than that in other streets that were not exposed to direct sunlight).
Compared with other Os values, the NS street was affected by direct sunlight at 13:00,
causing heating and resulting in the highest TA. Although the SENW street was already
affected by direct sunlight, its WVEL was slightly higher than that of the EW streets (see
Section 3.2.2), resulting in a lower TA for SENW due to the greater intensity of convective
heat transfer taking away more heat. Additionally, the WVEL increased with the gradual
increases in WS, reducing the TA by enhancing the convective heat transfer intensity.
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Table 10. Results of significance tests for the TA from 08:00 to 18:00.

Factor
Os Ws Hb/Ws Dbt Dt Ht

F p-Value F p-Value F p-Value F p-Value F p-Value F p-Value

8:00 24.795 0.000 1.010 0.428 39.262 0.000 0.723 0.561 4.194 0.037 0.638 0.608
9:00 21.185 0.000 0.676 0.586 163.524 0.000 0.313 0.816 5.896 0.014 3.516 0.057

10:00 26.570 0.000 3.103 0.076 300.111 0.000 0.270 0.845 7.038 0.008 11.970 0.001
11:00 10.566 0.002 6.828 0.009 144.112 0.000 0.312 0.816 4.064 0.040 5.645 0.016
12:00 11.177 0.002 6.650 0.010 123.280 0.000 0.480 0.703 4.876 0.024 4.944 0.023
13:00 27.973 0.000 12.258 0.001 200.661 0.000 0.645 0.604 4.751 0.026 6.111 0.012
14:00 26.168 0.000 25.321 0.000 263.025 0.000 0.744 0.550 4.096 0.039 4.561 0.029
15:00 38.915 0.000 31.189 0.000 349.979 0.000 1.962 0.184 5.675 0.016 5.170 0.021
16:00 45.142 0.000 29.800 0.000 342.313 0.000 2.129 0.160 7.508 0.006 2.982 0.083
17:00 26.008 0.000 17.997 0.000 205.829 0.000 0.772 0.536 5.116 0.021 0.944 0.456
18:00 15.415 0.000 12.365 0.001 108.858 0.000 0.338 0.799 4.131 0.038 0.447 0.725

The improvement effect of tree configuration on the TA was limited. Particularly, the
Dt at all times and the Ht from 10:00 to 15:00 were statistically significant (p < 0.05). The
results confirmed that smaller Dt and higher Ht values had stronger cooling effects. Similar
results were reported in research on a shallow street canyon [31]. The statistical significance
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and changing trend of Dbt were different from the results of Li et al. [11] due to different
solar radiation and climatic conditions.

The differences between the maximum and minimum TA values at each time frame
are shown in Figure 7. The maximum values of Os and Hb/Ws both exceeded 1.0 ◦C, with
Hb/Ws exceeding 1 ◦C for as long as 8 h and the maximum difference reaching 2.7 ◦C.
Although the Ws was lower compared with the Os and Hb/Ws, it was significantly higher
than the three factors of tree configuration. Under heatwave conditions, the transpiration
of the street trees became weak and the stomata on some leaf surfaces remained close,
resulting in a relatively weak effect of changes on improving the TA. Yang and Lam [71]
proved that the median value of the improvement in TA caused by ground greening was
approximately 0.65 ◦C, and the maximum value did not exceed 1 ◦C.
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3.1.2. WVEL

The changes in WVEL from 8:00 to 18:00 are shown in Figure 8. Since the WVEL and
wind direction were not forced, the changes in WVEL at different times and scenarios were
small, with a maximum of no more than 0.2 m/s. Conversely, the WVEL change trends
for different factors at different times were the same. Therefore, only the data at 13:00
(typical time) were analyzed for significance, and the differences in the impacts of factor
changes on the WVEL were calculated (Table 11). Changes in Os, Ws, and Hb/Ws had
significant effects on the WVEL (p < 0.01), and all differences were of 0.5 m/s. The input
wind direction was S–SW, and the angles between the wind direction and Os were 20◦,
25◦, 70◦, and 65◦ in sequence; the smaller the angle, the higher the WVEL. The larger the
Ws, the smaller the resistance encountered by the wind flow when passing through the
street, and the higher the WVEL. When Hb/Ws was <1.5, the street canyon had a significant
acceleration effect on the WVEL. When Hb/Ws exceeded 1.5, the WVEL decreased initially
and then increased owing to the effect of downward wind.
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Table 11. Results of difference and significance tests for the WVEL at 13:00.

