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Figure S1. The adsorption configurations of M-TiNS.
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Figure S2. The adsorption configurations of N2 on M-TiNS.
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Figure S3. N-N bond length after N2 adsorption.
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Figure S4. M-N bond length after N2 adsorption.

Fe Co Ni Cu Ru Rh Pd Ag Os

Ir Pt Au

S N g
N N =)
1 1 1

Charge change (e)

g
<
1

A
- \_

"}

\

o

}

0\°

Figure S5. Charge changes after N2 adsorption.
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Figure S6. The adsorption configurations of *H on M-TiNS.

Figure S7. The adsorption configurations of *NNH on M-TiNS.
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Figure S8. Configuration of intermediates in N2 reduction reaction on Ru-TiNS.

Figure S9. Configuration of intermediates in N2 reduction reaction on Rh-TiNS.
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Figure S10. Bader charges of intermediates along the reaction coordinates for in N2 reduction
reaction on Ru-TiNS.

Figure S11. SEM image of pure TiNS support.
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Figure S12. Nitrogen adsorption—desorption isotherms and their corresponding surface area of
TiNS (a) and Ru-TiNS (b).
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Figure S13. High-resolution Ru 3p XPS spectrum of Ru in Ru-TiNS.
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Figure S14. The i-t curves obtained from chronoamperometry tests at different potentials.
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Figure S15. The UV-visible absorption curves corresponding to the coloration of indophenol blue
after reaction with NHa* of different concentrations.
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Figure S16. The linear fitting curves of absorbance at 655 nm after coloration by the indophenol blue
method for NH4* of different concentrations.
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Figure S17. UV-Vis absorbance curves of Ru-TiNS before and after electrolysis at -0.3 V vs. RHE.
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Figure S18. FEm: of Ru-TiNS at different potentials.
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Figure 519. NHs yield rates under different conditions including pure carbon paper (-0.3 V vs. RHE),
open circuit potential, only Ar bubbling ( -0.3 V vs. RHE), and N2 bubbling (-0.3 V vs. RHE).
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Figure S20. CV curves obtained for pure TiNS (a) and Ru-TiNS (b) at different scan rates, along with
the corresponding calculated double-layer capacitances (c).
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Figure S21. Electrochemical impedance spectroscopy (EIS) of Ru-TiNS and TiNS.

Figure S22. The Spin charge density of (a) Ru-TiNS and (b) N2 adsorption on Ru-TiNS.
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Figure 523. The projected density of (a) Free N2, (b) Ru 4d in Ru-TiNS, and (c, d) N2 molecule
adsorbed on Ru-TiNS.



