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Abstract: An Al-Fe alloy which was produced by hot extrusion of rapidly solidified powder is a
possible solution to substitute copper-based electrical conductor material due to its high strength and
high electrical conductivity. However, the stress relaxation characteristic—an essential parameter as a
conductor material—and the effect of the material structure have not been reported, which was the
aim of the present paper. An Al-5%Fe alloy was selected as the test material. The material structures
were controlled by hot extrusion practice, annealing, and cold rolling. The Al-Fe intermetallic
compound particles controlled the residual stress after the stress relaxation test via the Orowan
mechanism. Decreasing the mean inter-particle distance reduces the electrical conductivity. The
increase in the number of dislocations by the cold rolling increased strength at room temperature
without changing electrical conductivity; however, it did not have a positive effect on the stress
relaxation characteristics. The stress relaxation characteristics and the electrical conductivity of the
Al-Fe alloy were superior to conventional C52100 H04 phosphor bronze when compared with the
case of the same mass.

Keywords: aluminum alloy; electrical conductor; powder metallurgy; stress relaxation; mechanical
property

1. Introduction

Recently, since smartphones have become larger and the types of wearable devices
have increased in variety, their weight reduction has become important. The electrical
conductivity and strength per unit mass of aluminum is twice as high as that of copper,
and so, using aluminum as a conductive material contributes to weight reduction [1].
Another reason for replacing copper with aluminum is the uncertain future of copper
reserves [2]. However, aluminum tends to undergo stress relaxation, i.e., creep deformation,
at high temperatures such as those used in connectors for high-current circuits, and so,
aluminum materials with high strength are required [3,4]. Currently, C5210 H04 phosphor
bronze, which has excellent spring properties, is used for the female terminals of mobile
phone connectors [5]. Therefore, an aluminum alloy having a stress relaxation resistance
comparable to that of phosphor bronze is desired.

Since copper is often used as a conductive material, there are many examples of re-
search papers on its stress relaxation properties [6,7]. However, there have been few reports
on the stress relaxation properties of aluminum. Recently, rapidly solidified Al-Fe alloys
have been investigated as materials to replace copper-based conductive materials [8–10].
It has been reported that the Al-Fe alloys exhibit excellent creep properties at high tem-
peratures above 700 K [11], but there are no reports on the stress relaxation properties
of the alloys around 393–423 K, where conductive materials are used. It is important to
know the stress relaxation properties of such an alloy and the effect of material structure
in order to use it as a conductive material. Regarding the strength of rapidly solidified
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Al-Fe alloys at room temperature, finely dispersed Al-Fe intermetallic compound particles
contribute to particle dispersion strengthening [9]. The Al-Fe dispersoids transforms from
a metastable fine Al6Fe phase to a coarse Al13Fe4 phase (also called Al3Fe) when heated
above 623–673 K [12]. This temperature range is close to the temperature of the hot extru-
sion, which is one of the major methods of producing rapidly solidified Al-Fe alloys [8,10].
Hence, the extrusion temperature may affect the strength of a rapidly solidified Al-Fe alloy.
However, the effects and mechanisms are unknown. Furthermore, methods of processing
such as cold rolling and drawing and annealing are considered to adjust the strength of
Al-Fe alloys. It is of industrial importance to know their influence.

In the present study, we investigated the effects and mechanisms of the material
structure on the stress relaxation characteristics of a rapidly solidified Al–Fe alloy by
changing the hot extrusion temperature, annealing temperature, and cold rolling conditions.