Factor Difference F p-Value

Os 0.5 11.047 0.002
Ws 0.5 8.832 0.004

Hb/Ws 0.5 11.952 0.001
Dbt 0.3 3.416 0.061
Dt 0.2 1.306 0.326
Ht 0.1 1.045 0.414

Although the impact of tree configuration changes on the WVEL was not significant
(p > 0.05), wind resistance decreased with the increase in Dbt, Dt, and Ht, thereby increasing
the WVEL. Particularly, a linear growth was observed for both the Dbt and Dt. The increase
in Dbt had a stronger effect, reaching 0.3 m/s, followed by the increases in Dt and Ht,
which reached 0.2 and 0.1 m/s, respectively. Furthermore, when the Ht was 9 m, the WVEL
suddenly dropped due to turbulence or composite interaction between factors that affected
the simulation results; when the Ht exceeded 12 m, the amount of space under the tree
canopies was higher, and the impact of changes in the Ht on the WVEL slowly reduced.
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3.1.3. PET

The hourly results for the PET changes and ANOVA from 8:00 to 18:00 are shown
in Figure 9 and Table 12. The impact of street geometry factors was statistically sig-
nificant between 9:00 and 10:00 and between 12:00 and 16:00 (p < 0.05). Particularly,
Hb/Ws was statistically significant (p = 0.000) at all times, indicating a significant impact of
Hb/Ws. The PET value exceeded the “Very hot” standard of thermal sensitivity level during
12:00–15:00. The NS street reached the highest PET value at 14:00. The “Very hot” level of
the EW street lasted 8 h, which was 2 h longer than the other orientations. The shadow
of buildings reduced the PET, and radiation from the sun had a weak impact in the deep
street canyons. Hb/Ws = 0.5 was greatly affected by solar radiation, and the PET rose the
fastest, reaching its highest value at 13:00. From the perspective of the thermal sensitivity
level, the duration of the “Very hot” level was 8 h, 5 h, 5 h, and 4 h, respectively. With the
increase in Ws, the WVEL was enhanced, and more heat on the street was taken away to
improve thermal comfort.
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Table 12. Results of significance tests for the PET from 08:00 to 18:00.

Factor
Os Ws Hb/Ws Dbt Dt Ht

F p-Value F p-Value F p-Value F p-Value F p-Value F p-Value

8:00 30.648 0.000 2.357 0.133 43.061 0.000 2.589 0.111 5.843 0.014 2.329 0.136
9:00 21.240 0.000 3.838 0.046 91.971 0.000 2.235 0.147 5.033 0.022 3.083 0.077

10:00 7.748 0.006 7.362 0.007 50.425 0.000 0.427 0.738 3.270 0.067 6.711 0.009
11:00 3.201 0.071 3.747 0.049 16.722 0.000 0.077 0.971 0.887 0.481 1.841 0.203
12:00 4.633 0.028 7.316 0.007 52.581 0.000 0.086 0.966 2.470 0.122 3.542 0.056
13:00 10.075 0.002 20.460 0.000 146.193 0.000 0.183 0.905 3.727 0.049 11.930 0.001
14:00 16.795 0.000 27.143 0.000 147.296 0.000 0.414 0.747 5.959 0.013 4.907 0.024
15:00 22.193 0.000 9.095 0.003 113.378 0.000 1.220 0.353 5.026 0.022 2.336 0.135
16:00 20.728 0.000 4.800 0.025 100.720 0.000 1.286 0.332 5.186 0.020 1.293 0.330
17:00 23.720 0.000 1.433 0.291 31.960 0.000 1.375 0.306 4.334 0.034 1.613 0.248
18:00 1.832 0.205 1.253 0.342 21.962 0.000 0.230 0.874 4.789 0.026 0.081 0.969

