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Abstract: The quality of Ti alloy casing is crucial for the safe and stable operation of aero engines.
However, the fluctuation of key process parameters during the investment casting process of titanium
alloy casings has a significant influence on the volume and number of porosity defects, and this
influence cannot be effectively suppressed at present. Therefore, this paper proposes a strategy to
control the influence of process parameters on shrinkage volume and number. This study constructed
multiple regression prediction models and neural network prediction models of porosity volume and
number for a ZTC4 casing by simulating the gravity investment casting process. The results show that
the multiple regression prediction model and neural network prediction model of shrinkage cavity
total volume have an accuracy of over 99%. The accuracy of the neural network prediction model is
higher than that of the multiple regression model, and the neural network model realizes the accurate
prediction of shrinkage defect volume and defect number through pouring temperature, pouring
time, and mold shell temperature. The sensitivity degree of casing defects to key process parameters,
from high to low, is as follows: pouring temperature, pouring time, and mold temperature. Further
optimizing the key process parameter window reduces the influence of process parameter fluctuation
on the volume and number of porosity defects in casing castings. This study provides a reference for
actual production control process parameters to reduce shrinkage cavity and loose defects.

Keywords: investment casting; shrinkage defects; Ti alloy; multi-regression; neural network

1. Introduction

ZTC4(Ti-6Al-4V) is a kind of a-B casing for Ti alloys, which is widely used in the
manufacture of complex aviation structural parts because of its good casting and corrosion
resistance [1-5]. In order to meet the Ti alloy casings requirements of complex functionaliza-
tion, thin walls, and being lightweight, investment casting technology has been used [6-8].
However, the investment casting will inevitably produce shrinkage cavity [9] and loose [10]
defects, which will have a negative impact on the performance of the castings. In order to
minimize the shrinkage cavity and loose defects, the investment casting process parameters
need to be controlled.

In the Ti alloy casing complex precision casting process, there are many urgent prob-
lems to solve. The large range of size changes and the different thicknesses of the regional
organization in the solidification process is often difficult to coordinate. During the subse-
quent stages of hot isostatic pressing [11], weld repair [12], and heat treatment [13], different
shrinkage cavity and loose defects in the same type of castings lead to different casting
properties. In addition, the sequence between the inside and outside of the casting during
solidification is different. The isolated liquid phase regions that solidify last are prone to the
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formation of shrinkage cavity and loose defects. When larger shrinkage cavities and loose
defects are present, even after a hot isostatic pressing treatment, it remains challenging
to eliminate the impact of these defects on the performance of casting. In order to reduce
the defects of castings, many researchers have carried out corresponding studies. Yu [14]
developed a numerical simulation software for the solidification process of investment
casting steel, which can be used for defect prediction. Huang [15] used simulations to
optimize the investment casting parameters for toothed chain joints made of SNCM220
alloy and reduced harmful defects. Pan [16] established a simulated macro-scale and
micro-scale comprehensive model to achieve an accurate prediction of the microstructure of
nickel-based alloy investment castings. Nan [17] improved the inner runner and the straight
runner, through simulations, to ensure the casting quality and production efficiency.

Due to its large scale, numerical simulation takes a long time. It is difficult for man-
agers to better understand the influence of parameter fluctuations on product quality. With
the rapid development of neural networks, the effect of process parameter fluctuations on
complex casting defects can be effectively investigated. Sata [18] proposed a prediction
penalty index (ppi) and compared it to the relative predictive capability of neural and
multivariate regression models, and found that multiple regression was better at predic-
tions. The CNN (convolutional neural networks) model used by Dong [19] can accurately
predict the shrinkage deformation and trend of complex castings during precision casting.
Yu [20] proposed a data-driven framework, which improved the yield of castings by 14.91%
by optimizing the process parameters. Jin [21] proposed the Bayesian network and an
industrial computerized tomography method to improve the dimensional accuracy of
casting in the IC (investment casting) process. Tian [22] designed a series of steel castings,
and through the known geometric parameters of the computer-aided casting design model,
the shrinkage rate could be well predicted. Manjunath [23] established a neural network
model that could effectively predict casting density, hardness, and secondary dendrite arm
spacing, in both forward and reverse mappings. In this paper, the data set is constructed
using a physical model, and the casting defects were predicted using multiple regression
and a neural network.

In order to reduce the shrinkage cavity and loose defects, we must optimize the process
parameter ranges. Finding the specific range using only numerical simulation requires a
long calculation time, which is not conducive to finding the optimal process range quickly.
After simulating part of the experimental data through a physical model, a neural network
model is constructed using the data. The ranges of the process parameters can be quickly
found through the weighted shrinkage cavity and loose defect evaluation system. It is of
great significance to determine the range of production parameters for complex castings.

