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Abstract: A phenomenological material model has been developed to facilitate the efficient numerical
analysis of fiber-reinforced high-performance concrete (HPC). The formulation integrates an elasto-
plastic phase-field model for simulating fractures within the HPC matrix, along with a superimposed
one-dimensional elasto-plasticity model that represents the behavior of the embedded fibers. The
Drucker–Prager plasticity and one-dimensional von-Mises plasticity formulations are incorporated
to describe the nonlinear material behavior of both the HPC matrix and the fibers, respectively.
Specific steps are undertaken during the development and calibration of the phenomenological
material model. In the initial step, an experimental and numerical analysis of the pullout test of
steel fibers embedded in an HPC matrix is conducted. This process is used to calibrate the micro-
mechanical model based on the elasto-plastic phase-field formulation for fracture. In the subsequent
step, virtual experiments based on an ellipsoidal unit cell, also with the resolution of fibers (used
as a representative volume element, RVE), are simulated to analyze the impact of fiber–matrix
interactions and their physical properties on the effective material behavior of fiber-reinforced HPC.
In the final step, macroscopic boundary value problems (BVPs) based on a cuboid are simulated on
a single scale using the developed phenomenological material model. The resulting macroscopic
stress–strain characteristics obtained from both types of simulations, namely simulations of virtual
experiments and macroscopic BVPs, are compared. This comparison is utilized for the calibration of
material parameters to obtain a regularized solution and to assess the effectiveness of the presented
phenomenological material model.

Keywords: ellipsoidal representative volume element (RVE); fiber-reinforced high-performance
concrete; phase-field modeling; fracture of concrete, macroscopic model

1. Introduction

In recent years, reinforced high-performance concrete (HPC) has emerged as a spe-
cialized construction material known for its exceptional mechanical properties, including
its high strength, durability, toughness, and ductility, see [1]. These qualities make it a
preferred material for a wide range of structural applications, including, but not limited to,
highways, tunnels, high-rise buildings, bridges, drainage systems, and nuclear facilities,
see [2,3]. Modern HPCs have captured the attention of researchers and engineers in the
civil industry due to their diverse compositions, which distinguish them from conventional
concrete types and endow them with exceptional properties. However, it is important to
note that the real strength of reinforced HPC comes from its reinforcement. Reinforcement
plays a crucial role in distributing stress evenly throughout the material, which disables
further crack propagation and significantly enhances its capacity to withstand bending,
see [4]. High-strength steel fibers are commonly used as reinforcements to increase the
tensile strength and ductility of HPC, see [5]. In the failure process of fiber-reinforced
HPC, the stresses within the concrete are transferred from the matrix to the fibers, which
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greatly contributes to the concrete’s energy absorption capacity, as discussed in [6,7]. The
effectiveness of fibers in transferring applied stresses primarily depends on the properties
of the fiber–matrix interface, see [8]. Consequently, the efficiency of fiber reinforcement
is principally determined by the interaction between the fibers and the surrounding con-
crete matrix, cf. [9,10]. Anothercrucial aspect contributing to the exceptional properties
of fiber-reinforced HPC is its heterogeneous microstructure, cf. [11]. This microstructure
is characterized by a dense matrix, refined pores, and well-distributed reinforcement ma-
terials. The complex interactions between fibers and the HPC matrix at the microscale
dominate the macroscopic behavior of fiber-reinforced HPC during failure, as discussed
in [12]. As the effects of these interactions are not yet fully understood, more comprehensive
research is required to achieve a thorough understanding of the behavior of HPC at the
microstructural level and the significant influence of embedded fibers on the material’s
overall performance, particularly for fiber-reinforced HPC subjected to cyclic loading. Both
experimental and numerical analyses are essential for gaining a comprehensive understand-
ing of and optimizing the material behavior of fiber-reinforced HPC, especially in cases
where these materials are subjected to cyclic loading. In pursuit of this goal, the German
Research Foundation Priority Programme 2020 (DFG SPP 2020) has been founded, with the
authors of this paper collaborating on a collective project called ”Effects of Steel-fibers on
the Degradation of High-Performance Concrete subjected to Fatigue Loading - Testing
and Modeling” that focuses on the experimental and numerical investigation of fatigue
failure in HPC. This initiative aims to advance our understanding and optimization of
fiber-reinforced HPCs, with the ultimate goal of enabling their more effective utilization in
practical applications.

The numerical investigation of concrete failure has always been a fascinating and
critical area of research. Researchers are continually working on advancing continuum
damage models to better understand and predict the complex mechanical responses of
concrete during failure, e.g., see [13–20]. These models are designed to accurately cap-
ture the nonlinear behavior of concrete materials under various loading conditions. The
recently developed phase-field approach for fracture has demonstrated its capability to
approximate the complex failure mechanisms and the propagation of cracks. In the context
of a phase-field model for fracture, the Γ-convergent approximation is a fundamental
mathematical concept that plays a pivotal role in approximating the energy functional. This
approach, as introduced in [21,22], is utilized by researchers such as in [23] to regularize
the variational approach for modeling fracture in brittle materials as proposed in [24]. The
phase-field approach for fracture enables the modeling of crack propagation and fracture
by representing cracks as continuous, diffuse phase boundaries rather than sharp interfaces.
The effectiveness of this formulation is evident in recently developed fracture models
employing the phase-field approach for various applications, e.g., for simulation of fracture
in brittle materials approximating the crack as an individual phase, see [23,25–35]; for the
prediction of complex crack propagation in the case of dynamic fracture, see [36–39]; and
for elasto-plastic phase-field formulations to capture the failure behavior of pseudo-ductile
materials, see [40–50].

The phase-field approach for modeling fracture has gained significant prominence
because it eliminates the need for tracking crack paths explicitly. This characteristic makes
phase-field models effective in predicting complex crack propagation in heterogeneous
materials like rocks, soils, and concretes, cf. [51–56]. However, the phase-field model
demands a finely discretized domain as a fundamental requirement. This leads to limi-
tations when applying the direct homogenization methods like the FE2 method, cf. [57],
in conjunction with the phase-field model. Hence, it becomes imperative to conduct further
research and investigations that rely on homogenization techniques, particularly when
numerically simulating fiber-reinforced HPC containing a substantial number of fibers
using the phase-field model.

Therefore, the main aim of this paper is to develop and calibrate a phenomenological
material model, which represents the fibers within the HPC matrix numerically. To simplify
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the complexities associated with the combination of the phase-field approach and the
direct homogenization methods, we adopt a step-by-step approach. The steps that are
followed include:

• Numerical calibration of a micro-mechanical model using single-fiber pullout tests;
• Analysis of the effective macroscopic behavior of fiber-reinforced HPC through virtual

experiments based on unit cell calculations using a micro-mechanical model;
• Calibration and validation of the phenomenological material model by comparing the

macroscopic responses obtained from macroscopic BVPs and virtual experiments.

The steps described above are shown graphically in Figure 1 to explain the procedure.
The figure illustrates how the data and findings obtained from the preceding steps are
utilized to achieve the objectives of the current steps. Additionally, representative boundary
value problems (BVPs) associated with these steps are depicted in Figure 1a–c, respectively.
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Figure 1. Graphical representation of the step-by-step approach: representative boundary value
problems (BVPs) (a) fiber pullout test in step I, (b) virtual experiments in step II and (c) macroscopic
BVPs in step III.

To perform efficient numerical analyses of fiber-reinforced HPC, it is crucial to have a
comprehensive understanding of the interactions between fibers and the matrix, as well
as the microstructure and properties of HPC. The single-fiber pullout test for steel fibers
embedded in HPC is a widely accepted test in the research community, with the primary
goal of evaluating the bond strength between individual steel fibers and the HPC matrix.
Numerous experimental and numerical studies on the single-fiber pullout test have been
conducted and documented in the literature, e.g., see [5,8,58–65]. For this reason, the anal-
ysis involves both experimental and numerical investigations of the pullout test with a
steel fiber embedded in the HPC matrix. This entire process is utilized to calibrate the
micro-mechanical model based on the elasto-plastic phase-field formulation for fracture.
Comprehensive details can be found in references [66–68]. Therein, the primary goal was
to develop a numerical model capable of accurately predicting the load–displacement
characteristics observed in fiber pullout tests conducted in experiments.

In the next step, the macro-mechanical model is utilized to analyze the macroscopic
behavior of the ellipsoidal RVEs consisting of pure HPC and reinforced HPC under various
loading conditions. For this purpose, virtual experiments based on an individual ellipsoidal
RVE are simulated. To achieve this objective, an ellipsoidal RVE is constructed which
characterizes the behavior of steel fiber-reinforced HPC in the preferred fiber direction. In
these simulations, the macro-mechanical model and the material parameters calibrated in
the previous stage are employed. The homogenized macroscopic quantities are computed
by taking the volume average of corresponding microscopic quantities and plotted in the
macroscopic stress–strain diagram.
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In the final step, the formulation of the phenomenological material model is developed.
Therein, the combination of an elasto-plastic phase-field model to simulate fracture in the
HPC matrix and a superimposed one-dimensional elasto-plasticity model characterizing the
behavior of embedded fibers in the preferred fiber direction is used. To check the prediction
capabilities of the phenomenological material model, macroscopic BVPs applying similar
loading conditions to those of the corresponding virtual experiments are simulated. Finally,
the resulting macroscopic stress–strain characteristics obtained from simulations of virtual
experiments based on RVEs of pure and reinforced HPC and macroscopic BVPs using
cuboids of pure and reinforced HPC are compared.

