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Abstract: The high-quality aluminum nitride (AlN) epilayer is the key factor that directly affects
the performance of semiconductor deep-ultraviolet (DUV) photoelectronic devices. In this work,
to investigate the influence of thickness on the quality of the AlN epilayer, two AlN-thick epi-film
samples were grown on c-plane sapphire substrates. The optical and structural characteristics of
AlN films are meticulously examined by using high-resolution X-ray diffraction (HR-XRD), scanning
electron microscopy (SEM), a dual-beam ultraviolet-visible spectrophotometer, and spectroscopic
ellipsometry (SE). It has been found that the quality of AlN can be controlled by adjusting the AlN
film thickness. The phenomenon, in which the thicker AlNn film exhibits lower dislocations than
the thinner one, demonstrates that thick AlN epitaxial samples can work as a strain relief layer
and, in the meantime, help significantly bend the dislocations and decrease total dislocation density
with the thicker epi-film. The Urbach’s binding energy and optical bandgap (Eg) derived by optical
transmission (OT) and SE depend on crystallite size, crystalline alignment, and film thickness, which
are in good agreement with XRD and SEM results. It is concluded that under the treatment of
thickening film, the essence of crystal quality is improved. The bandgap energies of AlN samples
obtained from SE possess larger values and higher accuracy than those extracted from OT. The
Bose–Einstein relation is used to demonstrate the bandgap variation with temperature, and it is
indicated that the thermal stability of bandgap energy can be improved with an increase in film
thickness. It is revealed that when the thickness increases to micrometer order, the thickness has little
effect on the change of Eg with temperature.

Keywords: aluminum nitride; spectroscopic ellipsometry; temperature-dependent SE; Urbach’s
binding energy

1. Introduction

With the rapid development of energy conservation and emission reduction, electric
vehicles, rail transit, new energy power generation, smart grid and wireless communication,
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and other technical fields, industry is increasingly demanding the performance index and
reliability of power semiconductor devices [1–5]. Aluminum nitride (AlN) is a kind of ultra-
wide bandgap material with a large bandgap (Eg) (6.2 eV), high critical electric field, and
high breakdown voltage for a variety of electronic and photonic applications. Since epitaxi-
ally grown AlN is best matched to the lattice of compound semiconductors such as binary
Gallium nitride (GaN) or terpolymer Gallium aluminum nitride (AlGaN). It is commonly
used to prepare ultraviolet (UV) light-emitting diodes (LEDs) and GaN/AlGaN-based elec-
tronic and photonic devices based on III-Nitrides. Large numbers of studies have shown
that the high fault, strain and stress in the AlN template layer will affect the luminescence
and electronic characteristics of the device, and the quality of the AlN template material
will significantly affect the device’s performance [6,7]. Therefore, high-quality aluminum
nitride is required for better device performance. Previously, different techniques, such
as substrate pretreatment, interlayer insertion, annealing of nucleation layers, and strain
management, have been reported to improve the quality of AlN films grown on sapphire
and silicon carbide (SiC) substrates [8–14]. In recent years, considerable studies have been
performed on AlN by our research team [15–19]. Research and development (R&D) on AlN
is currently still at the frontier of scientific society [6,20–27].