2. Materials and Methods
2.1. Data—Physics Fusion-Driven Framework

In this work, the relationship between pouring temperature, mold shell temperature,
pouring time, and shrinkage cavity and loose defects of castings was explored. Multiple
regression [24,25] and BP (back propagation, BP) neural network [26-28] models were
constructed to predict the influence of process parameters on the defects, by combining
simulation and neural network, as shown in Figure 1. Firstly, this study uses InteCast CAE
(computer-aided engineering) for the numerical simulation of complex casting. Secondly,
based on the simulation results, a multiple regression analysis of the quantitative relation-
ship between the shrinkage cavity and loose defect number and volume and the casting
temperature, shell temperature, and pouring time was constructed. Thirdly, the neural
network model, to map the relationship between the key process parameters and defects,
was constructed. The evaluation of the key process parameters enabled the empirical
analysis of the shrinkage cavity and the evaluation of the loose defects of the formula.
Finally, the sensitivity analysis of the impact of the key process parameters on the shrinkage
cavity and loose defects was carried out, and the optimization window of the key process
parameters was obtained.
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Figure 1. Major steps of data—physics fusion-driven framework.

2.2. Process Flow and Orthogonal Experiment

Ti alloy casing is typically a large and complex casting with a lengthy process flow.
The main processes include wax mold pressing and combining, shell smelting and pouring,
repair welding, pickling, hot isostatic pressing, X-ray inspection, and a machining final
inspection, as shown in Figure 2. More than 70 processes affect the shrinkage cavity and
loose defects of the casing. Defects result in the reduced strength of the casing. However,
during smelting and pouring, the casing can revive different shrinkage cavities and loose
defects. Thus, this paper discusses the effects of changes in the parameters of the smelting
and pouring processes on the defects.

A
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Recovered
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Figure 2. Casing process flow [29].
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Assembly drawing

Pouring gate

Among the casting methods are gravity casting, pressure casting, centrifugal casting,
etc. We used InteCast CAE to simulate the gravity investment casting of the Ti-alloy casing.
The overall simulation process of shrinkage cavity and loose defects in Ti-alloy casing is
shown in Figure 3. In the casting process of the Ti-alloy casing, the casting process includes
the casting, pouring gate, and the corresponding riser. The casing needs to be meshed in
the simulation process. The thinnest part of the Ti alloy casing’s casting thickness was
2.419 mm. In order to ensure the connectivity of the casing’s thin-wall sections and the
computing efficiency of the computer, the length, width, and height of the split grid are
2.4 mm. During the simulation, we set the composition and thermophysical properties of
the ZTC4 Ti alloy casing, as shown in Tables 1 and 2.

Meshing diagram Parameters Simulation result

‘ Composition: ZTC4

‘ Solidus curve: 1600°C

\
|
’ Liquidus curve: 1650°C }
o |

‘ Coagulation coefficient:

Coefficient of heat
transfer: 0.08 cal/cm?s-C

Figure 3. Simulation flow of shrinkage cavity formation and material loosening defects in a Ti
alloy casing.

Table 1. ZTC4 Ti alloy composition content in terms of weight percent (wt%).

Elements Ti Al Fe H Si A% C o N
Content 89.3 6.2 0.2 0.01 0.1 4 0.06 0.1 0.03
Table 2. ZTC4 Ti alloy thermophysical properties.

Thermal . . Solidification Shrinkage of Liquid
Emissivity Late(n/t I)—Ieat Liquidus (°C) Solidus (°C) Cthcai.SOhd Coefficient Phase Shrinkage
(W/m?) Vg raction (mm/s'?) Transition Degree

0.13 335.62 1650 1600 0.65 14 0.04476 22102 x 107>

Ti alloy complex components filling and solidification are different. Pouring tem-
perature, pouring time, shell temperature, and thickness are the main factors influencing
the solidification process. To improve the accuracy and efficiency of the experiment, the
solidification simulation’s key parameter ranges originated from the actual production
process. In actual production, the key process parameters of some casings are abnormal,
and the key process parameters are used after the abnormal casings are eliminated. The
pouring temperature is set based on a smelting current ranging from 41 kA to 42 kA, a
smelting duration of 14 min to 19 min, and a molten metal quality varying between 381 kg
and 425 kg. The shell temperature is established based on an actual range of 271 °C to
340 °C. Similarly, the pouring time is set according to an actual duration, ranging from
5.7 s to 6.8 s. We set the levels and factors of the orthogonal experiment according to the
distribution amplitude, frequency, and density interval of the process parameters. The
range of pouring temperature, shell temperature, pouring time, and shell thickness are
shown in Table 3. We set the shell thickness to 10 mm. The heat transfer coefficient from
casting to air was set to 3347.2 J/m?-s-°C.
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Table 3. Range of values for simulated process parameters.