In this paper, the constitutive framework of the micro-mechanical model and the
results of numerical simulations of pullout tests of single steel fibers embedded within the
HPC matrix are documented in Section 2. The kinematics and concept of the numerical
homogenization procedure used to compute the macroscopic quantities and the details
of the construction of an ellipsoidal RVE are described in Section 3. Therein, the results
obtained from simulating virtual experiments using the constructed ellipsoidal RVEs are
thoroughly documented and discussed. In Section 4, the formulation of the phenomenolog-
ical material model is documented and the efficiency of the developed model is discussed
the simulations results of macroscopic BVPs. Lastly, the outcomes of the presented work
are concluded in Section 5.

The presented numerical models are implemented in the framework of the Finite
Element Method using the finite element analysis program FEAP (version 8.2) (A Finite
Element Analysis Program by R.L. Taylor, UC, Berkeley), see [69].

2. Numerical Calibration of the Micro-Mechanical Model Using Fiber Pullout Tests

In this section, the formulation of the small strain elasto-plastic phase-field model
for fracture in HPCs is documented, see our recent publications [67,68,70]. The model is
calibrated to the experimental results for a pullout test of a single steel fiber embedded
in HPC.

2.1. Constitutive Framework of a Small-Strain Elasto-Plastic Phase-Field Model for Fractures

In the context of a small strain, the displacement field u(x, t) and the phase-field
parameter q ∈ [0, 1] are considered, for details, see [25]. It depicts the unbroken state at
q = 0 and the fully broken state at q = 1 of the material. In the phase-field approach of
fracture, a length-scale parameter l controls the regularization of the crack surface energy
Γl(q), i.e.,

Γl(q) =
∫
B

γ(q,∇q)dv with γ(q,∇q) =
1
2l

q2 +
l
2
||∇q||2 , (1)

where ∇q is the gradient of the phase-field parameter q and γ(q,∇q) is called the crack
surface density function per unit volume of the solid. The free energy function ψ can be
constructed as,

ψ(ε, εp, α, q,∇q) = ψep(εe, α, q) + ψc − g(q, m)ψc + 2
ψc

ζ
l γ(q,∇q) , (2)

where α is the equivalent plastic strain. The specific critical fracture energy ψc > 0 serves as
the threshold for crack evolution. The parameter ζ controls the stress softening in the post
critical region, see [43]. A parameter m used in the degradation function g(q, m) = (1 − q)m

controls the speed of fracture evolution, cf. [44,67,68,71]. The total strain tensor ε is defined
using the symmetric displacement gradient ∇su as,

ε(u) = ∇su =
1
2

(
∇u +∇Tu

)
, (3)

which is used along with plastic strain tensor εp to calculate elastic strain tensor εe, i.e.,
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εe := ε − εp. (4)

An elastic energy ψe and a plastic energy ψp are parts of the elastic–plastic energy
function ψep, i.e.,

ψep = ψe(εe) + ψp(α) . (5)

An additive form of the considered elastic energy function ψe can be formulated as,

ψe(εe, q) = g(q, m)ψe+
0 (εe) + ψe−

0 (εe) , (6)

and using a positive part ψe+
0 (εe) and a negative part ψe−

0 (εe) of the reference energy
function, i.e., ψe

0(ε
e) = ψe+

0 (εe)+ψe−
0 (εe), as proposed in [72], respectively, this means that

ψe+
0 (εe) = κ ⟨tr[εe]⟩2

+/2 + µ ||dev εe||2 and ψe−
0 (εe) = κ ⟨tr[εe]⟩2

−/2 . (7)

Therein, µ represents the shear modulus and κ is the bulk modulus. Macaulay’s
notation is used to describe the function ⟨•⟩± = 1/2 ( • ± | • | ). The plastic energy ψp

can be expressed using the reference plastic energy function ψ
p
0 (α) which depends on the

equivalent plastic strain α and the hardening parameter h, as

ψp(α) = g(q, m)ψ
p
0 (α), where ψ

p
0 (α) = y0 α +

1
2

h α2 . (8)

The energy density function ψ is restructured as, cf. [43],

ψ(ε, εp, α, q,∇q) = (1 − q)m
[
ψe+

0 + ψ
p
0 − ψc

]
+ ψe−

0 + ψc + 2
ψc

ζ
l
[

1
2l

q2 +
l
2
||∇q||2

]
. (9)

The equation of the stress tensor is

σ := ∂εe ψ = (1 − q)m [κ⟨tr εe⟩+I + 2µ devεe]︸ ︷︷ ︸
σ+

0

+ [κ⟨tr εe⟩−I]︸ ︷︷ ︸
σ−

0

, (10)

where the symbol I denotes the second-order identity tensor. The positive σ+
0 and the

negative σ−
0 stress tensor are parts of the effective stress tensor σ0 = σ+

0 + σ−
0 . The

governing equation for the phase-field parameter is computed as

q − l2 Div[∇q]− (1 − q)H = 0 . (11)

Therein, to ensure the upper and lower bounds of the range of the phase-field param-
eter q ∈ [0, 1], the parameter m = 2 is set. The irreversibility of the evolution of cracks is
ensured by considering the local history field H and the maximum value of a dimensionless
crack driving state function H0, cf. [73], i.e.,

H := max
t̃∈[0,t]

H0(x, t̃) ≥ 0 where H0 = ζ

〈
ψe+

0 (εe)

ψc +
ψ

p
0 (α)

ψc − 1

〉
. (12)

For loading–unloading processes, the update of the local history field at the time tn+1
follows

H =

{
H0,n+1 for H0,n+1 > H0,n ,
H0,n otherwise .

(13)

The governing equation of the phase-field parameter q, see Equation (11), is driven by
the maximum value of a dimensionless crack driving state function H, see Equation (12).
The damage evolves if the total values of the positive part of the elastic energy ψe+

0 and
the reference plastic energy ψ

p
0 overcome the critical value ψc, see Equation (12). The
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distinct behavior of concrete under increasing loads, i.e., the earlier failure of concrete in
tension rather than in compression, can be captured by using two different critical fracture
energies. To achieve this, distinct parameters for the critical fracture energy in tension,
denoted as ψc

t , and in compression, denoted as ψc
c, are considered. These parameters are

distinguished from each other based on the sign of the first invariant of the stress tensor
using the condition:

ψc =

{
ψc

t , for tr ε ≥ 0 ,
ψc

c , otherwise .
(14)

The presented numerical model incorporates the associative Drucker–Prager yield
criterion, which is capable of predicting the distinct behavior of concrete in tensile and in
compressive loading, cf. [74]. It reads

ϕ
(
σ0, κp

)
=

1√
2
||devσ0||+ βp tr σ0 − (y0 + h α) . (15)

Note that the plastic response is independent of the evolution of the damage yield cri-
terion, see Equation (15), which depends on the effective stress tensor σ0, see Equation (10).
This criterion provides flexibility to use the von Mises yield criterion by eliminating the
hydrostatic stress component, i.e., βp = 0, see [74]. The von Mises yield criterion is

ϕ
(
σ0, κp

)
=

1√
2
||devσ0|| − (y0 + h α) . (16)

Here, the values of the yield stress y0 and hardening parameter h should be calibrated
accordingly to achieve the well-known von Mises yield surface, cf. [75]. Thus, different
yield criteria can be easily used for the prediction of the elasto-plastic behavior of steel
fibers and a concrete matrix. The weak formulation of the balance of linear momentum
using the stress tensor, see Equation (10), i.e.,

δGu(u, δu) =
∫
B

δε : σ dv −
∫

∂Bt
δu · t da = 0 , (17)

with the virtual strains δε = 1
2 (∇δu + ∇Tδu), and of the governing equation for the

phase-field parameter, see Equation (11), i.e.,

δGq(q, δq) =
∫
B

q δq dv +
∫
B

l2 ∇q · ∇δq dv −
∫
B
(1 − q)H δq dv = 0 , (18)

are obtained using the standard Galerkin procedure. Therein, the boundary conditions
σ ·n = t on ∂Bt, the part of ∂B with prescribed traction boundary conditions, and ∇q ·n = 0
on the surface ∂B of the domain B are considered. The symbols n and t denote the normal
vector and traction vector, respectively. These weak forms are solved using the framework
of the Finite Element Method, see, e.g., [76]. The approximation of all fields (u, q) is
achieved using the trilinear ansatz function, i.e., with eight-node hexahedrons. The domain
is discretized in such a manner that the element size he within the area of interest is less
than half of the value of the length-scale parameters l. The time step ∆t = 1 × 10−4 is
selected according to a preliminary study which leads to the converged solution in time.
In this context, the integration algorithm for the Drucker–Prager plasticity as well as the
consistent elasto-plastic tangent moduli, as detailed in [70], has been implemented. The
numerical solution is obtained using incrementally decoupled updates of the weak form
of the field equations, i.e., Equations (17) and (18), as described in [25,77], and a staggered
solution scheme explained in [40,78]. The supplementary data for the FE analysis of fiber
pullout tests and virtual experiments are provided in [79,80], respectively.
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2.2. Numerical Simulations of Pullout Tests of a Steel Fiber Embedded in HPC

In this section, the procedure used for calibration and validation of a macro-mechanical
model by simulating single-fiber pullout tests is documented. The geometry of the fiber
pullout test setup and the boundary conditions adopted from the experimental assembly,
see [66,68], are shown in Figure 2. Due to axial symmetry around the x- and z-axes, only
a quarter of the full assembly, see the dark gray boundaries in Figure 2, is used for the
numerical simulations. The displacement in the direction normal to the cutting planes is
fixed. The bottom face is fixed in the x- and z-directions. The vertical displacements of
region where the clamping plates are placed, see the green region in Figure 2, are fixed. A
displacement boundary condition ut in the y-direction at the top of fiber is applied, see the
red arrow in Figure 2. The sum of the reaction forces of the constrained nodes at the top
surface of the fiber is computed and reported to plot load–displacement diagrams.

ux = 0
uz = 0
(symmetry)

uy = 0
(clamping plate)

(symmetry)

ux = uz = 0

40

y

x
z

40

46

20
23

13 3.5

l f

ut

interface zone

Figure 2. Boundary value problem for steel-fiber pullout tests based on the experimental assembly,
adopted from [68]. All dimensions are in mm.