2. Materials and Methods

In order to change the distribution of the Al-Fe intermetallic compound, the extrusion
conditions of the Al-Fe alloy material were varied. The sample preparation method is
shown in Figure 1. An air-jet atomized Al-5.0%Fe alloy powder manufactured by Toyo
Aluminium K.K. (Osaka, Japan) was used as the raw material. The impurities in the
alloy are 0.1% or below. The average particle size of the powder is approximately 30 µm.
Samples aiming at fine material structure were produced by spark plasma sintering and
hot extrusion. The powder was spark plasma, sintered into a cylindrical body 42 mm
in diameter and 23 mm in height under the conditions of a temperature of 623 K and a
pressurization of 20 MPa. Three pieces of this sintered body were preheated and then
hot-extruded at 613 K into a round bar with a diameter of 8 mm. Samples aiming at coarse
material structure were produced by cold compacting and hot extrusion at relatively high
temperatures. The powder was compacted into a cylindrical shape with a diameter of
170 mm and a height of 300 mm by cold isostatic pressing with a pressure of 200 MPa.
The billet was preheated and then hot-extruded at 763 K into a plate with a thickness of
5 mm and a width of 30 mm. The relative density of the extrudates (relative to the density
of casts) measured by Archimedes’ method was 0.99 or more in all extrusion conditions,
which confirmed that the extrudates were completely densified. Some of the Al-Fe alloys
were annealed at 613 K–168 h or 763 K–48 h. It is expected that the lower the heat treatment
temperature is, the slower the structural change will be. Therefore, the heat treatment
time at 613 K was longer than that at 763 K. In order to understand the effect of cold
working, a plate sample extruded at 763 K was subjected to multi-pass cold rolling with
a total reduction of 50%. As comparative materials, data for C10200 H04 oxygen-free
copper [13,14], C26000 H04 brass [13,15], C52100 H04 phosphor bronze [13,16], 1050-H24
aluminum [1], and 6101-T6 aluminum alloy [1] were used.

Materials 2023, 16, x FOR PEER REVIEW 2 of 22 
 

 

know the stress relaxation properties of such an alloy and the effect of material structure 
in order to use it as a conductive material. Regarding the strength of rapidly solidified Al-
Fe alloys at room temperature, finely dispersed Al-Fe intermetallic compound particles 
contribute to particle dispersion strengthening [9]. The Al-Fe dispersoids transforms from 
a metastable fine Al6Fe phase to a coarse Al13Fe4 phase (also called Al3Fe) when heated 
above 623–673 K [12]. This temperature range is close to the temperature of the hot 
extrusion, which is one of the major methods of producing rapidly solidified Al-Fe alloys 
[8,10]. Hence, the extrusion temperature may affect the strength of a rapidly solidified Al-
Fe alloy. However, the effects and mechanisms are unknown. Furthermore, methods of 
processing such as cold rolling and drawing and annealing are considered to adjust the 
strength of Al-Fe alloys. It is of industrial importance to know their influence. 

In the present study, we investigated the effects and mechanisms of the material 
structure on the stress relaxation characteristics of a rapidly solidified Al–Fe alloy by 
changing the hot extrusion temperature, annealing temperature, and cold rolling 
conditions. 

2. Materials and Methods 
In order to change the distribution of the Al-Fe intermetallic compound, the extrusion 

conditions of the Al-Fe alloy material were varied. The sample preparation method is 
shown in Figure 1. An air-jet atomized Al-5.0%Fe alloy powder manufactured by Toyo 
Aluminium K.K. (Osaka, Japan) was used as the raw material. The impurities in the alloy 
are 0.1% or below. The average particle size of the powder is approximately 30 µm. 
Samples aiming at fine material structure were produced by spark plasma sintering and 
hot extrusion. The powder was spark plasma, sintered into a cylindrical body 42 mm in 
diameter and 23 mm in height under the conditions of a temperature of 623 K and a 
pressurization of 20 MPa. Three pieces of this sintered body were preheated and then hot-
extruded at 613 K into a round bar with a diameter of 8 mm. Samples aiming at coarse 
material structure were produced by cold compacting and hot extrusion at relatively high 
temperatures. The powder was compacted into a cylindrical shape with a diameter of 170 
mm and a height of 300 mm by cold isostatic pressing with a pressure of 200 MPa. The 
billet was preheated and then hot-extruded at 763 K into a plate with a thickness of 5 mm 
and a width of 30 mm. The relative density of the extrudates (relative to the density of 
casts) measured by Archimedes’ method was 0.99 or more in all extrusion conditions, 
which confirmed that the extrudates were completely densified. Some of the Al-Fe alloys 
were annealed at 613 K–168 h or 763 K–48 h. It is expected that the lower the heat treatment 
temperature is, the slower the structural change will be. Therefore, the heat treatment time 
at 613 K was longer than that at 763 K. In order to understand the effect of cold working, 
a plate sample extruded at 763 K was subjected to multi-pass cold rolling with a total 
reduction of 50%. As comparative materials, data for C10200 H04 oxygen-free copper 
[13,14], C26000 H04 brass [13,15], C52100 H04 phosphor bronze [13,16], 1050-H24 
aluminum [1], and 6101-T6 aluminum alloy [1] were used. 