Pouring Temperature
Q)

Pouring Time (s) Shell Temperature (°C)  Shell Thickness (mm)

Heat Transfer
Coefficient (J/m?2-s-°C)

1680-1800

4-7 230-290 10 3347.2

In order to investigate the role of pouring temperature, pouring time, shell temperature,
and their interactions on the shrinkage cavity and loose defects of the casing casting, we
reduced the number of simulated experiments, optimized the optimal procedure scheme,
and provided reference criteria for various experimental scenarios at the level of random
distributions. Therefore, we designed an orthogonal experiment [30-33] with three factors
and four levels of pouring temperature, pouring time, and shell temperature, as shown in
Table 4.

Table 4. L14(4°) orthogonal table design.

Pouring

Z
e

Temperature (°C)

Shell Temperature Pouring

No Pouring Shell Temperature  Pouring
Q) Time (s) *  Temperature (°C) (@] Time (s)

1680 (1)
1680 (1)
1680 (1)
1680 (1)
1720 (2)
1720 (2)
1720 (2)
1720 (2)

IO Ul WN -

230 (1) 4(1) 9 1760 (3) 230 (1) 6(3)
250 (2) 5(2) 10 1760 (3) 250 (2) 7 (4)
270 (3) 6 (3) 11 1760 (3) 270 (3) 4(1)
290 (4) 7 (4) 12 1760 (3) 290 (4) 5(2)
230 (1) 5(2) 13 1800 (4) 230 (1) 7 (4)
250 (2) 4(1) 14 1800 (4) 250 (2) 6 (3)
270 (3) 7 (4) 15 1800 (4) 270 (3) 5(2)
290 (4) 6 (3) 16 1800 (4) 290 (4) 4(1)

2.3. Construction of Neural Network Prediction Model

Linear and nonlinear modeling of key process parameters and shrinkage defects, using
a BP neural network, is established. The input characteristics are pouring temperature,
pouring time, and shell temperature. The output results are shrinkage cavity number,
shrinkage cavity volume, shrinkage loose number, and shrinkage loose volume, respectively.
However, in the process of model construction, the activation function is the key for the
neural network to be able to solve the nonlinear problem. At present, there are linear and
nonlinear activation function. Tanh is used in the first hidden layer and ReLU is used in the
second hidden layer as the activation function, the curves of which are shown in Figure 4a,b.
We set the learning rate of training to 0.001, the number of iterations to 10,000. In terms
of data division, due to the limited amount of data, the data are divided into 85% for the
training set and 15% for the validation set. The model structure used is 3 x 50 x 25 x 1, as
shown in Figure 4c.

et —e®

o5/ @ = e

(b)L0
81 f(z) = maz (0,z)
6 L

(c)

‘ Hidden Layers: H1=50, H2=25 ‘

Output Layer=1

‘ Input Layer=3

>
4t

2} [x]
0

5 10 10 s 0 5 10

X
(b) (0)

Figure 4. Neural network model. (a) Tanh. (b) ReLU. (c) Model structure.
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Temperature (°C)
1680.00
1672.19
1664.38
1656.56
1648.75
1640.94
1633.13

1625.31

1617.50

To enhance the stability of the training outcomes, we implement normalization tech-
niques to neutralize the disparities in dimensional characteristics among the key process
parameters. In order to improve the accuracy of the model, we use the Bayesian regu-
larization (BR) algorithm, which is a Bayesian-based method and can reduce the risk of
overfitting and improve the generalization ability in the prediction model of the shrinkage
number. For the prediction of the shrinkage volume, we use the Levenberg-Marquardt
(LM) algorithm, which is better at predicting continuous variables. The loss function
utilizes the mean squared error (MSE) to quantify the smallest discrepancy between the
predicted and actual values. Additionally, to prevent overfitting, a strategy of randomly
deactivating 20% of the neurons is employed.

3. Results and Discussion
3.1. Simulation Results Analysis

Figure 5 shows the results of shrinkage evolution in the simulation of solidification
processes No.1 and No.5. With the increase in solidification time, the defects are gradually
presented in the isolated liquid phase region. In the comparison of the No.1 and No.5
solidification processes, it can be seen that the formation time of the porosity defects is
different for different pouring temperatures and pouring times. In Ti alloy casing, larger
and more shrinkage defects will occur with a higher pouring temperature and a longer
cooling time. Hence, the shrinkage defects in the casing of No.5 are significantly higher
than that of No.1.