Extensive reports have used traditional methods such as high-resolution X-ray diffrac-
tion (HR-XRD), optical transmission (OT), and Raman spectroscopy to evaluate the struc-
ture and optical characteristics of AlN [15,18,28–30]. Samiul Hasan et al. [28] investigated a
4 µm thick crack-free AlN film grown on a 0.2◦ offcut sapphire substrate using nitrogen as
a carrier gas. They analyzed the structural properties of AlN at room temperature using
atomic force microscopy (AFM), XRD, and Raman spectroscopy but did not study them
at high temperatures. Nam et al. [29] reported the energy bandgap (Eg) with changing
temperature in the AlN epilayer from 10 K to 800 K measured by deep ultraviolet (DUV)
photoluminescence (PL) spectroscopy. Because the bandgap energy evaluated from the
analysis of reflectance spectra and photoluminescence is different, the PL measurement
method can accurately measure the temperature-dependent inter-band transition energy
associated with Eg [30] but cannot evaluate the Urbach band tail effects below the bandgap
edge. Recently, Zhe Chuan Feng et al. [15] reported optical studies of AlN films with differ-
ent thicknesses (0.4–10 µm) grown on sapphire using XRD, OT, SE, and Raman. However,
Urbach’s energy was simply studied by the spectroscopic ellipsometry (SE) method and
the variation trend of the energy bandgap with temperature was not studied under high-
temperature conditions. Few studies are using XRD, OT, and SE methods simultaneously
to characterize the grain crystal quality of AlN thin films. The Urbach’s binding energy
(Eu) obtained by OT and high-temperature SE methods can be used to analyze the intrinsic
effects of thin film crystal quality. When studying the optical properties of semiconductor
thin films, the high-temperature ellipsometry method can be used to obtain the thickness
of AlN thin films more accurately and the changes in refractive index, absorption edge, and
bandgap of each layer with temperature.

In the present work, the optical and structural properties of two AlN films grown on
sapphire by MOCVD are investigated using HRXRD, OT, scanning electron microscopy
(SEM), and SE, especially focused on optical properties at high temperatures by temperature-
dependent SE from 300 K to 850 K. These AlN epitaxial layer samples were obtained with
low defect density, low residual stress, low strain field, and no cracks.

2. Materials and Methods

The thick AlN epi-films were epitaxial on vicinal sapphire (0001) (c-plane) substrates
by MOCVD and by using trimethyl-aluminum (TMAl) and ammonia (NH3) as Al and N
precursors, respectively. The deposition was started by the step-growth method. First, a
low-temperature (LT) AlN inter-layer, followed by a high-temperature (HT) AlN epitaxial
layer. The two samples are named AlNt and AlNn, with nominal-designed thicknesses of
2 and 4 µm, respectively.
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The optical and structural characteristics of AlN epilayers are examined by using
HR-XRD, a dual-beam ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron
microscopy (SEM), and spectroscopic ellipsometry (SE). The experiment data was analyzed
to acquire the optical constants, bandgap, Urbach’s energy, thickness, and surface roughness
of AlN films. The crystalline perfection and related characteristics of the AlN films were
evaluated by high-resolution X-ray diffraction (HR-XRD, λ = 0.15406 nm, X’Pert3 MRD)
with a 2θ = 0.002◦ scanning step. The dual-beam UV-Vis spectrophotometer (TU1901)
was used to measure optical transmission (OT) spectra in the wavelength region from
190 to 850 nm by placing the sample in a black box. SEM was employed to measure the film
cross-section structural information. The SE spectral data were measured from a Mueller
matrix ellipsometer (Wuhan Eoptics Technology Co. Ltd., Wuhan, China) at five incidence
angles of 60◦, 65◦, and 70◦, with the temperature variation in the range of 300 K to 850 K,
controlled by a Linkam temperature stage (THMS600). Temperature-dependent SE mea-
surements of AlN films were performed after stabilizing each temperature point for 15 min
to ensure the uniformity and accuracy of the surface temperature.

3. Results and Discussion
3.1. Structural Characterization by High-Resolution X-ray Diffraction

High-resolution X-ray diffraction (HR-XRD) is an effective method for under-
standing the crystal structure and quality. The orientation of the AlN epitaxial layer
can be determined by 2θ-ω scanning of the sample using HR-XRD. Figure 1 shows the
AlN (0002), (0004), and (0006) patterns for two AlN samples, characteristic of their crys-
talline wurtzite structure. It is determined that the two AlN films on sapphire show an
obvious polarity (0001) orientation from the characteristic peaks of AlN and sapphire.
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To analyze the structural characteristics of two AlN samples and compare their crystal
quality, the X-ray rocking curves (XRC) of two samples were tested. As shown in Figure 2,
the crystal orientation (0002), (0004), and (0006) rocking curves of samples are measured,
and the FWHM values are shown in Table 1, which were obtained by Gaussian fitting.
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Table 1. (0002), (0004), and (0006)ω FWHM, calculation results of crystallite size, micro-strain, and
dislocation density of two AlN epi-films.