Steel fibers 3D 55/60, provided by the supplier Bekaert GmbH, with a diameter of
approximately 1 mm are used, see [67]. The thickness of the interface zone around the fiber,
highlighted in orange in Figure 2, is taken as 0.5 mm. The embedded length of the fiber,
i.e., the length of the interface zone, is denoted by lf. The mechanical properties, i.e., Young’s
modulus E, Poisson ratio µ and tensile strength ft, of the steel fibers are provided by the
supplier, see Table 1. The experimentally determined mechanical properties of HPC,
i.e., Young’s modulus E, Poisson ratio µ, tensile strength ft and compressive strength
fc, are taken from [66], see Table 1. The von Mises yield criterion, see Equation (16),
and the Drucker–Prager yield criterion, see Equation (15), are used for the nonlinear
behavior of steel and HPC materials, respectively. The calculation of material parameters
for steel and HPC related to plasticity, e.g., the initial yield stress y0 and the Drucker–Prager
parameter βp, was conducted easily using the tensile strength ft and compressive strength
fc. The critical fracture energies in tension ψc

t and in compression ψc
c are taken from our

works [68,81]. Therein, uniaxial cyclic tension and compression tests are simulated to
calibrated these parameters and to determine the behavior of HPC in the softening region;
for more details, see [68,70]. The specific critical fracture energy is assumed to not vary
during tension and compression for the steel fibers and the interface zone, see Table 1, taken
from [68]. The mechanical properties for fiber–matrix interface, i.e., Young’s modulus E,
Poissons ratio ν and the initial yield stress y0, are set to the same values for the HPC
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material. The von Mises yield criterion, see Equation (16), is considered for the elastic–
plastic behavior of the interface material. A steel-fiber pullout test with an embedded
length of lf = 20 mm is simulated and the results are compared with the experimental
data to calibrate the rest of the material parameters for the interface.

Table 1. Mechanical properties of steel and HPC materials and calibrated values of material parame-
ters used for the simulation of the fiber pullout test, cf. [66,68,81].

E ν ft fc ψc
t ψc

c y0 βp h l m ζ
GPa − MPa MPa MPa MPa − − mm − −

Steel 210 0.3 1150 — 0.4 0.4 660 0 130 0.4 0.6 0.5
Interface 39.976 0.192 — — 2 × 10−4 2 × 10−4 6.263 0 0 0.4 0.3 0.5

HPC 39.976 0.192 5.7 112 4.2 × 10−4 0.12 6.263 0.5218 2000 0.4 0.6 0.5

For the validation of the numerical model, a steel-fiber pullout test with an embedded
length of lf = 30 mm is simulated using the same set of parameters. The simulations of the
fiber pullout test for an embedded length of fiber lf = 20 mm and lf = 30 mm are discretized
with 29,889 and 54,366 elements, respectively. The resulting load–displacement diagrams
for simulations with an embedded length of lf = 20mm and lf = 30 mm are compared
with experimental data in Figure 3a and Figure 3b, respectively. Therein, the experimental
data are depicted through the averaged curves and their corresponding scatter bands,
taken from [66]. The results for simulations with an embedded length of lf = 20 mm and
lf = 30 mm fit into the respective experimental band, see Figure 3.
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Figure 3. Comparison of load–displacement diagrams of simulations with the experimental averaged
curves and scatter bands of experimental data, taken from [66], for an embedded length (a) lf = 20 mm
and (b) lf = 30 mm.

In Figures 4 and 5, the distributions of stresses in the y-direction σy (in GPa), equivalent
plastic strains α and the phase-field parameter q at the displacements of ut = 0.08 mm and
ut = 0.8 mm for the simulations of steel-fiber pullout tests with an embedded length of
lf = 20 mm and lf = 30 mm are shown, respectively. For the both solutions, the stresses in
the fiber at ut = 0.08 mm are higher than those at ut = 0.8 mm, compare Figures 4a,b and 5a,b.
This is because the fiber stress reduces after debonding of the interface zone, i.e., after
evolution of damage in the interface zone. The evolution of equivalent plastic strains α from
the initial stage, i.e., at ut = 0.08 mm, to the later stage, i.e., at ut = 0.8 mm, can be observed
in Figures 4c,d and 5c,d. The damage initiates in the initial stage, i.e., at ut = 0.08, due to the
shear band in the complete interface zone, then it evolves in the later stages, e.g., at ut = 0.08,
depending on the evolution of the equivalent plastic strains α, see Figures 4e,f and 5e,f.
This shows the capability of the presented numerical model to predict the evolution of
damage due to plasticity. For details on the different stages of fiber pullout tests, refer
to [68].
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(a) (b) (c) (d) (e) (f)

Figure 4. Simulation results of steel-fiber pullout tests for lf = 20 mm: stresses σy (in GPa), equivalent
plastic strains α and phase-field parameter q in (a,c,e) at a displacement of ut = 0.08 mm and (b,d,f) at
a displacement of ut = 0.8 mm, respectively.

(a) (b) (c) (d) (e) (f)

Figure 5. Simulation results of steel-fiber pullout test for lf = 30 mm: stresses σy (in GPa), equivalent
plastic strains α and phase-field parameter q in (a,c,e) at a displacement of ut = 0.08 mm and (b,d,f) at
a displacement of ut = 0.8 mm, respectively.

3. Virtual Experiments Based on Ellipsoidal RVEs

This section details the construction of an ellipsoidal unit cell, taking into account
the fiber reinforcement of the concrete material. It also outlines the numerical framework
employed to analyze the failure behavior of both pure and reinforced HPC. This approach
involves conducting the simulations of the virtual experiments based on ellipsoidal RVEs.

3.1. Kinematics and Concept of Numerical Homogenization

To distinguish between the quantities at macro- and micro-scales, the macroscopic
quantities are denoted by an overline (•̄). An ellipsoidal RVE containing the fiber and the
HPC matrix is considered. This RVE is attached at each material point x̄ at the macroscale.
The boundary conditions at the microscale are derived using the Hill–Mandel condition,
cf. [82,83]. The basic idea is to drive RVEs at the microscale by applying macroscopic strains
ε̄ and compute the microscopic field quantities, i.e., the strain ε and stress σ. Here, an elasto-
plastic phase-field model using the Drucker–Prager plasticity formulation, illustrated in
Section 2, is taken into account for computations at the microscale. The macroscopic
quantities, e.g., stress σ̄, are computed from the volume averages of their microscopic
counterparts. The concept of the homogenization approach is illustrated in Figure 6.
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HPC

steel fiber

interface zone

x, u

homogenized quantity σ̄

RVE - driv
en by ε̄

RVE

x̄
y

xz

Figure 6. Macroscopic boundary value problem—an attached RVE at a macroscopic material point x̄
driven by macroscopic strains ε̄, adopted from [81].

The body B̄ ∈ R3 in the Euclidean three-dimensional space R3 is considered on
the macroscale, which is parameterized by the position vector of a material point x̄. The
macroscopic symmetric linear strain tensor ε̄(x̄) is given by the symmetric displacement
gradient ∇sū of the macroscopic displacement ū(x̄), defined as

ε̄(x̄) = ∇sū(x̄) =
1
2

(
∇x̄ū(x̄) +∇T

x̄ ū(x̄)
)

, (19)

where ∇x̄ denotes the gradient operator with respect to x̄. The local form of the balance of
linear momentum on the macroscale, neglecting the body forces b̄ and acceleration terms
¨̄x, is

Divx̄ σ̄ = 0 . (20)

The macroscopic boundary conditions are considered as ū = ūb̄ and t̄ = σ̄ · n̄ on
∂B̄, where t̄ and n̄ are traction vectors and the outward unit normal on the boundary
∂B̄, respectively. Divx̄ denotes the divergence operator with respect to x̄. Analogously,
on the microscale, the body of interest B ∈ R3 is parameterized by the position vector of a
material point x. The microscopic strain tensor ε(x) is given by the symmetric microscopic
displacement gradient ∇su, see Equation (3). On the macroscale, a constitutive model is
not presumed. Instead of this, to get the constitutive response on the macroscale, an RVE is
attached at each macroscopic point x̄. The direct homogenization procedure is applied to
obtain the macroscopic Cauchy stress tensor σ̄ and strain tensor ε̄ from their microscopic
counterparts, cf. [57]. Therein, the suitable surface integrals over the boundary of the
∂B with volume V are considered. Neglecting the singular surface and holes in the RVE,
the macroscopic field quantities can be computed by averaging the microscopic fields over
the volume V of the RVE, i.e.,

ε̄ :=
1
V

∫
∂B
[u ⊗ n]da =

1
V

∫
B

ε dv and σ̄ :=
1
V

∫
∂B
[t ⊗ x]da =

1
V

∫
B

σ dv , (21)

where t and n are the traction vector and outward unit normal on the boundary ∂B, respec-
tively. Additive decomposition of the microscopic strain tensor consists of a constant ε̄ and
a fluctuation part ε̃.Based on the ansatz u := ε̄ · x + w̃, where w̃ denotes the fluctuations
over the RVE, we obtain