Temperature (°C)
1720.00
1707.19
1694.38
1681.56
1668.75
1655.94
1643.13

1630.31

1534.12 s 1617.50 148.23 s 1678.01 s
(b)

Figure 5. No.1 and No.5 solidification processes’ isolated liquid region, shrinkage cavity, and loose
defects evolution, with solidification time. (a) No.1 sample. (b) No.5 sample.

Figure 6 shows the effect of pouring temperature, shell temperature, and pouring time
on the number and volume of shrinkage cavities and loosening. In the three-dimensional
diagram, shrinkage cavities are shown in red and shrinkage loosening is shown in black.
Shrinkage cavity and shrinkage loosening are distinguished by a critical porosity boundary
of 3%. The amount and volume are automatically counted by computer. The results
show that the number and total volume of shrinkage cavity increase gradually with the
increase in pouring temperature. In the conditions of shell temperatures of 230 °C and
250 °C, the number of shrinkage cavities increases sharply when the pouring temperature
increases from 1720 °C to 1760 °C. This indicates that pouring temperature is the main
factor affecting the number of shrinkage cavities. At shell temperatures of 250 °C, 270 °C,
and 290 °C, a notable increase in total shrinkage loosening volume is observed, as the
casting temperature rises from 1720 °C to 1760 °C. At a shell temperature of 230 °C, there is
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Shell temperature ( °C)

290

270

250

230

A

a marked increase in the total volume of shrinkage porosity when the pouring temperature
is elevated from 1760 °C to 1800 °C. It indicates that pouring temperature should be
controlled below 1720 °C to mitigate the total volume of shrinkage loosening, when the
mold shell temperature exceeds 250 °C. At a pouring temperature of 1680 °C, the increase
in the number and the total volume of shrinkage cavities and loosening is not significantly
related to the increase in shell temperature. At a pouring temperature of 1760 °C, the
total volume of shrinkage loosening increases significantly when the shell temperature is
increased from 230 °C to 250 °C. This could be attributed to the attainment of a critical
undercooling between the pouring temperature and the mold shell temperature.

Shrinkage cavity Volume (cc) Shrinkage looseness Volume (cc)

228

[ 154 JRWERN 110

s =

fx& 18
4 X

10.18
7s  IEEH 4s SO 106 |
10.09
103 5s 7Ts 110 153 6s 115
& by dn B & e
1021
104 4s  IEH 6s 104
418 737 4.09
L L L L >
1680 1720 1760 1800

Pouring temperature ( °C)

Figure 6. Influence of key process parameters on the number and total volume of shrinkage cavity
and loosening.

In summary, to minimize the number and total volume of shrinkage cavities and
porosity in the Ti alloy casing, it is imperative to regulate the pouring temperature to
below 1720 °C. The liquidus line of the ZTC4 Ti alloy is lower than that of pure titanium,
with a melting point of 1668 °C for pure titanium. In the actual casting process, it is
inevitable that there will be heat transfer and solidification phenomena during the pouring
and mold-filling stages, due to the flow of the molten metal. To counteract the adverse
effects of premature solidification, which can lead to inadequate pouring, it is necessary for
the titanium alloy melt to have a certain degree of superheat. The pouring temperature
should be controlled at or above 1680 °C. The specific pouring temperature requires further
investigation into the effects of casting process conditions, heat transfer conditions, shell
thickness, shell material, and casting wall thickness on defect formation.
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3.2. Correlation Analysis

The correlation between the simulated process parameters and shrinkage cavity and
loose defects are analyzed, as shown in Figure 7. The results show that pouring temperature
has a strong correlation with the number of shrinkage cavities, the total volume of shrinkage
cavities, the number of shrinkage loosening, and the total volume of shrinkage loosening,
according to the Pearson [34-36] and Spearman [37] correlation tests. In contrast, the
mold shell temperature and pouring time do not exhibit a significant correlation with the
simulation results, which is in agreement with the previous analytical findings.