AlNt AlNn

FWHM(0002)ω (arcsec) 438 ± 4 351 ± 5
FWHM(0004)ω (arcsec) 434 ± 5 355 ± 6
FWHM(0006)ω (arcsec) 531 ± 8 456 ± 8
Crystallite size (nm) 68.72 ± 0.02 85.62 ± 0.03

Micro-strain (×10−3) 0.50 ± 0.04 0.41 ± 0.05
Screw dislocation density (×10−5) (nm−2) 1.07 ± 0.05 0.69 ± 0.06

The average grain size of the AlNt and AlNn can be estimated by the Debye–Sheller
formula [16,31]:

D =
kλ

βcosθ
(1)

where D is the grain size (diameter), β is the half-peak width of (0002) XRC, k is the Scherrer
constant (k = 0.9), λ is the X-ray diffraction wavelength (λ = 0.15406 nm), and θ is the
diffraction angle.

The following Formula (2) can be used to calculate the microscopic strain (ε) [16,31]:

ε =
βcosθ

4
(2)

where θ is the diffraction angle and β is the full width at half-maximum (FWHM).
In addition, the screw dislocation density of AlN can be evaluated by the

following equation [16,31]:

δ =
β2
(0002)

4.35b2 (3)

where β is the FWHM and b is the length of the Burgers vector, which is 0.3110 nm.
Through the above calculation, the crystallite size, micro-strain, and screw dislocation

density values of two samples are obtained, as shown in Table 1. After comparison, the
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FWHM of AlNn is smaller than that of AlNt. The XRD symmetric (0002) linewidth was
measured to be around 351 arcsec for AlNn and 437 arcsec for AlNt, respectively, indicating
that the crystalline perfection of AlNn is better. Both AlN samples indicate low threading
dislocation density. The thicker AlNn exhibits lower dislocations than another one; it
is further proven that thick AlN epitaxial film can serve as a strain relief layer while
significantly bending the dislocation and reducing total dislocation density. The reason
can be explained below. With the increase of AlN thickness, the dislocation induced by the
lattice mismatch between AlN epilayers and sapphire will gradually decrease and may
even be annihilated, thus improving the crystal quality.

3.2. Optical Transmission Spectroscopy Analysis for AlN

Figure 3 shows the optical transmission (OT) spectra of AlNt and AlNn samples,
measured by a dual-beam ultraviolet-visible spectrophotometer. It can be observed that the
absorption cut-off lines of both samples are very steep, indicating the advantage of thick
film AlN. In the meantime, the spectra of the two samples show clear oscillations below the
absorption edge, that is, the transparent region beyond 300 nm, indicating the advantages
of this method of sample preparation, which can grow a film with a uniform distribution
texture and excellent quality.
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To better compare the two samples, AlNt and AlNn, the dependence of the absorption
coefficient on photon energy can be used through the formula [32]:

αhv = C
(
hv − Eg

)1/2 (4)

where C is a constant, Eg is the bandgap of the semiconductor, and hv is the photon energy.
The optical bandgap energy (Eg) of AlN can be obtained by extrapolating the linear

part of the proportional dependence of (αhv)2 vs. photon energy (hv) by Formula (4),
known as the Tauc plot [32]. The values of Eg can be calculated by linear fit close to
the absorption edge (Dotted lines in green and purple), as shown in smaller image of
Figure 4. Where the smaller built-in image in Figure 4 is the enlarged view of Figure 4.
Thus, the bandgap of the two samples can be seen in Figure 4: Eg (AlNt) = 6.08 ± 0.03 eV and
Eg (AlNn) = 6.05 ± 0.03 eV, as shown in Table 2.
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Table 2. A list of SE fitting results and OT results of AlN samples.