ε = ε̄ + ε̃ with ε̃ = ∇sw̃ and
1
V

∫
B

ε̃ dv =
1
V

∫
∂B
[w̃ ⊗ n]da = 0 , (22)

Appropriate boundary conditions of the boundary value problem at the microscale are
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derived from the macro-homogeneity condition, also known as the Hill–Mandel condition,
cf. [82,83]. Possible boundary conditions are

t = σ · n ∀ x ∈ ∂B or u̇ = ˙̄ε · x ∀ x ∈ ∂B (23)

which denote the mechanical Neumann and Dirichlet boundary conditions on the RVE,
respectively. Periodic boundary conditions (PBCs) satisfying the Hill–Mandel condition are

w̃+(x+) = w̃−(x−), t+(x+) = −t−(x−) and n+ = −n− , (24)

where equal fluctuation of deformation, opposing traction vectors and opposing normal
vectors at associated points x± ∈ ∂B± are denoted by the symbols t±, w̃± and n±, re-
spectively. Figure 7 describes the applied periodic boundary conditions. In Figure 7a,
the fixed nodes at the highest and lowest point along the y-axis and the nodes on the x-axis
and z-axis at the boundary of the middle plane are shown using blue dots. In Figure 7b,
for the application of periodic boundary conditions, the ellipsoidal RVE is discretized with
exact point symmetry on the lateral surface. A more general concept for applying periodic
boundary conditions can be found in [84]; generalized boundary conditions on RVEs are
discussed in [85].

nodes
fixed

nodes
linked

y

xz(a)

nodes
fixed

nodes
linked

y

z(b)

x ∈ B0

w̃

∂B− ∂B+

u = ε̄ · x + w̃

ε = ε̄ +∇w̃

n−

n+

y

z

y

z(c)
Figure 7. Applied periodic boundary conditions on the ellipsoidal RVE: (a) cross-sectional view,
(b) cross-sectional plane, fixed nodes (black dots) on surface of an RVE and linked nodes (blue dots)
on the boundary of a particular plane in an RVE, (c) illustration of the periodic boundary conditions
applied on an ellipsoidal RVE for the simulations.

3.2. Ellipsoidal RVE for Fiber-Reinforced HPC

The central element in the numerical homogenization for the analysis of a steel-fiber-
reinforced HPC is the chosen ellipsoidal RVE. For the more general discussions on RVEs,
see [86–88] and the references therein. The considered ellipsoidal RVE, consisting of the
concrete matrix and a steel fiber, characterizes the material behavior along the preferred
fiber direction. The components of this ellipsoidal unit cell are shown in Figure 8a. The
ellipsoidal RVE is constructed considering that an embedded steel fiber occupies 0.3% of
the total volume of the unit cell. The dimensions of the unit cell are selected to ensure
that the volume fraction of fibers within the total volume of the RVE matches the fiber
content specified for the concrete mixture. This corresponds to a fiber content of 23 kg/m3

in reinforced HPC. The ellipsoidal RVE containing a single steel fiber is discretized with
66,464 linear hexahedral elements, as shown in Figure 8b. The ellipsoidal RVE containing
a single steel fiber is discretized with 63,232 linear hexahedral elements, as shown in
Figure 8b.
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HPC

steel fiber

interface zone
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z(a)

y
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z(b)

y
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y
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Figure 8. The representative volume element (RVE): (a) components of an ellipsoidal RVE and (b) a
discretized ellipsoidal RVE used in the simulations, distribution of perturbation parameter λpert for
the consideration of heterogeneity in the concrete phase of an ellipsoidal RVE, (c) a cross-sectional
view and (d) a front view of the ellipsoidal RVE used in the simulations, adopted from [89].

The heterogeneity of the real concrete material influences the overall material behavior
during failure. For this purpose, the effect of different percentages of heterogeneity on
the failure behavior of concrete is studied in [89,90]. Following the same procedure,
the heterogeneity in the concrete matrix is taken into account by implementing the random
perturbation of the material parameters for an HPC matrix. The parameters κ = λpertκ0,
µ = λpertµ0 and ψc = λpertψ

c
0 are considered for perturbation. The perturbation parameter

λpert is computed using the formula λpert = 1 + 2(rpert − 0.5)λmax
pert . Therein, the parameter

λmax
pert controls the maximum percentage of perturbation and a random number rpert ∈ R[0,1]

is used to achieve an individual random perturbation in each element. In this contribution,
20% perturbation of the material parameters is considered for all simulations. Thus,
the value of parameters λmax

pert is taken as 0.2. The volume averages of the parameters,
i.e., κ, µ and ψc, in the HPC phase yield values that are approximately equivalent to the
unperturbed values of the corresponding parameters, i.e., κ0, µ0 and ψc

0. The computed
volume averages of parameters without perturbation and 20% perturbation are listed and
compared in Figure 9b.

(a)

λmax
pert ⟨κ⟩HPC ⟨µ⟩HPC ⟨ψc

t ⟩HPC

0 21.63 16.77 4.2 × 10−7

0.2 21.621 16.7638 4.197 × 10−7

(b)
Figure 9. Consideration of inhomogeneity in the concrete phase of the ellipsoidal RVE: (a) histogram
for 20% perturbation of material parameters of HPC and (b) comparison of the computed volume
averages of perturbed material parameters of HPC, taken from [89].

3.3. Failure Analysis of Pure and Reinforced HPC in Virtual Experiments

For the analysis of the fundamental material behavior of an ellipsoidal RVE, six virtual
experiments are considered. The presented micro-mechanical model of fracture based
on the phase-field approach in Section 2 is used for the single-scale microscopic simula-
tions of virtual experiments. For these simulations, a macroscopic homogeneous strain
state is considered and applied to the microscopic boundary value problem based on the
ellipsoidal RVE, see Figure 6. The boundary value problem for the virtual experiments
consists of a cuboid with dimensions of 1 × 1 × 1 mm3 with different boundary conditions.
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Therein, an ellipsoidal RVE is attached at each integration point of the cuboid. Periodic
boundary conditions are applied on the RVE at the microscale, see Section 3.1. The macro-
scopic boundary conditions are directly applied on the surface of the RVE by prescribing
the macroscopic strain tensor ε̄ as a homogeneous displacement of the boundary using
ū = ε̄ x. The volumetric averages of the microscopic quantities over the RVE are calculated
using Equation (21) to determine the corresponding macroscopic quantities. The virtual
experiments are simulated using four different types of ellipsoidal RVEs, e.g., ellipsoidal
RVEs of pure HPC with perturbation and without perturbation and ellipsoidal RVEs of
reinforced HPC with perturbation and without perturbation of HPC parameters. The
mechanical properties and the calibrated material parameters listed in Table 1 are used for
the simulations of the RVEs on the microscale.

3.3.1. Virtual Experiment I—Uniaxial Tensile Test with Vanishing Transverse Stresses

In virtual experiment I, a uniaxial tensile test (only σ̄22 ̸= 0) with vanishing transverse
stresses is considered. The boundary value problem for virtual experiment I is shown
in Figure 10a. The necessary boundary conditions are applied on the RVE by setting the
value of strain in the y-direction ε̄22 using the macroscopic strain tensor ε̄, see Figure 10b.
The strains in the x-direction ε̄11(σ̄11 = 0) and in the z-direction ε̄33(σ̄33 = 0) are determined
iteratively to achieve vanishing transverse stresses.

ūt

ȳ

x̄z̄

(a)

ε̄ =

ε̄11 0 0
0 ε̄22 0
0 0 ε̄33


(b)

 0

 1

 2

 3

 4

 5

 6

 0  5x10
-5  0.0001  0.00015  0.0002  0.00025

σ-
2

2
 i

n
 M

P
a

ε
-
22       

pure HPC - without perturbation

pure HPC - 20% perturbation

reinforced HPC - without perturbation

reinforced HPC - 20% perturbation

(c)
Figure 10. Virtual experiment I: uniaxial tensile test with vanishing transverse stresses. (a) Boundary
value problem (RVE), (b) macroscopic strain tensor ε̄ applied to the RVE and (c) comparison of macro-
scopic stress–strain characteristic using pure and reinforced ellipsoidal RVEs without perturbation
and with 20% perturbation.

In Figure 10c, the macroscopic stress–strain characteristics for virtual experiment I
using all four types of RVEs are compared, i.e., the resulting macroscopic stress–strain
curves for ellipsoidal RVEs of pure HPC without perturbation (green curve) and with
perturbation (cyan curve) and ellipsoidal RVEs of reinforced HPC without perturbation (red
curve) and with perturbation (blue curve). The comparison of these macroscopic responses
shows that the reinforced HPC RVEs (blue and red curves) have higher macroscopic stresses
in the y-direction at the peak than the corresponding pure HPC RVEs (green and cyan
curves). The perturbed material parameters lower the tensile strength of the concrete
material. This results in RVEs with perturbation (cyan and blue curves) failing earlier than
the RVEs without perturbation (green and red curves), see Figure 11c.