=@ 0000 @0 - 006 e
. . temperature . .
temperature 08 peratu 08
Shell |4 ¢ 0.0 -0.052 -0.14 0.014 0.021 0.6 shell 199 0.0 -0.030 -0.030 0.0 | 0.079 0.6
temperature : . . : : . . temperature : . . . . . .
0.4 0.4
Pouring time| 0.0 0.0 0.19 0.16 0.27 0.16 Pouring time| 0.0 0.0 0.19 0.091 0.29 0.22
0.2 0.2
Shrinkage ~0.052  0.19 0 Shrinkage N 0 0
cavity numbef . : ’ cavity number| 0.030 0.19
-0.2 : -0.
Shrinkage ‘ ~0.14 0.16 . S!\rmkage ‘ 0,030 0.091 . 0.2
cavity volume| 04 cavity volume] 04
Shrinkage Shrinkage
loosen number . 0.014 | 0.27 . . ‘ . 0.6 j0sen number| 0.0 0. 29 —0.6
. —0.8 . —0.8
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loosen volume| 1 loosen volume] -1
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£ 5 =5 B o g & = g e 2 £ — 2 = en g oo 5 g &2
=2 2z 2 Z2 £% 22 iF S ZTf » 22 2T f: £t
g E 5 & Ef 3 E£% £E P8 5§ fZz =& E£§5 £3
1 2 2 7] 5 7] E 17} _g 7] § 3] 8 2 7] E 7] g 7] § 17} E
(a) (b)

Figure 7. Correlation test of proposed parameters and simulation results. (a) Pearson relevance.
(b) Spearman relevance.

3.3. Quantitative Multiple Regression Analysis of Pore Pine Defects

To establish a quantitative relationship between critical process parameters and shrink-
age cavity and loose defects in casing, a sensitivity analysis was conducted using multiple
regression analysis. The multiple regression analysis was conducted using a data set
of 107 simulated experiments, which were generated through an orthogonal experimen-
tal design methodology. There are four prevalent methods for structural screening in
multiple regression models: backward elimination [38], forward selection [39], principal
components [40], and stepwise regression [41]. This paper uses the stepwise regression
modeling approach.

The optimal regression model for each defect is shown in Figures 8 and 9. The influence
of pouring and shell temperature on the defects establish a stepwise regression model with
two key process parameters of mold shell temperature (X) and pouring temperature (Y) as
independent variables. The pouring time was controlled to be a constant of 4 s. Taking the
number of shrinkage cavities, the total volume of shrinkage cavities, the count of shrinkage
loosening, and the total volume of shrinkage loosening as the fitted target, the stepwise
regression models were established using the method of multiple regression analysis. We
select the model with the best comprehensive performance for each performance index as
the performance regression model, as shown in Table 5.
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Figure 8. Regression model of shrinkage cavities’ number and volume with pouring temperature
and shell temperature. (a) Shrinkage cavity number. (b) Shrinkage cavity volume.
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Figure 9. Regression model of shrinkage loosening number and volume with pouring temperature
and shell temperature. (a) Count of shrinkage loosening. (b) Shrinkage loosening volume.
Table 5. Evaluation for regression modeling of shrinkage cavity and loosening number and volume
Coefficient of Shrinkage Cavity Shrinkage Cavity Shrinkage Loose Shrinkage Loose
Determination Number Volume Number Volume
R? 0.827 0.995 0.471 0.941
Adj.R? 0.808 0.994 0.411 0.934

The multiple regression analysis examining the effects of pouring temperature and
shell temperature on the formation of shrinkage cavities and loosening reveals that the
adjusted R-squared (Adj.R?) value for the regression fit of shrinkage cavity volume is
exceptionally high, at 99.4%. This indicates a strong and precise correlation between the
volume of shrinkage cavities and both pouring and shell temperatures. Conversely, the
Adj.R? for the regression concerning the shrinkage loose number instances stands at 41.1%,
indicating a considerably weaker fit. This suggests that the regression model for shrinkage
loose number should be treated with caution and primarily used for reference purposes.



Materials 2024, 17, 2226 10 of 18

Z = 340688 — 57 * X + 0.046 % X2 — 0.000036 * X> + 0.052 * XY — 0.000008 % X2Y

—0.000014 * XY2 — 582 % Y + 0.332 x Y2 — 0.00006 * Y3 (1)
Z = 9574 — 2.45 %« X + 0.001 * X2 — 0.0000013 * X3 + 0.0025 * XY — 0.000000025 % X2Y 7
—0.0000007 * XY2 — 16.05 % Y + 0.009 * Y2 — 0.0000017 Y3
Z = 146526 — 202 * X + 0.172 % X2 — 0.000066 * X° + 0.182 % XY — 0.000071 * X2Y 3)
—0.000042 * XY2 — 220 % Y + 0.111 * Y2 — 0.000019 * Y3
Z = 4223 — 5.1 % X — 0.0018 * X2 — 0.0000014 * X> + 0.0066 * XY + 0.0000016 * X2Y @)
—0.0000022 % XY? — 6.4 %Y + 0.003 * Y2 — 0.00000047 * Y3

In Equations (1) to (4), the quantitative relationship between the shrinkage defects and
the pouring temperature, shell temperature and the two independent variables coupled can
be seen. The coefficient corresponding to the pouring temperature is the largest, followed
by mold temperature, which indicated that the shrinkage defects are the most sensitive to
the pouring temperature, followed by mold temperature. Regarding the number and the
volume of shrinkage cavities, the coefficient of the pouring temperature is considerably
larger than the shell temperature, and more consideration is given to the effect of the
pouring temperature on the shrinkage cavities. Regarding the count and the volume of
shrinkage loosening, the coefficients of the pouring temperature and the shell temperature
are closer to each other, and their sensitivities are also relatively close. The impact of the
two key process parameters should be adequately considered and controlled.