 
Figure 1. Experimental procedure for sample preparation. 

Raw powder (Al-5.0%Fe alloy)

Spark plasma sintering at 623 K - 5 min

Preheating and hot extrusion at 613 K

Cold isostatic pressing at 200 MPa

Preheating and hot extrusion at 763 K

Annealing at 613 K - 168 h Annealing at 763 K - 48 h 50% cold rolling

Figure 1. Experimental procedure for sample preparation.

The 0.2% proof stress was measured by using a tensile test. A specimen with a
thickness of 1 mm, a width of 8 mm, and a length of 100 mm was ground from the Al-
Fe alloy so that the longitudinal direction coincided with the extrusion direction. The
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electrical conductivity was measured by using a vortex conductometer Sigmatest 2.069
(Foerster Japan Limited, Tokyo, Japan). The microstructures were observed by FE-SEM
(JEOL JSM-7800F, Tokyo, Japan) at an accelerating voltage of 5 kV and WD = 10 mm on the
cross-sections parallel to the extrusion direction of the extrudate. The images were binarized
and analyzed by ImageJ 1.53 k, which is an open-source image processing software, to
find the area fraction A f (equivalent to volume fraction Vf ) and the average radius of the
particles r. The radius of the particles was obtained as half the equivalent circle diameter of
them. In this analysis, particles below an equivalent circle diameter of 0.1 µm (equivalent
to 5 pixels or below) were excluded as noise. To understand the grain structure, the cross-
sections parallel to the extrusion direction of the extrudate were observed and analyzed
by FE-SEM (ZEISS Gemini 450, Jena, Germany) and EBSD (Oxford Symmetry, Oxford
Instruments, Abingdon, UK). In the analysis, the interfaces with an inclination of 5◦ or
more were considered grain boundaries and the area-weighted average of the grain size
was obtained.

The test conditions for evaluating stress relaxation characteristics are as follows, ac-
cording to the technical standard [17]. A specimen with a thickness of 0.6 mm, a width of
8 mm, and a length of 100 mm was ground from the Al-Fe alloy so that the longitudinal
direction coincided with the extrusion direction. The samples were attached to the jig as
shown in Figure 2. From the cantilever beam formula, the maximum bending stress σ of
this sample is expressed by the following equation [17]:

σ =
1.5Eth

L2 (1)

where E is the modulus of elasticity, t is the thickness of the sample, h is the initial deflection
height, and L is the distance from the edge of jig A to the edge of the sample. The modulus
of elasticity E was measured according to the technical standards [18]. The height h was
fixed at 5 mm. The length L was adjusted so that the maximum bending stress σ was 80%
of the 0.2% proof stress. The samples were exposed at 393 K or 423 K for 24–1000 h and
then brought to room temperature. The deflection height ht remaining in the sample after
removing the jig C was measured. This measurement was repeated using the same sample
and jig. The stress relaxation rate rsr is obtained by using the following equation [17]:

rsr(%) =
ht

h
× 100 (2)
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In order to use the aluminum alloys for the connection part of male–female terminals or
bolted terminals, it is necessary to maintain high contact pressure between the terminals [4].
As the index of the contact pressure, the residual stress σr remaining after the stress
relaxation test was used.

σr = σy(1 − rsr) (3)

Here, σy is the initial 0.2% proof stress before the stress relaxation test. An increase in this
value is considered to lead to an improvement in the contact pressure.

3. Results

Figure 3 shows the properties of Al-Fe alloys with different extrusion and annealing
temperatures. The higher the extrusion temperature is, the lower the strength and the higher
the electrical conductivity are. Additional heat treatment had similar effects, resulting in
a decrease in strength and an increase in conductivity. Figure 4 shows their SEM-compo
images. The distributions of the Al-Fe intermetallic compound particles, which appear
white in the images, differed depending on the differences in the extrusion temperature and
the annealing temperature, which was intended. Figure 5 shows the volume fraction Vf
and average particle radius r of the second-phase particles obtained by analyzing Figure 4.
The particles were the smallest when the extrusion temperature was as low as 613 K, and
became coarser at higher extrusion temperatures and with the annealing. There was no
significant difference in the volume fraction of the particles. Figure 6 shows their EBSD-IPF
images. All samples had coarse grains of 2 µm or more and fine grains of 1 µm or less. The
area-weighted average grain size was the same: 3–4 µm.
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Figure 3. Properties of the Al-Fe alloys: (a) mechanical property and (b) electrical conductivity.