Among the tree configuration factors, the Dt was significantly affected within 08:00–
09:00 and 13:00–18:00, which had a significant impact on the PET (p < 0.05). The significance
of the Ht at 10:00, 13:00, and 14:00 was maintained within 0.05, but its impact at 13:00 was
the greatest (p < 0.01). Additionally, although the impact of the Dbt was not significant, it
linearly increased. During 11:00–14:00, the value of Dbt = 5 m was reduced by a maximum
of 1.3 ◦C. The overall trend of the research results for the Dbt and Ht in Yang et al.’s
study [30] was similar to the results found in this study. When the Dt increased from 12
to 16 m, the PET value declined because the large distance reduced wind resistance and
increased the WVEL. WVEL was one of the main factors that affected the PET. A smaller
value of Dt and a larger value of Ht could cause the tree crowns to overlap, covering the
streets from direct solar radiation, and reduce the PET at the pedestrian height.

The hourly differences between maximum and minimum values from 8:00 to 18:00
are shown in Figure 10. At 08:00, 11:00, 14:00, and 17:00, the change in PET was very large
due to the direct sun exposure on the EW, SENW, and NESW streets. The PET value in
all orientations was greatly enhanced due to the high solar elevation angle at noon, and
the difference was decreased. At 14:00, the improvement of Hb/Ws was approximately
2.3 times that of the Ws, and the change between 08:00 and 17:00 was relatively large.
Particularly, the impact of the change in Hb/Ws on the PET was largest at 14:00, with a
maximum value of 10.2 ◦C. Considering changes in Ws, the variable levels of PET were
4.3 and 4.5 ◦C at 11:00 and 14:00. Additionally, in the morning, the trees blocked solar
radiation through their canopies and reduced the PET value. At noon and in the afternoon,
the canopies weakened the radiation capacity. Simultaneously, the canopies released a
certain amount of longwave radiation, which further weakened the cooling effect.

3.2. Analysis of Interactions

For the spatial heterogeneity analysis, six factors were used, with each factor acting as
an independent variable X and the evaluating indicator (including TA, WVEL, and PET)
acting as the dependent variable Y. The q-statistic of any two factor interactions was greater
than the sum of the q-statistic of two independent factors. Thus, the explanation of the
evaluating indicator (Y) was enhanced. Furthermore, both the independent and dependent
variables showed a non-linear enhancement trend. The TA, WVEL, and PET between 8:00
and 18:00 were analyzed.
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3.2.1. TA

The q-statistics regarding the impacts of interactions between two factors on the TA
from 8:00 to 18:00 are shown in Figure 11. The q-statistics of Os∩Ws, Os∩Hb/Ws, and
Ws∩Hb/Ws all reached 0.7 or more at 11:00, and reached their maximum values at 16:00
and 18:00, respectively. Thus, probabilities of 89.2%, 87.1%, and 89.1% were calculated for
the TA being affected through interactions between the Os and Ws, between the Os and
Hb/Ws, and between the Ws and Hb/Ws. Considering the interactions of street geometry
factors and tree configuration factors, the interaction of Hb/Ws and tree configuration
factors was always higher than that of the other two factors and tree configuration factors.
Particularly, the interaction of Hb/Ws and tree configuration factors showed a higher
probability (q-statistic ≥ 0.709) for the TA after 14:00, and the q-statistic of Hb/Ws∩Ht
reached 0.803 at 18:00. The impact of Os∩Dt on the TA between 13:00 and 18:00 gradually
increased (q-statistic ≥ 0.614), and this q-statistic was less for Os∩Dbt and Os∩Ht. Regarding
the interactions of tree configuration factors, the q-statistics of Dbt∩Ht and Dt∩Ht were
significantly higher than that of Dbt∩Dt. Additionally, interactions between the same
factors (such as Os∩Os) represented a spatial autocorrelation of that factor. In this study, the
q-statistic of Hb/Ws was between 0.347 and 0.745, showing a strong spatial autocorrelation.