The results of simulations of virtual experiment I using reinforced ellipsoidal RVEs
without perturbation of HPC parameters at macroscopic stress σ̄22 = 0.00450 GPa, see
Figure 11a–d, and with 20% perturbation of material parameters at macroscopic stress
σ̄22 = 0.00417 GPa, see Figure 11e–h, are shown at a macroscopic strain of ε̄22 = 0.175h.
Therein, the distribution of microscopic stress σ22 in the y-direction in GPa, see Figure 11a,e,
the microscopic equivalent plastic strain α, see Figure 11b,f, and the microscopic phase-field
parameter q in cross-sectional view, see Figure 11c,e, and in front view, see Figure 11d,h,
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can be compared to analyze the effect of the considered heterogeneity. For example,
the phase-field parameter q in Figure 11g is not symmetrically distributed as compared to
the distribution in Figure 11c.

y

x
z(a)

(σ̄22 = 0.00450)

y

x
z(b)

y

x
z(c)

y

x
z(d)

y

x
z(e)

(σ̄22 = 0.00417)

y

x
z(f)

y

x
z(g)

y

x
z(h)

Figure 11. Virtual experiment I: uniaxial tensile test with vanishing transverse stresses using
ellipsoidal RVEs of reinforced HPC: (a–d) HPC parameters without perturbation at σ̄22 = 0.00450 GPa
and (e–h) with 20% perturbation at σ̄22 = 0.00417 GPa. Distribution of (a,e) microscopic stress σ22 in
GPa, (b,f) microscopic equivalent plastic strain α and microscopic phase-field parameter q in (c,g) a
cross-sectional view and (d,h) a front view at a macroscopic strain of ε̄22 = 0.175h.

3.3.2. Numerical Results of Virtual Experiments II–V

In this section, the simulation results of virtual experiments II to V, focusing on the
macroscopic stress–strain diagram, are compared and discussed. The plots comparing the
distribution of various quantities over the RVE for all virtual experiments from II to V are
included in the Appendix A.1.

Virtual experiment II—transversely constrained uniaxial tensile test:

In virtual experiment II, a uniaxial tensile test with a transversely constrained condition
is considered. In contrast to the applied boundary conditions in virtual experiment I,
the boundaries in the x- and z-directions are constrained in virtual experiment II, see
Figure 12a. The boundary conditions are applied on the RVE by setting the value of strain
in the y-direction ε̄22 , see Figure 12b. The strains in the x-direction ε̄11 and in the z-direction
ε̄33 are set to zero to achieve a transversely constrained condition. In Figure 12c, the
macroscopic stress–strain characteristics for virtual experiment II using all four types of
RVEs are plotted. The comparison of the macroscopic results for virtual experiment II
shows similar observations, as found in the comparison of the resulting curves for virtual
experiment I.
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Figure 12. Virtual experiment II: a transversely constrained uniaxial tensile test: (a) boundary value
problem (RVE), (b) macroscopic strain tensor ε̄ applied to RVEs and (c) comparison of macroscopic
stress–strain characteristics using pure and reinforced ellipsoidal RVEs without perturbation and
with 20% perturbation.

Virtual experiment III—uniaxial tensile test with transverse compression:
In virtual experiment III, a uniaxial tensile test with transverse compression is consid-

ered. The boundary value problem for virtual experiment III is shown in Figure 13a. The
boundary conditions are applied on the RVE by setting the value of macroscopic strain in
the y-direction ε̄22 , see Figure 13b. The strains in the x-direction ε̄11 and in the z-direction ε̄33

are set to ε̄11 = ε̄33 = −2 ν ε̄22 to achieve the condition of transverse compression in the
x- and z-directions. In Figure 13c, the macroscopic stress–strain characteristics for virtual
experiment III using all four types of RVEs are plotted. The comparison of the resulting
curves for virtual experiment III shows similar observations to those found in the cases
of virtual experiments I and II. The macroscopic stress in the y-direction in the reinforced
HPC RVEs (red and blue curves) and the RVEs without perturbation (green and red curves)
is higher than that in the pure HPC RVEs (green and cyan curves) and RVEs with perturba-
tion (cyan and blue curves), respectively, see Figure 13c. However, the applied transverse
compression delays complete failure, resulting in an increase in the maximum load bearing
capacity of the concrete material, see Figure 13c.

ūt

ȳ

x̄z̄

(a)

ε̄ =

−2νε̄22 0 0
0 ε̄22 0
0 0 −2νε̄22


(b)
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σ-
2

2
 i

n
 M

P
a

ε
-
22       

pure HPC - without perturbation

pure HPC - 20% perturbation
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(c)
Figure 13. Virtual experiment III: uniaxial tensile test with transverse compression: (a) boundary
value problem (RVE), (b) macroscopic strain tensor ε̄ applied to RVE and (c) comparison of macro-
scopic stress–strain characteristics using pure and reinforced ellipsoidal RVE without perturbation
and with 20% perturbation.

Virtual experiment IV—uniaxial tensile test in the transverse direction:
In virtual experiment IV, a uniaxial tensile test (only σ̄11 ̸= 0) in the transverse direction

is considered. The boundary value problem for virtual experiment IV is shown in Figure 13a.
The load is applied along the x-direction, which is perpendicular to the preferred fiber



Materials 2024, 17, 2247 16 of 41

direction according to the alignment of the RVE, as shown in Figure 14a. The boundary
conditions are applied on the RVE by setting the value of strain in the x-direction ε̄11 , see
Figure 14b. The strains in the y-direction ε̄22(σ̄22 = 0) and in the z-direction ε̄33(σ̄33 = 0) are
determined iteratively to ensure no transverse stresses.

ūt
ȳ

x̄z̄

(a)

ε̄ =

ε̄11 0 0
0 ε̄22 0
0 0 ε̄33


(b)

 0

 1

 2

 3

 4

 5

 6

 0  5x10
-5  0.0001  0.00015  0.0002

σ-
1

1
 i

n
 M

P
a

ε
-
11       

pure HPC - without perturbation

pure HPC - 20% perturbation

reinforced HPC - without perturbation

reinforced HPC - 20% perturbation

(c)
Figure 14. Virtual experiment IV: uniaxial tensile test in the transverse direction: (a) boundary value
problem (RVE), (b) macroscopic strain tensor ε̄ applied to RVEs and (c) comparison of macroscopic
stress–strain characteristics using pure and reinforced ellipsoidal RVEs without perturbation and
with 20% perturbation.

In Figure 14c, the macroscopic stress–strain characteristics for virtual experiment IV
using all four types of RVEs are plotted. The resulting curves show the same characteristics
in the simulations using all RVEs before the start of the evolution of damage, i.e.,before
evolution of phase-field parameter q. However, the RVEs with perturbation (cyan and
blue curves) fail earlier than the RVEs without perturbation (green and red curves), see
Figure 14c. This is because of the perturbation of parameters, especially the perturbation of
the critical fracture energy in tension ψc

t . On the contrary to the stress–strain characteristics
for virtual experiment I, II and III, the macroscopic responses of the reinforced HPC RVEs
(red and blue curves) have lower macroscopic stress in the x-direction at the peak than
that in the pure HPC RVEs (green and cyan curves). Here, the RVEs without perturbation
(green curve with red curve) and the RVEs with perturbation (cyan curve with blue curve)
are compared. This shows that there is no additional stiffness in the concrete material in
the direction transverse to the fiber. In fact, the additional material at the fiber–concrete
interface is a potential location for crack initiation.

Virtual experiment V—shear test:

In virtual experiment V, a shear test is considered, see Figure 15a. The boundary value
problem for virtual experiment IV is shown in Figure 15a. The boundary conditions are
applied on the RVE by setting the same value for the shear strains ε̄12 and ε̄21 , see Figure 15b.
In Figure 15c, the macroscopic stress–strain characteristics for virtual experiment IV using
all four types of RVEs are plotted. The resulting curves initially follow the same stress–
strain characteristics but later, they deviate from each other. The macroscopic stress σ̄12 in
the reinforced HPC RVEs (blue and red curves) is higher than that in the pure HPC RVEs
(green and cyan curves), see Figure 15c. The resulting curves for the RVEs with perturbation
(cyan and blue curves) lie below the resulting curves for RVEs without perturbation (green
and red curves), see Figure 15c.
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Figure 15. Virtual experiment V: shear test. (a) Boundary value problem (RVE), (b) macroscopic
strain tensor ε̄ applied to RVE and (c) comparison of macroscopic stress–strain characteristics using
pure and reinforced ellipsoidal RVEs without perturbation and with 20% perturbation.

4. Phenomenological Material Model for Fiber-Reinforced HPC
4.1. Constitutive Framework

Fiber-reinforced HPC is a mixture of components, i.e., the HPC matrix and the embed-
ded steel fibers, which makes reinforced HPC heterogeneous. Thus, for the representation
of steel-fiber-reinforced HPC, an additive structure of the macroscopic stored energy func-
tion per unit volume ψ is formulated, cf. [90], i.e.,

ψ = vHPC ψHPC
(

ε, εp,HPC, q,∇q, αHPC
)
+ vF ψF

(
ε, M, αHPC

)
. (25)

where the conservation of the volume fraction vHPC of the HPC phase and the volume
fraction vF of fibers is ensured by the condition vHPC = 1 − vF.