Sample Name AlNt AlNn

Surface roughness by SE (nm) 3.07 ± 0.03 3.58 ± 0.05
Thickness of epilayer by SE (nm) 1776.35 ± 0.04 3666.17 ± 0.05

Thickness of the buffer layer by SE (nm) 21.27 ± 0.06 51.89 ± 0.06
Thickness of AlN by SEM (µm) 1.93 ± 0.05 4.29 ± 0.05

Bandgap by SE (eV) 6.11 ± 0.01 6.10 ± 0.02
Bandgap by OT (eV) 6.08 ± 0.03 6.05 ± 0.03

Eu by SE (meV) 50.08 ± 0.02 45.48 ± 0.02
Eu by OT (meV) 117.56 ± 0.03 99.97 ± 0.04

Figure 5 exhibits exponential absorption band tails below the band edge for both
AlN samples, which may result from structural disorder accompanying electron–phonon
coupling [33,34]. The Urbach’s binding energy (Eu), which is a band tail parameter, can be
determined from the formula [34]:

1/Eu = d(lnα)/d(hv) (5)

Figure 6 shows Urbach’s binding energy Eu compared with the FWHM of (0002)
vs. the thickness of AlN. We obtain the Eu of AlNt and AlNn by OT as 117.56 meV and
99.97 meV, respectively. It shows that the obtained Eu (red solid squares in Figure 6) is
decreased with AlN epilayer thickness, which corresponds to the FWHM of HR-XRD
results discussed before (black solid circles in Figure 6), i.e., an improvement of structural
quality. The high correlation between OT-derived Eu and HR-XRD FWHM predicates that
the AlN crystalline quality can be demonstrated from the spectral properties in the vicinity
of the band edge. The data for S1 (150 nm), S2 (300 nm), and S3 (400 nm) are from Ref. [17]
for comparison.
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3.3. Cross-Sectional Morphologies of AlN

The thickness of the AlN film can also be determined by SEM on the AlN film cross-
section. From Figure 7, it can be obtained that the thicknesses of AlNt and AlNn samples
are about 1.93 µm (AlNt) and 4.29 µm (AlNn), respectively. It can be seen that the AlN
epitaxial layer in sample AlNn gradually becomes tightly packed, indicating that the crystal
density of the AlN epitaxial layer is higher for a thick film, which corresponds to the XRD
characterization.
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3.4. Spectroscopic Ellipsometry Analysis of AlN

Spectroscopic ellipsometry (SE) measurements were performed for two AlN/sapphire
samples, showing the changes in polarization states psi (Ψ) and delta (∆) between the
incidence and reflection of light on the sample. SE spectra of AlN samples are fitted
using the J.A. Woollam Co. software to establish a four-phase physical model, including
roughness/epitaxial AlN layer/AlN buffer layer/sapphire substrate. After fitting, the
thickness, optical constants, surface roughness, and bandgap energy of the AlN epitaxial
layer were derived. In the fitting model, a Bruggeman effective medium approximation
was used to model the surface roughness. The optical constants of a sapphire substrate
from Ref. [35] were adopted and kept fixed in the fitting procedure. Two AlN layers are
composed of a Gaussian oscillator, a PSemi-Tri oscillator, and a PSemi-MO oscillator. All
parameters in AlN layers were adjusted to acquire the best-fitting SE data for two samples at
room temperature (RT). The thicknesses of the AlN film, buffer layer, and surface roughness
can be obtained within reasonable boundaries.