3.2.2. WVEL

The q-statistics regarding the impacts of interactions between two factors on the WVEL
from 8:00 to 18:00 are shown in Figure 12. In general, the interactions of all factors had a
relatively low impact on the WVEL (q-statistic < 0.3).
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3.2.3. PET

The q-statistics regarding the impacts of interactions between two factors on the PET
from 8:00 to 18:00 are shown in Figure 13. The q-statistic of the interaction between any
two factors of street geometry was the highest. For example, the q-statistic distribution
range during 11:00–16:00 was 0.645–0.783. The maximum value was attained at 14:00,
where Os∩Ws, Os∩Hb/Ws, and Ws∩Hb/Ws were 0.782, 0.764, and 0.783, respectively.
Considering the interactions of street geometry and tree configuration factors, Hb/Ws
showed a leading role, and Hb/Ws∩Dt was as high as 0.588 at 14:00. Additionally, the
interactions significantly affected the PET at noon and during the afternoon. The q-statistic
distribution trend of interactions between the tree configuration factors was the same as
the previous two aspects, but the q-statistic was relatively low.
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4. Discussion

The main aim behind the establishment of outdoor thermal environment models is to
identify and improve solutions to existing problems [72]. When considering frequent heat-
waves, a variety of factors should be combined to analyze the interactive relationship between
factors. For example, to improve the wind environment [73], the main orientations [41], main
building morphology [74], and landscape planning [75,76] should be studied.

In terms of street geometry, the effects of interactions between geometric factors on the
outdoor thermal environment should be fully considered. Although a deep street canyon
can prevent heat dissipation at night [77], the shelter from adjacent buildings during the
day can prevent solar radiation from reaching the pedestrian area, improving comfort and
reducing the importance of the tree configuration in the deep street canyon. Compared
with other orientations, EW streets are exposed to solar radiation for longer durations.
Andreou reported that the thermal comfort efficiency of Hb/Ws, which was increased for
EW streets, was lower for NS streets [78]. At noon and in the afternoon, due to a high solar
elevation angle and directly lit NS and NESW streets, the PET was significantly higher
than that in the EW and SENW streets. Thus, the orientation of streets should be consistent
with the wind direction in the city and wide enough to assist in air inflow and increase
heat dissipation from the street canyon. Ventilation corridors can be merged with the main
streets to arrange high-rise buildings along the streets. Each block should set up building
setback lines to obtain enhanced Ws. Compared to scenarios without building setbacks,
scenarios with building setbacks can increase the WVEL by 0.7 m/s at maximum [79].
Additionally, TA can be affected by the surrounding streets. Different streets can partially
compensate a high TA in other streets [80]. When streets are arranged vertically in the
direction of the wind, the vertical wind along the street length should be reduced by
controlling the morphological parameters of the blocks and adjusting the geometry of the
main streets and the surrounding building patterns. To avoid forming a stable canyon
vortex, the average value of Hb/Ws should be <0.7 [18].

Shallow street canyons have high demands for shading, giving particular importance
to the tree configuration. In terms of tree configuration, smaller Dt and larger Ht values
offer solar radiation blocking and improve outdoor thermal comfort. However, the cost
of mature trees is high. Thus, young trees that grow quickly and the development of
temporary shade facilities in combination with these young trees can be implemented.



Energies 2024, 17, 2223 20 of 24

After the trees have matured, the temporary shade facilities can be demolished. Considering
the interactions between Dt and Ht, densely staggered canopies should be avoided. In
the low-WVEL scenario (initial WVEL = 0.7 m/s), there was a trend of the TA increasing
when the Ht increased from 5 m to 11 m. The WVEL exhibited changes when the Ht
increased from 5 m to 8 m, and the changes in WVEL became more gradual when the Ht
exceeded 8 m, but the thermal comfort index was not analyzed in this study [81]. In this
study, 12 m high trees showed more obvious improvements in thermal comfort, which
may be attributed to the combined effect of the TA and WVEL. The value of Dbt in SENW
streets can be appropriately increased to increase the WVEL and improve thermal comfort.
In addition, each city has a unique type and combination of street trees, but cylindrical
canopies can be more effective than spherical and conical canopies of the same height and
diameter [82]. For trees with fruits such as ginkgo trees, a tree shaker can be introduced.
A combination of street trees and shrubs can be implemented to reduce pollution in lanes
and pedestrian areas on the streets with enough space [83].