3.4. Single-Factor Impact Law Analysis

Table 6 shows the key evaluation indexes of the shrinkage number and volume of the
neural network training mode. The accuracy of the total volume of shrinkage cavities and
the shrinkage loosening number are 99.9% and 73.9%, respectively. The overall accuracy of
the training model using the neural network is higher than the multiple regression model.
This is because neural networks can fit nonlinear functions, making their results more
conducive to subsequent analysis.

Table 6. Evaluation for neural network model of casing shrinkage number and volume.

Evaluation Shrinkage Cavity Shrinkage Cavity Shrinkage Loose Shrinkage Loose
Number Volume Number Volume
Training R? 0.936 0.999 0.716 0.961
Validation R? 0.920 0.999 0.739 0.955
MSE 6.281 0.10 6.26 0.766

We train the model using a BP neural network, by controlling the change in a single
key process parameter while setting the other process parameters to fixed values, as
shown in Table 7. By controlling the input of key process parameters for the housing, the
predicted values are obtained and corresponding relationship curves are plotted, as shown
in Figure 10.

v
g="2 5
; ®
Uevaluate = Ucavity + 0.3 X V100sen (6)

where 7 is the average volume of each shrinkage cavity or loose, cc, v is the total volume of
shrinkage cavity or loose, cc, n is the number of shrinkage cavities or loosening, vevalyate i5
the comprehensive evaluation volume, cc, vcavity is the average volume of each shrinkage
cavity, cc, and v)pesen 1S the average volume of each shrinkage loosening, cc.
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Table 7. Single-factor process parameter control variables.
Pouring Temperature (°C) Shell Temperature (°C) Pouring Time (s)
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Figure 10. Relationship curves for the effect of key process parameters on shrinkage cavities and loose
defects. (a) Count and volume of shrinkage cavity and loosening change with pouring temperature.
(b) Count and volume of shrinkage cavity and loosening change with shell temperature. (c¢) Count
and volume of shrinkage cavity and loosening change with pouring time. (d) Shrinkage cavity,
shrinkage loosening, and combine average volume vary with pouring temperature. (e) Shrinkage
cavity, shrinkage loosening, and combine average volume vary with shell temperature. (f) Shrinkage
cavity, shrinkage loosening, and combine average volume vary with pouring time.

In actual production, hot isostatic pressing (HIP) is conducted after the casting and
solidification processes to increase the density of the casings. Therefore, when there are
significant shrinkage cavities or loosening, the HIP process can markedly alter the dimen-
sions of the casing, potentially leading to nonconforming products. To more intuitively and
effectively evaluate the key process parameters affecting the casing defects, we select the
composite shrinkage cavity and loosening volume as the evaluation index, as shown in
Equation (5), given that shrinkage cavities typically inflict more damage than shrinkage
loosening in casing castings and considering that shrinkage loosening is characterized by its
scattered and fine cavities. Drawing on experience, this study quantifies 30% of the average
volume of each shrinkage loosening occurrence as equivalent to the damage caused by
shrinkage cavities. The established overall evaluation index for the average volume of each
shrinkage cavity and loosening is shown in Equation (6).

The effect of pouring temperature on the number, total volume, and the average
combined volume of shrinkage cavities and loosening are shown in Figure 10a,d. From
Figure 10a, it can be observed that the number of shrinkage cavities increases slowly with
the rise in pouring temperature. After reaching 1720 °C, the rate of increase in the number
of shrinkage cavities accelerates, peaking at 145 at 1770 °C. Subsequently, at temperatures
exceeding 1770 °C, a decline in the number of shrinkage cavities is observed. The count
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of shrinkage loosening initially diminishes as the casting temperature rises, reaching a
minimum of 95 at 1725 °C. Subsequently, the number of shrinkage loosening starts to
escalate. The number of shrinkage cavities and loosening both exhibit fluctuations. From
Figure 10b, when converted to the combined volume per shrinkage defect, the combined
volume trend increases with the increase in pouring temperature. The volume decreases
between 1750 °C and 1765 °C, which correlates with the sharp increase in the number of
shrinkage cavities. In summary, in order to minimize the average combined volume of each
shrinkage, we should endeavor, as much as possible, to maintain the casting temperature
at 1680 to 1700 °C.