Figure 8a,b presents the experimental SE spectra and fitting curves of psi (Ψ) and
delta (∆) at 300 K with three incident angles of 60◦, 65◦, and 70◦ for two AlN samples. The
experimental and fitting results are in good agreement. The interference oscillations below
the bandgap edge correspond to the transparent region of the AlN sample. The final fitting
results with parameters of the surface roughness, epilayer, and interlayer thicknesses for
both AlN samples are listed in Table 2. In the meantime, the optical constants of AlNt and
AlNn samples, such as refractive index (n) and extinction coefficient (k), vs. the photon
energy, are extracted by SE fitting at 300 K and shown in Figure 9. The optical bandgap
energy (Eg) of AlN can be obtained by extrapolating the linear part of the proportional
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dependence of (αhv)2 vs. photon energy (hv) by Formula (4), known as the Tauc plot [32].
Thus, the bandgap of the two samples can be seen in Figure 10: Eg (AlNt) = 6.11 ± 0.01 eV
and Eg (AlNn) = 6.10 ± 0.02 eV, as shown in Table 2.
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Figure 11 shows the absorption coefficient (α) of epilayer vs. photon energy (hv),
according to α = 4πk/λ, where k is the extinction coefficient. From Figure 11, below the
band-edge, the absorption band tail is observed for two AlN samples, which could originate
from the structural disorder accompanying electron–phonon coupling [17]. The band tail
parameters Eu of AlNt and AlNn can be obtained by Formula (5), which are 50.08 meV and
45.48 meV, respectively, as shown in Figure 12 and Table 2. Through comparison, it can
be found that the changing trend of these two parameters from OT and SE is consistent
with the results of XRD from Figure 13, which proves the accuracy of SE characterization.
Meanwhile, it is also observed that the result of Eu obtained by SE is much smaller than
OT. The reason is that the data from the OT test is the combination of the entire AlN
epitaxial layer and buffer layer, while the data taken from SE is directly from the epitaxial
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layer. The epitaxial layer usually has better quality and a lower density of defects than
the interlayer, so the Eu value is smaller by SE than by OT. The bandgap of two samples
can be acquired by Formula (4) as shown in Figure 10: Eg (AlNt) = 6.11 ± 0.01 eV and
Eg (AlNn) = 6.10 ± 0.02 eV, as indicated in Table 2. The values of the bandgap obtained by
SE are slightly larger than those measured by OT. The reason is that the bandgap obtained
by the OT method is the bandgap including interlayer and epi-layer, while the bandgap
obtained by the SE method is only the bandgap of epi-layer, and the bandgap is affected by
the band edge, so the Urbach band tail characterized by SE is smaller, resulting in a larger
bandgap characterized by SE. With the increase in epitaxial layer thickness, some of the
dislocations will annihilate, and the quality of AlN films will tend to be better.
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3.5. Temperature-Dependent SE Analysis of AlN

To understand the influence of temperature on the optical properties of AlN epi-films,
a variable-temperature ellipsometry experiment was carried out. Based upon the accuracy
of the SE dispersion model and fitting results, the room-temperature fitting parameters of
the model were used as the initial values for subsequent high-temperature fitting. Then,
the relevant parameters are adjusted, and the surface roughness, film, and interlayer
thicknesses are further fitted to match the SE data of the high-temperature experiment. A
special concern is the study of the changes in bandgap energy (Eg), refractive index (n), and
extinction coefficient (k) with temperature. Figure 14a–h show the refractive index (n) and
extinction coefficient (k) vs. photon energy at different temperatures, where Figure 14b,d,f,h
are enlarged views of Figure 14a,c,e,g, respectively. It indicates that the n and k values shift
from right to left as the temperature increases.
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Figure 15a,b show (αhv)2 vs. photon energy (hv) of AlNt and AlNn at 12 temperature
points between 300 K and 850 K. The optical bandgap energy (Eg) of AlN can be obtained
by extrapolating the linear part of the proportional dependence of (αhv)2 vs. photon energy (hv)
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by Formula (4) [32]. It is observed that with the temperature rising, the absorption edge
shifts to the lower energy, together with the enlarged band tailing, i.e., the redshift of
the bandgap. Figure 16 depicts the dependence of the bandgap on temperature (T) for
the two AlN films. The bandgap energy of both samples exhibits an apparent redshift
with the increase in temperature. These results are due to the dominant electron–phonon
interactions being stronger than the weak contribution of thermal expansion [36,37].
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The change of the bandgap with temperature can be fitted using Bose–Einstein’s
analytical formula [29],