It is observed in the experiments that fracture occurs only in the HPC phase. Therefore,
the phase-field parameter q ∈ [0, 1] at the macroscopic level is considered active only in
the HPC phase describing the damage therein. An energy function ψHPC with a similar
structure to the energy function used in the micro-mechanical model, see Equation (9), is
constructed for the description of fracture in the HPC phase:

ψHPC = g(q)
[
ψe+,HPC

0 + ψ
p,HPC
0 − ψc,HPC

]
+ ψe−,HPC

0 + ψc,HPC
[

1 +
q2 + l2||∇q||2

ζ

]
, (26)

where ∇q denotes the gradient of the phase-field parameter q and g(q, m) = (1 − q)m is
the considered degradation function, cf. [67,68]. The specific critical fracture energy ψc,HPC,
the length-scale parameter l and the parameters m and ζ play the same role, as described in
Section 2, see Equation (9). The reference elastic energy function ψe

0(ε
e,HPC) is additively

decomposed into a positive ψe+
0 (εe,HPC) and a negative part ψe−

0 (εe,HPC), respectively, as

ψe+,HPC
0 (εe,HPC) = κ⟨tr[εe,HPC]⟩2

+/2 + µ||dev εe,HPC||2 ,

ψe−,HPC
0 (εe,HPC) = κ⟨tr[εe,HPC]⟩2

−/2 ,
(27)

where µ and κ are the shear and bulk modulus of the HPC phase and ⟨•⟩± = 1/2 ( •± | • | )
is Macaulay’s notation. The elastic strain tensor εe,HPC for the HPC phase is defined by

εe,HPC := ε − εp,HPC , (28)

using a plastic strain tensor εp,HPC and a total macroscopic strain tensor ε for the HPC
phase, i.e.,

ε = ∇su =
1
2

(
∇su +∇T

s u
)

. (29)
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The plastic energy ψp,HPC for the HPC phase is considered as

ψp,HPC
(

αHPC
)
= (1 − q)mψ

p,HPC
0 with ψ

p,HPC
0 =

[
yHPC

0 αHPC +
1
2

hHPC(αHPC)2
]

, (30)

where yHPC
0 is the yield stress and hHPC is the hardening parameter for the HPC phase.

The equivalent plastic strain for the HPC phase is denoted by αHPC. The energy function ψF,
which describes the behavior of the embedded steel fiber aligned in the preferred direction
a, is

ψF
(

ε, M, eF, ep,F, αF
)
= ψe,F

(
ε, M, eF, ep,F

)
+ ψp,F

(
αF

)
, (31)

which is governed by the structural tensor M := a ⊗ a using the preferred direction
of fiber a with the property that ||a|| = 1. Therein, the one-dimensional elastic–plastic
problem is considered, which represents the elasto-plasticity due to an embedded steel
fiber oriented in the preferred direction a. Accordingly, the elastic energy function ψe,F for
the fibers is formulated as

ψe,F
(

ε, M, eF, ep,F
)
=

1
2

EF
(

ee,F
)2

, (32)

where EF is the elastic moduli of the fibers. The total strain tensor eF for the fibers is
defined as

eF = ε : M . (33)

The elastic strain tensor ee,F for the fiber can be calculated using the plastic strain ep,F

and the total strain eF of the fibers, i.e.,

ee,F = eF − ep,F . (34)

The plastic energy ψp,F, depending on the equivalent plastic strain αF of the fibers, is

ψp,F
(

αF
)
= yF

0 αF +
1
2

hHPC (αF)2 , (35)

where yF
0 and hF denote the yield stress and the hardening parameter for the fibers, respec-

tively. The additive structure for the macroscopic stress tensor is defined as

σ = vHPC σHPC + vF σF , (36)

where the stress tensor σHPC for the HPC phase is computed by

σHPC = (1 − q)m
[
tr σ+,HPC

0 I + devσHPC
0

]
︸ ︷︷ ︸

σ+,HPC
0

+
[
tr σ+,HPC

0 I
]

︸ ︷︷ ︸
σ−,HPC

0

, (37)

with tr σ+,HPC
0 = κ⟨tr εe,HPC⟩+, devσHPC

0 = 2µ devεe,HPC , (38)

and tr σ−,HPC
0 = κ⟨tr εe,HPC⟩− . (39)

Therein, σHPC
0 = σ+,HPC

0 + σ−,HPC
0 is the effective stress tensor for the HPC phase.

The stress tensor σF for the fibers is defined as

σF = σF(a ⊗ a) with σF = EF
(

eF − ep,F
)

. (40)

The governing equation for the phase-field parameter q is computed using the macro-
scopic stored energy function for the HPC phase ψHPC, see Equation (26), as

q − l2 Div(∇q)− (1 − q)HHPC = 0 , (41)
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where, to ensure the upper and lower bounds of the range of the phase-field parameter
q ∈ [0, 1], the parameter m = 2 is set. Herein, a local history field HHPC is constructed to
ensure the irreversibility of the crack evolution in the HPC phase, i.e.,

HHPC := max
s∈[0,t]

HHPC
0 (x, t) ≥ 0 with HHPC

0 = ζ

〈[
ψe+,HPC

0 + ψ
p,HPC
0

ψc,HPC

]
− 1

〉
. (42)

where the maximum value of a dimensionless crack driving state function HHPC
0 for the

HPC phase is considered and its contribution to the evolution of the phase-field parameter
q is weighted by the volume fraction vHPC of the HPC phase. During the loading process,
the local history field is updated according to

HHPC =

{
HHPC

0,n+1 for HHPC
0,n+1 > HHPC

0,n ,
HHPC

0,n otherwise .
(43)

The distinct behavior of concrete under tension and in compression is modeled by
using two parameters for the critical fracture energy in tension ψc

t and in compression ψc
c.

These parameters are distinguished from each other based on the sign of the first invariant
of the stress tensor using the condition:

ψc =

{
ψc

t , for tr ε ≥ 0 ,
ψc

c , otherwise .
(44)

4.1.1. Yield Criteria and Flow Rules

The nonlinear behavior of reinforced HPC is mainly characterized by the combination
of the material behaviors of concrete and steel fibers. To capture the nonlinearity due to
elasto-plasticity in the HPC matrix and the steel fibers, two separate yield criteria are used.
The first criterion is the associative Drucker–Prager yield plasticity which is considered for
the HPC phase, cf. [74], i.e.,

ϕHPC
(

σHPC
0 , κHPC

p

)
=

1√
2
||dev σHPC|| − βHPC

p tr σHPC
0 − κHPC

p , (45)

where βHPC
p is the coefficient of the hydrostatic stress component and κp denotes the

hardening function for the HPC phase:

κHPC
p := ∂αψ

p,HPC
0 = yHPC

0 + hHPCαHPC . (46)

The plastic behavior associated with the given yield criterion is dependent on the
effective stress tensor, σHPC

0 = σ+,HPC
0 + σ−,HPC

0 , see Equation (39). The rate of plastic
strain ε̇p,HPC and the equivalent plastic strain α̇HPC are, respectively, given as,

ε̇p,HPC = λp,HPC ∂ϕHPC

∂σHPC
0

= λp,HPC nHPC
DP and α̇HPC = −λp,HPC ∂ϕHPC

∂κHPC
p

= λp,HPC , (47)

where λp,HPC denotes the incremental plastic multiplier. The unit normal nHPC
DP on the yield

surface for the HPC phase is

nHPC
DP =

∂ϕHPC

∂σHPC
0

=
1√
2

nHPC + βpI with nHPC
DP =

devσHPC
0

||devσHPC
0 ||

. (48)

The considered Kuhn–Tucker criterion is given as

ϕHPC
(

σHPC
0 , κHPC

p

)
≤ 0 , λp,HPC ≥ 0 , λp,HPCϕHPC

(
σHPC

0 , κHPC
p

)
= 0 . (49)
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To capture nonlinear behavior along the preferred fiber direction, a one-dimensional
von Mises yield criterion is used, cf. [75,91], i.e.,

ϕF
(

σF, κF
p

)
= |σF| − κF

p with κF
p := ∂αψp,F = yF

0 + hFαF , (50)

The rate of plastic strain ėp,F and the equivalent plastic strain α̇F for the fibers are

ėp F = λp,F sign(σ) and α̇F = −λp,F ∂ϕF

∂κF
p
= λp,F , (51)

where λp,F denotes the incremental plastic multiplier with the Kuhn–Tucker criteria,
which are

ϕF
(

σF
0 , κF

p

)
≤ 0 , λp,F ≥ 0 , λp,FϕF

(
σF

0 , κF
p

)
= 0 . (52)

4.1.2. Consistent Elasto-Plastic Tangent Moduli

Nonlinear systems are solved iteratively using the elastic predictor–plastic corrector
method (radial-return mapping) for the Drucker–Prager plasticity, see [70], and for further
details, see [91,92]. Therefore, we define the trial elastic strains in the HPC phase and in the
fibers as

εetr,HPC
n+1 = εn+1 − ε

ptr,HPC
n and eetr,F

n+1 = eF
n+1 − eptr,F

n . (53)

Therein, a trial quantity is denoted by (·)tr and n and n + 1 denote the values at time
tn and tn+1, respectively. The stress update is explained in Figure 16. The volumetric part
Ce,HPC

vol,n+1 and deviatoric part Ce,HPC
dev,n+1 of the elastic tangent moduli Ce,HPC

n+1 are defined by

Ce,HPC
vol,n+1 = κ I ⊗ I and Ce,HPC

dev,n+1 = 2 µ IP with IP = II − 1
3

I ⊗ I , (54)

where I is the second-order identity tensor and II denotes the fourth-order symmetric iden-
tity tensor. The elastic tangent moduli Ce,HPC

n+1 is formulated by following the additive split
of the reference energy function based on the sign of the first invariant, see Equation (27),
cf. [70,93], as

Ce,HPC
n+1 = vHPC


g(q, m)

[
Ce,HPC

vol,n+1 +Ce,HPC
dev,n+1

]
if trεetr,HPC

n+1 ≥ 0 ,[
Ce,HPC

vol,n+1 + g(q, m)Ce,HPC
dev,n+1

]
if trεetr,HPC

n+1 < 0 .
(55)

Similarly, the elastic tangent modulus in the preferred fiber direction is computed as

Ce,F
n+1 = vFEF(a ⊗ a ⊗ a ⊗ a) . (56)

In the elastic–plastic case, return mapping for plastic correction is necessary. For this
purpose, Equations (47) and (51) are solved while satisfying the yield criteria, i.e.,
Equations (45) and (50), at the discrete time step tn+1, see Figure 16. The volumetric
part Cep,HPC

vol,n+1 and deviatoric part Cep,HPC
dev,n+1 of the elasto-plastic tangent modulus Cep,HPC

n+1
can be derived using return mapping, see [92,94]. This follows

Cep,HPC
vol,n+1 = κ I ⊗ I − 3κβpI ⊗ D , (57)

Cep,HPC
dev,n+1 = 2 µ δ1IP + 2 µ(1 − δ1) ntr,HPC

n+1 ⊗ ntr,HPC
n+1 −

√
2 µ ntr,HPC

n+1 ⊗ D , (58)

where the second-order tensor D and factor δ1 are given by

D =
3κβpI +

√
2 µ ntr,HPC

n+1

µ + 9β2
p κ + hHPC and δ1 = 1 −

√
2 µ ∆λ

p,HPC
n+1

||devσtr,HPC
0,n+1 ||

, (59)
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where ∆λ
p,HPC
n+1 := λ

p,HPC
n+1 (tn+1 − tn) denotes the incremental Lagrange multiplier, see [70].