Figure 7 shows the stress relaxation properties. The stress relaxation rate increased
slightly with time, and the stress relaxation rate was about 30–40% for up to 100 h. The
lower the extrusion temperature was, the higher the stress relaxation rate was. Annealing
increased the stress relaxation rate. Figure 7b shows the residual stress after the stress
relaxation test considering the initial 0.2% proof stress. The lower the extrusion temperature
was, the higher the residual stress was. Annealing reduced the residual stress.

Figure 8 shows the properties of the Al-Fe alloy extruded at 763 K and cold-rolled at
a total rolling reduction of 50%. Cold rolling increased the strength while the electrical
conductivity remained almost unchanged. Their SEM-compo images are shown in Figure 9,
and their image analysis results are shown in Figure 10. The size of the second-phase
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particles of the cold-rolled material was slightly finer than that of the as-extruded material,
and the volume fractions were almost the same. Figure 11 shows their stress relaxation
properties. The stress relaxation rate of the cold-rolled material was higher than that of the
as-extruded material. As a result, there was almost no difference between their residual
stress levels.
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Figure 5. Volume fraction and average radius of second-phase particles in Al-Fe alloys before and
after annealing.

Figure 12 shows the density, strength, and electrical conductivity of the Al-Fe alloy
extruded at 613 K, which had the highest strength so far, and the comparative copper and
aluminum materials. The strength of the Al-Fe alloy was lower than that of copper and
higher than that of other aluminum alloys. Its electrical conductivity was higher than that
of brass and phosphor bronze. Figure 13 shows the stress relaxation properties of the Al-Fe
alloy, C10200 H04 oxygen-free copper, and C5210 H04 phosphor bronze. The oxygen-free
copper is often used for bolted bus bars and the phosphor bronze is used for connector
terminals. The exposure temperature for this measurement was 393 K and the time was
1000 h to simulate a practical environment when used as connector terminals. When the
exposure time was more than 100 h, the residual stress of the Al-Fe alloy was higher than
that of oxygen-free copper. On the other hand, the residual stress of the Al-Fe alloy was
smaller than that of the phosphor bronze.
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Figure 12. Properties of copper and aluminum materials: (a) density, (b) mechanical property
and (c) electrical conductivity. Properties except for the Al-Fe alloy have been cited from the
references [1,13–16].
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4. Discussion
4.1. Effect of Changes in Particle Distribution by Increasing Extrusion Temperature and Annealing

The residual stress after the stress relaxation test of the Al-Fe alloy changed with
the increasing extrusion temperature and annealing (Figure 7). We consider the effect
of the material structure. As shown in Figure 6, there is no significant difference in the
grain size of the aluminum matrix, suggesting that its effect on residual stress is small.
As shown in Figure 5, the volume fraction of the second-phase particles was almost the
same in all samples, suggesting that the solid solution and dispersed amounts of iron were
almost in an equilibrium state and that their effect on the residual stress was small. From
Figure 5, the average radius of Al-Fe intermetallic compound particles varies with extrusion
temperature and annealing, which may be related to residual stress. Assuming the Orowan
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strengthening mechanism by fine dispersoids, the strengthening contribution by fine Al-Fe
dispersoids ∆σ would be roughly evaluated thus [19]:

∆σ ∝ V1/2
f r−1 (4)

where Vf is the volume fraction and r is the average radius of the Al-Fe dispersoids.
Figure 14 shows the relationship between the mechanical properties and the contribution
of particle dispersion strengthening, where the right sides of Equation (4) are employed
as an index. Both the as-extruded 0.2% proof stress and the residual stress after the
stress relaxation test showed a linear relationship with V1/2

f r−1, which was found to
follow the Orowan strengthening mechanism. Therefore, it is suggested that dispersoids
inhibit dislocation motion not only at room temperature but also at high temperature
and improve residual stress. The reason why the residual stress decreased after the stress
relaxation test is that the dispersed particles became coarser due to the increase in extrusion
temperature and annealing, and the ability of these particles to inhibit dislocation motion
was weakened. Furthermore, these results provide an important indication that dislocation
motion is involved in the stress relaxation process in the Al-Fe alloys, i.e., dislocation creep is
dominant in the process. That is why increasing the dislocation pinning force by using other
methods, such as refining the dispersoids by using severe plastic deformation [20], may
further increase the residual stresses. These finding are useful for the further improvement
of the design of the Al-Fe alloys.
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Figure 14. Relationship between distribution of secondary-phase particles and mechanical properties
of Al-Fe alloy: (a) 0.2% proof strength of as-extruded materials; (b) residual stress after the exposure
at 423 K for 48 h.