The effects of the shell temperature on the number, total volume, and the average
combined volume of shrinkage cavities and loosening are shown in Figure 10b,e. The
number of shrinkage cavities fluctuates with the increase in mold shell temperature. The
lowest number of shrinkage cavities was achieved at 247 °C. The lowest count of shrinkage
loosening was achieved at 267 °C. The total volume of shrinkage cavities did not change
significantly with the increase in shell temperature. The minimum total volume of shrinkage
loosening was achieved at 230 °C. The effect of shell temperature changes on the average
combined volume is relatively small. The average combined volume is the lowest at
temperatures ranging from 230 to 235 °C and from 270 to 290 °C. To facilitate control of the
shell temperature, it should be maintained between 270 to 290 °C.

The effect of pouring time on the number, total volume, and the average combined
volume of the defects, are shown in Figure 10c,f. The number of shrinkage cavities increases
with the increase in pouring time and decreases after 6.75 s. The number of shrinkage
loosening is maximized at 4.5 s. The total volume of shrinkage cavity is minimized at
4.5 s. Later, it increases to a maximum of 8.8 cc with the pouring time. The total volume
of shrinkage loosening decreases with casting time and reaches a minimum of 4.2 cc at
5.4 s. Subsequently, it increases and then decreases again as casting time extends. From
Figure 10f, the pouring time should be maintained within the range of 5.8 to 7 s.

The influence of single factor variation range on the defects was shown in Table 8.
The pouring temperature has the greatest influence on the number and the total volume
of the shrinkage defects. In addition, the pouring time has a more significant effect on
the shrinkage defects than shell temperature. The results show that the effects of the key
process parameters on shrinkage defects, in a descending order of sensitivity, are as follows:
the pouring temperature, the pouring time, and the shell temperature.

Table 8. Range of variation in shrinkage cavity and loose defects in one-factor prediction experiments.

Factors Range Cavity Number  Cavity Volume (cc) Ll(\)l(:lslf:;t;g \];;zﬁzi(r:f)
Pouring temperature (°C)  1680-1800 109-147 4.5-10.5 97-123 6-9.4
Shell temperature (°C) 230-290 119-134 6.8-6.9 93-105 6.6-7.8
Pouring time (°C) 4-7 122-156 4.5-8.8 96-107 4.4-75

3.5. Multi-Factor Influence Law Analysis

Figures 11-16 depict the application of a two-factor analysis to assess how key pro-
cess parameters influence the variability of hole loosening defects. Figures 11 and 12
show the effect of pouring temperature and shell temperature on the shrinkage defects.
Figures 13 and 14 show the effect of pouring temperature and time on the shrinkage defects.
Figures 15 and 16 show the effect of pouring time and shell temperature on the shrinkage
defects. The figures demonstrate that there is an interaction between the two influencing
factors on the shrinkage defects. The greatest impact is from the pouring temperature,
followed by the pouring time, with the shell temperature having the least effect. The results
show that, when the pouring temperature is 1650 °C, the total volume of shrinkage cavities
and loosening is small, according to the neural network prediction, due to the cooling that
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occurs during the filling process, which can lead to casting defects. It is necessary to control
the pouring temperature within the range of 1680 to 1700 °C.
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Figure 11. Effect of pouring and shell temperature on the number and total volume of shrinkage
cavities. (a) Effect of pouring temperature and shell temperature on the number of shrinkage cavities.
(b) Effect of pouring temperature and shell temperature on the volume of shrinkage cavities.
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cavities. (a) Effect of pouring temperature and pouring time on the number of shrinkage cavities.
(b) Effect of pouring temperature and pouring time on the volume of shrinkage cavities.

In summary, the established BP neural network model accurately predicts the influence
of key process parameters variations on the shrinkage cavities and loose defects, as shown
in Figures 11-16. A set of key process parameter windows and fluctuation control strategies
have been established by combining this with multiple regression analysis. The original

process parameter control ranges and the optimized process parameter ranges are shown
in Table 9.
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Table 9. Optimization window for key process parameters.

Parameters Original Range Optimization Range
Pouring temperature (°C) 1680-1800 1680-1700
Shell temperature (°C) 230-290 270-290
Pouring time (s) 4-7 5.8-7

3.6. Comparative Analysis of Actual Production and Analysis Results

After analysis of the results of the constructed neural network prediction model
and evaluation formula, selections within the process optimization scope were made for
simulation validation, as shown in Figure 17. The results show that the optimized range
produced fewer shrinkage cavity and loose defects than the unoptimized range. Simulation
validation demonstrates that the results obtained from using the neural network model
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to predict shrinkage cavity and loose defects were reliable and can accurately identify the
optimal range of key process parameter values.
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Figure 17. The relationship between key process parameters and average volume after optimization.
(a) Effect of pouring temperature on the average volume. (b) Effect of shell temperature on the
average volume. (c) Effect of pouring time on the average volume.