The consistent elasto-plastic tangent modulus Cep,HPC
n+1 appears, cf. [93],

Cep,HPC
n+1 = vHPC


g(q, m)

[
Cep,HPC

vol,n+1 +Cep,HPC
dev,n+1

]
, if trεetr,HPC

n+1 ≥ 0 ,[
Cep,HPC

vol,n+1 + g(q, m)Cep,HPC
dev,n+1

]
, if trεetr,HPC

n+1 < 0 .
(60)

The consistent elasto-plastic tangent modulus Cep,F
n+1 for the fibers is given by

Cep,F
n+1 =

vFEFhF

EF + hF (a ⊗ a ⊗ a ⊗ a) . (61)

It is important to note that in the described formulation of the phenomenological
material model, plastic flow takes place independently in both the HPC phase and the
fibers. Consequently, the overall consistent elasto-plastic tangent modulus can be obtained
through the additive combination of Equations (54), (56), (60), and (61). The specific nature
of this additive combination depends on whether elasticity or elasto-plasticity occurs
in each individual phase. The weak formulation of the balance of linear momentum,
i.e., Equation (17) using the total stress tensor, see Equation (36), and of the governing
equation for the phase-field parameter q, i.e., Equation (18), using a local history field HHPC,
see Equations (41) and (42), is solved using the framework of the Finite Element Method,
see [76]. The supplementary data for the FE analysis of macroscopic BVPs are provided
in [95]. An algorithm for the implementation of the formulations in the presented model is
explained in Figure 16.
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Material Level:

Extract data from history: hr → {ε
p,HPC
n , αHPC

n , ep,F
n , αF

n,HHPC
n }

actual data available: εn+1, qn+1

• Calculate εetr,HPC
n+1 = εn+1 − ε

p,HPC
n and eetr,F

n+1 = εn+1 : (a ⊗ a)− ep,F
n

• Compute trial states:

tr σtr,HPC
0,n+1 and dev σtr,HPC

0,n+1 , see Equation (39) and σtr,F
n+1 = EF eetr,F

n+1

Drucker–Prager yield criterion for the HPC phase:

ϕtr,HPC
n+1 = ||dev σtr,HPC

0,n+1 ||/
√

2 − βp tr σtr,HPC
0,n+1 −

(
yHPC

0 + hHPCαHPC
n

)
One-dimensional von Mises yield criterion for the fibers:

ϕtr,F
n+1 = |σtr,F

n+1| −
(
yF

0 + hFαF
n
)

IF ϕtr,HPC
n+1 > 0 THEN: Calculate

∆ε
p,HPC
n+1 = ∆λ

p,HPC
n+1 ntr,HPC

DP,n+1, ∆αHPC
n+1 = ∆λ

p,HPC
n+1 ,

ε
p,HPC
n+1 = ε

p,HPC
n + ∆ε

p,HPC
n+1

ELSE: Set (·)n+1 = (·)tr
n+1 and EXIT

IF ϕtr,F
n+1 > 0 THEN: Calculate

∆ep,F = ∆λ
p
n+1 nptr,F

n+1 , ∆αF
n+1 = ∆λ

p,F
n+1, ep,F

n+1 = ep,F
n + ∆ep,F

n+1

ELSE: Set (·)n+1 = (·)tr
n+1 and EXIT

• Compute corrected step:

εe,HPC
n+1 = εn+1 − ε

p,HPC
n+1 and ee,F

n+1 = en+1 − ep,F
n+1 ,

σHPC
n+1 = (1 − qn+1)

m
[
κ⟨tr εe,HPC

n+1 ⟩+I + 2µ devεe,HPC
n+1

]
+

[
κ⟨tr εe,HPC

n+1 ⟩−I
]

,

σF
n+1 = σF

n+1a ⊗ a with σF
n+1 = EF ee,F

n+1 ,

σn+1 = vHPC σHPC
n+1 + vF σF

n+1 with vHPC = 1 − vF ,

HHPC
n+1 := max

s∈[0,t]
HHPC

0,n+1(x, t̃) ≥ 0 HHPC
0,n+1(x, t̃) = ζ

〈[
ψe+,HPC

0 +ψ
p,HPC
0

ψc,HPC

]〉
,

• Update the history variables
after global convergence: {ε

p,HPC
n+1 , αHPC

n+1 , ep,F
n+1, αF

n+1,HHPC
n+1 } →hr

Figure 16. Elasto-plastic return algorithm.
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4.2. Numerical Calibration and Validation Using Unit Cell Calculations

In this section, numerical simulations using the presented phenomenological material
model on a single-scale are documented. Simulations are conducted for macroscopic
boundary value problems (BVPs), which involves cuboids made of both pure and reinforced
HPC. The same homogeneous boundary conditions as those applied in the simulations of
virtual experiments using RVEs in Section 3.3 are used for the simulations. The dimensions
of the cuboid, i.e., length and width, are selected to match the maximum measurements
of the ellipsoidal RVE. This ensures that the cuboid can accommodate an ellipsoidal RVE
entirely within its boundaries, e.g., see Figure 19a.

The fiber exhibits the same preferred direction within both the cuboid and the con-
structed ellipsoidal RVE, i.e., aligning parallel to the y-axis, see Figure 19a. Note that for the
simulations of macroscopic BVPs, the orientation of the fiber within the cuboid is set using
the preferred fiber direction a. In the cuboid-based simulations, the material parameters
used for the HPC phase and fibers are identical to the material parameters utilized in the
virtual experiment simulations, as listed in Table 2. The fiber volume fraction is vF = 0.003,
corresponding to a fiber content of 23 kg/m3 within the reinforced HPC.

Table 2. The material parameters used in the phenomenological material model for simulations of
macroscopic BVPs, cf. [66,68,81,89].

EHPC νHPC ψc,HPC
t ψc,HPC

c yHPC
0 βp hHPC m ζ EF vF yF

0 hF

GPa − MPa MPa MPa − mm − − GPa − MPa MPa

39.976 0.192 4.2 × 10−4 0.12 6.263 0.5218 2000 0.6 0.5 210 0.003 660 130

4.2.1. Sensitivity Analysis for the Calibration of the Length-Scale Parameter l

The calibration of the length-scale parameter l at the macroscale is necessary due
to a shift in the scale, i.e., from the microscale to macroscale, which is accomplished
through a comparison of the macroscopic stress–strain curves obtained from simulations of
macroscopic BVP I, see Figure 19a, and virtual experiments I, see Figure 10a, for pure HPC
without any perturbations.

For the numerical analysis of macroscopic BVP I, homogeneous boundary conditions
representing a uniaxial tensile test without transverse stresses are applied on a cuboid
of pure HPC. Initially, the simulations of macroscopic BVP I are conducted using var-
ious values of the length-scale parameter l, while maintaining a uniform mesh size of
he = 1 mm. The cuboid is discretized for the simulations using 24,000 linear hexahedral
elements. The value of the length-scale parameter l = 14 mm corresponding to the most
accurately fitted stress–strain curve from the simulations of macroscopic BVP I is selected,
see Figure 17a. Furthermore, a convergence study is conducted using various element
sizes he using the calibrated value of the length-scale parameter l = 14 mm. Variations in
the mesh density (coarsening) were applied in order to check the convergence with respect
to the mesh density. The macroscopic BVP I is simulated using various mesh sizes as part
of the regularization study based on the length-scale parameter l = 14 mm, see Figure 17b.
Based on the comparison of results, a length-scale parameter of l = 14 mm and a mesh size
of he = 1 mm are selected for all the subsequent simulations of macroscopic BVPs.
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Figure 17. Comparison of macroscopic stress–strain characteristics with the results of uniaxial tension
tests performed in virtual experiment I using an ellipsoidal RVE and a phenomenological material
model applied to the macroscopic BVP I (pure HPC without perturbations). (a) Calibration of length-
scale parameter l using he = 1 mm and (b) convergence study using various element sizes he using
l = 14 mm.