This study demonstrates that during the process of urban regeneration, the layout of
street trees should be considered as a crucial factor. The selection of the street tree species
and configuration should be adapted to the characteristics of different neighborhoods to
create a comfortable walking environment. In the development of new cities, building
morphology and layout should be a key consideration. Urban planners can formulate
design standards for neighborhood buildings that take into account multiple factors to
create a pleasant outdoor thermal environment in cities.

This study used numerical simulation software to build an ideal urban street canyon,
without considering transportation effects. Expanding the scale of research objects, com-
bined with satellite images, numerical weather forecasting, and other methods, is necessary
to study the outdoor thermal environment of cities under actual conditions.

5. Conclusions

This study measures street geometry and street tree configuration considering the Bu-
san city center as an example, and typification analysis is performed. The Taguchi method
is introduced to generate 32 typical scenarios, and a numerical simulation of the outdoor
thermal environment is conducted through ENVI-met. An ANOVA is used to determine
the importance of six factors in relation to the outdoor thermal environment. GeoDetector
is introduced to assess interactions between the factors for spatial heterogeneity analysis.
The main results are as follows:

• The impact of street geometry on the outdoor thermal environment is significantly
higher than that of tree configuration factors. The impacts of street geometry and
tree configuration are significantly higher at noon. The importance of street canyon
factors in the improvement of outdoor thermal comfort in Busan is as follows: Hb/Ws
> Os > Ws > Dt > Ht > Dbt. Particularly, Hb/Ws has the most significant impact on
the outdoor thermal environment. The higher the adjacent buildings, the greater the
Hb/Ws near the ground-level buildings and street surface. By reducing solar radiation
absorption and the release of heat, the TA, MRT, and PET can be reduced. Changes in
Hb/Ws can reduce the “Very hot” level for up to 4 h.

• The SENW street is shadowed during the afternoon, effectively reducing the TA and
solar radiation on the pedestrian area and offering relatively high thermal comfort.
EW streets are directly exposed to the sun after sunrise and before sunset. Thus, MRT
and PET values are the highest, and the “Hot” and “Very hot” periods are longer.
Improvements to the outdoor thermal environment by improving tree configurations
or implementing additional infrastructure are important.

• Shallow street canyons need additional greening to improve their outdoor thermal
environment. The tree crowns absorb solar radiation in the morning and reach a
saturation state. Thereafter, the decreased radiant heat and the heat from artificial
surface reflections together affect the outdoor thermal environment around pedestrian
areas at noon and in the afternoon. Smaller Dt and larger Ht values have a significant
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impact on the outdoor thermal environment, but the impact of the tree settings on
street wind resistance should be comprehensively considered. When the tree height is
>12 m, the impact on the TA, MRT, and PET is reduced.

• The impact of interactions between any two factors of street geometry on the outdoor
thermal environment is much higher than that of interactions between the street geom-
etry and tree configuration factors, or that of interactions between tree configuration
factors. Particularly, the interactions between two factors have a small impact on the
WVEL, but have a greater impact on the TA, MRT, and PET. The impact of interactions
between street geometry factors on the TA gradually strengthens over time, reaching
its highest level (approximately 89%) at 18:00. The impact of interactions between
Hb/Ws and tree configuration factors on the outdoor thermal environment indica-
tors reaches its highest at 14:00 or 15:00. Additionally, Hb/Ws has a strong spatial
autocorrelation with the TA.

This study provides significant insights for urban planners on how different street ge-
ometries and tree configurations can influence the outdoor thermal environment. Although
none of these scenarios can reverse the long-term effects of global warming, rigorously
applying various combinations of these strategies can moderate extreme climate events
and accelerate the establishment of sustainable cities.
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