Based on the simulation results, the outcomes from the analysis using multiple re-
gression and neural network models were compared with the actual production range of
key process parameters for the Ti alloy casing by a certain research institute, as shown
in Table 10. When using a water-cooled copper crucible for vacuum melting, only the
smelting current, time, and the amount of smelt metal can be measured. The comparison of
results shows that the optimized process window is within the actual production process
range. The constructed neural network prediction model and evaluation formula meet the
production requirements of the enterprise and can provide a reference for reducing the
occurrence of shrinkage defects in the casting of casings.

Table 10. Actual vs. predicted process parameter ranges.

Actual and Predicted Range Parameters Parameter Ranges
Smelting current (kA), smelting time (min), smelting metal (kg) 41-42,14-19, 381-425
Actual Shell temperature (°C) 271-340
Pouring time (s) 5.7-6.8
Pouring temperature (°C) 1680-1700
Optimization window Shell temperature (°C) 270-290
Pouring time (s) 5.8-7

In industry, the process within the optimization window is compared with the results
outside the range, using a casting channel for casing with pouring temperature of 1708 °C,
a shell temperature of 298 °C, and a pouring time of 6.2 s, as shown in Figure 18. A piece
of the casting channel is cut for testing by the CT (Computed Tomography) statistics; the
volume of the casting channel is 10,954.08 mm?, the volume of pores is 131.36 mm?, and the
porosity is 1.199%. Another process parameter is within the optimization window, with a
pouring temperature of 1698 °C, a shell temperature of 288 °C, and a pouring time of 6.5 s,
as shown in Figure 19. The riser has a volume of 26,584.07 mm?, the volume of pores is
249.58 mm?, and the porosity is 0.94%. When comparing the proportion of porosity defects
for the two process parameters, there are fewer defects in the optimization window range,
which indicated that the use of numerical simulation and neural networks in tandem to
find the optimization window has significant results.
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Figure 18. Shrinkage cavity and loosening of pouring channel. (a) Appearance of pouring channel.

(b) Internal of pouring channel.

(a)

Figure 19. Shrinkage cavity and loosening of riser. (a) Appearance of riser. (b) Internal of riser.

4. Conclusions

In this study, the data set of complex castings of Ti alloy casings was constructed

by undertaking an orthogonal simulation experiment. Based on the data set, multiple
regression and BP neural network models were used for quantitative analysis, to find the
fluctuation window of the optimized process parameters. The analysis conclusions are
as follows:

@

@)

®G)

The orthogonal experimental simulations conducted indicated that, for ZTC4 Ti alloy
casings, the occurrence of shrinkage defects is reduced when the temperature is
maintained between 1680 and 1720 °C. Furthermore, correlation analysis shows that
both the number and the volume of shrinkage cavity and loosening are influenced by
the pouring temperature. However, the effect of shell temperature and pouring time
on the defects is not significant.

The multiple regression prediction model quantitatively described the impact of
pouring temperature and shell temperature on the shrinkage cavity and loose defects.
The fitting accuracy for the total volume of shrinkage cavities reached 99.5%. In the
fitting of the number and volume of shrinkage cavities, shrinkage cavities were more
sensitive to the pouring temperature. In the fitting of the number and volume of loose
defects, the sensitivity of loose defects to the two key process parameters was similar,
which indicated that the influence of both should be considered simultaneously.
Based on the neural network prediction model and the comprehensive evaluation
formula for shrinkage cavity and loose defects, the sensitivity of the casing defects to
key process parameters was highest for pouring temperature, then pouring time, and
lowest for shell temperature. Additionally, the key process parameter windows were
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optimized: pouring temperature at 1680-1700 °C, shell temperature at 270-290 °C,
and pouring time at 5.8-7 s.

(4) By integrating numerical simulation with neural network methodologies, this study
effectively addresses the previously laborious process of determining optimal win-
dows for key process parameters through simulation alone. Furthermore, it delineates
the distinct advantages of neural network analysis over traditional multivariate re-
gression. While multivariate regression can provide sensitivity coefficients that link
porosity defects in casings to key process parameters, its precision for the number of
shrinkages and loose defects is notably insufficient. In contrast, the BP neural network
prediction model demonstrates superior accuracy, relative to multivariate regression,
offering a significant improvement in the precision of the number of shrinkages and
loose defects in casings.
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