Eg(T) = Eg(T = 0 K)− 2αB/[exp
(

θ

T

)
− 1] (6)

where θ is related to the average phonon temperature, αB represents the strength of the
average electron–phonon coupling. The fitting results are presented in Figure 16 and
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Table 3. It is seen that the fitting degree of accuracy is very high due to one of the values
being extremely close to a value of 1 for Adj.R-Square. The solid lines in Figure 16 show the
trend of the bandgap with temperature. Table 3 also lists the fitted values of αB and θ from
Ref. [17] for comparison. We can see that the reported data in Ref. [17] are all larger than
those obtained by our present work, indicating that the larger the thickness, the weaker the
electron–phonon coupling and the following slower decline of Eg. However, in this study,
the αB of the two samples was similar, and the declining value of Eg was similar. This result
may predict that when the thickness increases to a certain value (micrometer order), the
thickness has little effect on the change of Eg with temperature, which indicates the thermal
stability of Eg for thick AlN films. Combined with the changing trend of the Urbach band
tail of five samples in Figure 6, we can also find that the declining trend of the Urbach band
tail Eu becomes smaller when the thickness of the sample reaches the micron level. The
reason for these two kinds of similar phenomena may be that when the thickness reaches
the micron level, all the islands in the growth of AlN coalesce together, and the dislocations
induced by lattice mismatch diminish gradually, so the influence of thickness on thermal
stability will become smaller.
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Table 3. A list of fitting parameters for αB and θ from AlN samples.

Sample Name Thickness αB θ Adj.R-Square Reference(nm) (meV) (K)

AlNt 1776.35 389 ± 100 800 ± 154 0.99645 This work
AlNn 3666.17 390 ± 102 795 ± 155 0.99639 This work

S1 136.42 687 ± 72 1233 ± 73 Ref. [17]
S2 307.85 554 ± 54 1111 ± 64 Ref. [17]
S3 412.90 407 ± 36 977 ± 58 Ref. [17]

4. Conclusions

In summary, the optical and structural characteristics of AlN films grown on sapphire
substrates by MOCVD have been investigated by way of HRXRD, OT, SEM, and SE,
especially focused on optical properties at high-temperatures by temperature-dependent
SE. The thicker AlNn exhibits lower dislocations than the thinner ones; it is further proven
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that thick AlN epitaxial samples can serve as a strain relief layer, significantly bend the
dislocation, and reduce total dislocation density. The reason is that, with the increase
in AlN thickness, the dislocation arising from the lattice mismatch between AlN and
sapphire will be gradually decreased and may even be annihilated, thus improving the
sample’s crystalline quality. Urbach’s binding energy Eu and optical bandgap Eg by OT
and SE depend on crystallite alignment, crystalline size, and film thickness, which are
highly by XRD and SEM results. With the combination of SE, HRXRD, and OT analyses,
we concluded that with the treatment of thickening film, the essence of crystal quality
improved. However, the bandgap energies obtained from SE have larger values and higher
accuracy than those extracted from OT. It has been proven that SE measurement is an
efficient and useful method to characterize semiconductor thin films. The Bose–Einstein
relation is used to demonstrate the temperature dependence of the bandgap. Our results
reveal that the thermal stability of the AlN bandgap energy can be improved by increasing
film thickness, which is caused by the corresponding weaker electron–phonon interactions.
However, when the thickness increases to micrometer order, the thickness has little effect
on the change of Eg with temperature. The AlN film with epilayer thicknesses of 1.776 and
3.666 µm has a small average electron–phonon coupling of about 390 meV. These results
and analyses will provide good information for further penetrative research for AlN-based
devices such as SAW sensors, LDs, LEDs, and other optoelectronic devices, especially those
working at high temperatures.
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