Next, we consider the effect of the distribution of the second-phase particles in the
Al-Fe alloy on the electrical conductivity. Defects in aluminum, such as impurities and
grain boundaries, scatter free electrons, reducing the electrical conductivity [21]. Al-Fe
dispersoids can cause this free electron scattering. Thus, the mean particle spacing is
estimated as being r·V−1/2

f [22], and the relationship with conductivity is shown in Fig-
ure 15. These relationships were linear, i.e., the conductivity decreased as the mean particle
spacing decreased. This suggests that the increase in the number of the Al-Fe dispersoids
might increase the defects, such as lattice strain and boundaries around them, promote
the scattering of free electrons. Another factor that would lowers the conductivity is an
increase in the amount of solid solute iron. However, as shown in Figure 5, there was
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no significant difference between the volume fractions of Al-Fe dispersed particles in the
samples. Therefore, the difference in the amounts of solute iron due to the increasing
extrusion temperature and annealing would be small. Therefore, it is considered that the
influence of the change in the amount of solute iron on electrical conductivity is smaller
than that of the Al-Fe dispersoids.
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In conclusion, it was clarified that the residual stresses after the stress relaxation test
and electrical conductivity are governed by the distribution of the Al-Fe dispersoids. It was
found that the increasing extrusion temperature and annealing affect the distribution of the
particles, decreasing the residual stress and increasing the electrical conductivity.

4.2. Effect of Cold Rolling

Cold rolling increased the as-extruded strength without changing conductivity (Figure 8),
but failed to improve the residual stress after the stress relaxation test (Figure 11). The effect
of material structure was considered as follows. Figure 16 shows the relationship between
the mechanical properties and the contribution of particle dispersion strengthening, where
the right side of Equation (4) is employed as an index. The dotted lines in the figures are
the same regression line as in Figure 14. The residual stress of cold-rolled material was
about 20% lower than the regression line. This result clarified that the residual stress in the
cold-rolled material cannot be explained only by the distribution of Al-Fe dispersoids as
described in Section 4.1.

As factors for the decrease in residual stress after the stress relaxation tests in the
cold-rolled material, the effects of grain size and dislocation density were considered.
Figure 17 shows the cross-sectional SEM-compo images of the samples before and after
rolling with the brightness and contrast adjusted to compare the grain sizes. Roughly
estimating the grain sizes from the electron channeling contrast of the aluminum matrix,
both were thought to be around 2–3 µm, and the change due to cold rolling seemed to
be small. On the other hand, as shown in Figure 8, the 0.2% yield strength of the Al–Fe
alloy after cold rolling was higher than that before rolling. This result suggests that the
dislocation density was increased by the cold rolling. Dislocations induced by plastic strain
can increase the creep deformation rate [23]. Since the stress relaxation is a type of creep
deformation [24], the dislocations induced by the cold rolling in the Al-Fe alloy will also be
associated with the stress relaxation. Additionally, the introduction of the dislocations by
cold rolling will increase the residual stress in the Al-Fe alloy before the stress relaxation test.
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When exposed to the high temperature during the stress relaxation test, the dislocations
introduced by the cold rolling will rearrange and be annihilated in order to reduce the
strain energy, resulting in strain relaxation. The rearrangement and the annihilation of
the dislocations might reduce the residual stress after the stress relaxation test. This will
be a phenomenon similar to the relief of the residual stress after plastic deformation, as
follows: post-deformation annealing enables residual stress relief via a modification of the
dislocation substructure [25]. Mobile dislocations which would be introduced by the cold
rolling could promote the stress relaxation as well [26]. Therefore, as found in Figure 11,
the higher stress relaxation rate of the cold-rolled Al–Fe alloy than the as-extruded one is
considered to be associated with such an introduction of the dislocations.
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In conclusion, strengthening via the introduction of dislocations in cold rolling can-
not improve the residual stress after the stress relaxation test, which is an industrially
important finding.
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4.3. Comparison of Stress Relaxation Characteristics of the Al-Fe Alloy with the
Conventional Materials

As shown in Figure 13, the residual stress of the Al-Fe alloy after the stress relaxation
test, for more than 100 h, was higher than that of oxygen-free copper. Oxygen-free copper
is often used in bolted bus bars. Therefore, the Al-Fe alloys may be used as bus bars with
excellent long-term connection reliability. The residual stress of the Al-Fe alloy after the
stress relaxation test was smaller than that of the conventional phosphor bronze (Figure 13).
Therefore, replacing phosphor bronze with the Al-Fe alloy as a conductor material requires
increasing the cross-sectional area to maintain the same contact force. Since the Al-Fe alloys
had a lower density than the phosphor bronze (Figure 12), the weight may be reduced even
if the cross-sectional area was increased. In order to consider the effect of density, their
specific strength s was compared as an index of their mechanical properties.

s =
σ

ρd
(5)

Here, σ is the strength (0.2% proof stress or residual stress after the stress relaxation test) and
ρd is the density. The higher the specific strength s is, the higher the residual stress when
the cross-sectional area is increased with the same mass will be. As shown in Figure 18,
the specific strength of the Al-Fe alloy was slightly higher than that of C52100 phosphor
bronze. Therefore, the residual stress of the Al-Fe alloys was found to be superior to the
conventional phosphor bronze when the cross-sectional area was increased. Moreover, the
conductivity of the Al-Fe alloy is more than twice higher than that of phosphor bronze
(Figure 12c). Hence, the temperature rise due to the Joule heating when an electric current
is applied to Al-Fe alloy is considered to be much lower than that of C52100 phosphor
bronze, which makes it easier to pass more current. The lower the stress relaxation test
temperature is, the higher the residual stress is [17]. Considering these factors, the stress
relaxation of the Al-Fe alloy would be smaller than that of phosphor bronze when the
current is applied to the same cross-sectional area. Thus, the required cross-sectional area
of the Al-Fe alloy can be reduced, which is expected to contribute to weight reduction in the
conductive material. Materials other than phosphor bronze for connector terminals include
Cu-Ni-Si alloys and Cu-Be alloys [6]. Their stress relaxation properties are superior to those
of phosphor bronze, allowing for use in higher-temperature environments of 150 ◦C and
above [5]. In order to use the Al-Fe alloy in such an environment, it is considered effective
to reduce the extrusion temperature of the Al-Fe alloy for the further refinement of the
Al-Fe dispersoids, which should be validated in a future study.
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5. Conclusions

We investigated the effects of material structure on the stress relaxation properties
and the electrical conductivity of rapidly solidified Al-Fe alloys and obtained the follow-
ing findings.

1. The distribution of Al-Fe intermetallic compound particles affects the conductivity
and residual stress after the stress relaxation tests. The particles control the residual
stress via the Orowan mechanism. Decreasing the mean inter-particle distance reduces
the conductivity. The increasing in extrusion temperature and the annealing affect
the particles’ distribution, with higher extrusion temperatures and more annealing
reducing the residual stress and increasing the conductivity.

2. The cold rolling of the Al-Fe alloys can increase strength at room temperature without
changing electrical conductivity. However, in the study, the cold rolling did not
have a positive effect on the stress relaxation characteristics of the Al-Fe alloy. The
dislocations induced by the cold rolling would be associated with the effect on the
stress relaxation characteristics.

3. The residual stress after the stress relaxation test of the Al-Fe alloy was lower than that
of C52100 H04 phosphor bronze. However, considering its density, the Al-Fe alloy
is superior when compared with the case of the same mass. Since the conductivity
of the Al-Fe alloy is more than twice as high as that of the phosphor bronze, the
temperature rise when an electrical current is applied is small, making it easier to pass
more current.

It was shown that a rapidly solidified Al-Fe alloy could be used as a conductive
material with superior sustainability compared to the conventional copper materials. Suit-
able applications include applications where weight reduction is important, such as in
smartphones and wearable devices. The properties of the Al-Fe alloy are adjusted by
increasing the extrusion temperature and annealing, and this mechanism was clarified by
the present study.
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