4.2.2. Macroscopic BVP I—Uniaxial Tensile Test with Vanishing Transverse Stresses

The resulting stress–strain plots obtained from simulations of virtual experiment I and
macroscopic BVP I without and with 20% perturbations of HPC parameters are compared
in Figures 18a and 18b, respectively. In Figure 18a, the stress–strain curve calibrated for a
pure HPC cuboid in macroscopic BVP I (gray curve) and the resultant curve obtained for
the pure HPC RVE in virtual experiment I (green curve) are taken from Figure 17.
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Figure 18. Macroscopic BVP I: comparison of macroscopic stress–strain characteristics with the
results of virtual experiment I using ellipsoidal RVEs (a) without perturbation and (b) with 20%
perturbation of HPC parameters.

It is observed that the resulting stress–strain curves for reinforced HPC (red and
black curves) exhibit characteristics that match those of the curves for pure HPC (green
and gray curves) without perturbation. However, the macroscopic stresses in the RVE
and cuboid of reinforced HPC (red and black curves) are higher in comparison to the
related RVE and cuboid of pure HPC (green and gray curves), see Figure 18a. Likewise,
in Figure 18b, the curves obtained from the simulations of pure HPC with perturbations
(cyan and yellow curves) are positioned below the curves plotted for reinforced HPC
with perturbations (blue and brown curves). This phenomenon can be attributed to the
additional stiffness incorporated into the reinforced HPC due to the inclusion of the fiber
phase within the phenomenological material model. It is important to note that the curves
obtained from simulations considering pure HPC (cyan and yellow curves) and reinforced
HPC (blue and brown curves) with perturbations of HPC parameters initially have similar
stress–strain characteristics, but later they begin to diverge from each other. Therefore, the
curves for simulations of reinforced HPC exhibit a higher load-bearing capacity before
failure, see Figure 18b. Indeed, this is the intended result, obtained by introducing the
random perturbation of specifically chosen parameters, i.e., κ, µ and ψc. Here, the observed
effect is primarily ascribed to the random perturbation of critical fracture energies within
the concrete matrix. Figure 19e shows the distribution of random perturbations in the
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cuboid used for the simulations of macroscopic BVP I. The simulation results of macro-
scopic BVP I with a cuboid of reinforced HPC without perturbation, see Figure 19b–d and
with 20% perturbation in the HPC parameters, see Figure 19f–h, are plotted. The influence
of random perturbations is clearly seen when analyzing the macroscopic responses for
macroscopic BVP I by comparing the results of both simulations using a cuboid of rein-
forced HPC with and without perturbations. This comparison includes the distribution
of total stress σ22 in the y-direction, the equivalent plastic strain αHPC in the HPC phase
and the phase-field parameter q in the HPC phase within cuboids of reinforced HPC with-
out perturbation at macroscopic stress of σ̄22 = 0.00435 GPa, see Figure 19b–d, and with
20% perturbation of HPC parameters at a macroscopic stress of σ̄22 = 0.00432 GPa, see
Figure 19f–h, and at a macroscopic strain of ε̄22 = 0.175h.
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Figure 19. Phenomenological material model applied to (a) macroscopic BVP I, (b–d) HPC parame-
ters without perturbation at σ̄22 = 0.00435 GPa and (e–h) with 20% perturbation at σ̄22 = 0.00432 GPa.
Distribution of (e) perturbation parameter λpert, (b,f) total stress σ22 in GPa, (c,g) equivalent plastic
strain αHPC in HPC phase and (d,h) phase-field parameter q in the HPC phase, at a macroscopic
strain of ε̄22 = 0.175h.

4.2.3. Numerical Simulations of Macroscopic BVPs II–V

In this section, the simulation results of macroscopic BVPs, from II to V, focusing on
the macroscopic stress–strain diagram are compared and discussed. The plots comparing
the distribution of various quantities over the cuboid for all macroscopic BVPs, from II to V,
are included in Appendix A.2.

Macroscopic BVP II—transversely constrained uniaxial tensile test:
Macroscopic BVP II is simulated by applying homogeneous boundary conditions on a

cuboid, specifically for the uniaxial tensile test considering constrained boundaries in the
transverse direction, see Figure A5a. The resulting macroscopic stress–strain characteris-
tics for the simulations of virtual experiment II using ellipsoidal RVEs and macroscopic
BVP II using cuboids of pure and reinforced HPC without perturbation, see Figure 20a,
and with 20% perturbation of HPC parameters, see Figure 20b, are compared. In this
instance, a plateau at the top of the stress–strain plots is observed across all simulation
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results, which is a consequence of the transversely constrained boundary conditions. In the
resulting curves for simulations involving perturbation, the plateau appears to be smoother
compared to simulations conducted without perturbation. However, stress degradation
occurs more rapidly in the macroscopic response of ellipsoidal RVEs when compared
to the stress–strain behavior observed in cuboids at the macroscopic level. As a result,
the stress–strain plots for virtual experiment II and macroscopic BVP II exhibit noticeable
deviations from each other, see Figure 20a,b. This is due to the initial damage localization in
the soft fiber–concrete interface zone in the ellipsoidal RVE, compare Figures A1g and A5h.
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Figure 20. Macroscopic BVP II: comparison of macroscopic stress–strain characteristics with the
results of virtual experiment II using ellipsoidal RVEs (a) without perturbation and (b) with 20%
perturbation of HPC parameters.

Macroscopic BVP III—uniaxial tensile test with transverse compression:

In the simulations of macroscopic BVP III, homogeneous boundary conditions for a
uniaxial tensile test along with compression applied on the surfaces of the cuboid in the
transverse directions. This is accomplished by imposing a compressive displacement on
the transverse surfaces of the cuboid, as shown in Figure A6a. The amount of displacement
applied is calculated to ensure that the strains on the transverse boundaries satisfy the
condition ε̄11 = ε̄33 = −2 ν ε̄22 . The resultant macroscopic stress–strain behaviors observed
in all simulations for virtual experiment III and macroscopic BVP III, see Figure 21a,b, have
a similar material response. Damage initiates once the stress reaches the tensile strength
threshold. However, as the transverse compression increases, there is a subsequent rise in
the stresses. This occurs because the applied transverse compression provides significant
resistance to the further evolution of damage by aiding in the closure of cracks. However,
as the strain increases, the stress in the cuboids of pure HPC surpass the stress in RVEs
of reinforced HPC (compare gray and red curves in Figure 21a and yellow, blue and red
curves in Figure 21b). This is related to the geometrical structure of the RVE, which includes
a softer interface zone with a lower tensile strength, which does not exist in the cuboid.
Damage tends to initiate earlier in this zone than in the other regions of the RVE, thereby
reducing the overall stress in the RVE’s macroscopic response. This can be observed by
comparing the distribution of the phase-field parameters in Figure A2c,g with Figure A6d,h.
Similar to the observations made in the comparative analysis of experiment I, it is noticeable
that the inclusion of fibers results in added stiffness in the stress–strain curves for both
simulations using RVEs and cuboids of reinforced HPC, see Figure 21a,b.
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Figure 21. Macroscopic BVP III: comparison of macroscopic stress–strain characteristics with the
results of virtual experiment III using ellipsoidal RVEs (a) without perturbation and (b) with 20%
perturbation of HPC parameters.

Macroscopic BVP IV—uniaxial tensile test in the transverse direction:

Figure A7a illustrates a cuboid along with the boundary conditions representative of
a uniaxial tensile test in the transverse direction, i.e., perpendicular to the fiber direction,
which are applied in the simulations of macroscopic BVP IV. Consequently, the embedded
fibers do not significantly impact the overall material behavior of concrete in terms of
providing additional stiffness and enhancing the load-bearing capacity. This characteristic
is prominently observed in the stress–strain behavior for the simulations of macroscopic
BVP IV with cuboids of both pure and reinforced HPC (compare gray and black curves in
Figure 22a and yellow and brown curves in Figure 22b). Similar to the previous discussion,
simulations of virtual experiment IV also exhibit a rapid reduction in stiffness due to the
presence of a softer fiber–concrete interface zone in the reinforced RVE used for the virtual
experiments. This effect becomes significant in this case because the loading direction is
transverse to the fiber–concrete interface zone around the fiber (compare Figure A3g and
Figure A7h). Nevertheless, there are significant differences in the macroscopic stress–strain
characteristics obtained from simulations of virtual experiment IV and macroscopic BVP IV.
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Figure 22. Macroscopic BVP IV: comparison of macroscopic stress–strain characteristics with the
results of virtual experiment IV using ellipsoidal RVEs (a) without perturbation and (b) with 20%
perturbation of HPC parameters.

Macroscopic BVP V—shear test:

Macroscopic BVP V is conducted to simulate a macroscopic homogeneous strain
state for a shear test. The geometry and boundary conditions for macroscopic BVP V are
depicted in Figure A8a. A comparative analysis of the resulting macroscopic stress–strain
behavior is conducted for the simulations of virtual experiment V using ellipsoidal RVEs
and macroscopic BVP V using cuboids of pure and reinforced HPC without perturbation
and with 20% perturbation of HPC parameters, see Figure 23a,b.
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Figure 23. Macroscopic BVP V: comparison of macroscopic stress–strain characteristics with the
results of virtual experiment V using ellipsoidal RVEs (a) without perturbation and (b) with 20%
perturbation of HPC parameters.

The macroscopic stress–strain curves obtained from all four types of simulations of
virtual experiment V, as well as for macroscopic BVP V, exhibit distinctive and meaningful
characteristics, see Figure 23a,b. The resulting curves display a nearly identical behavior
initially, before diverging at higher strain values. The macroscopic stress levels in the curves
for simulations using reinforced HPC are greater than those in the curves for simulations
involving pure HPC. Furthermore, the effect of perturbation can be seen clearly comparing
the stress–strain results in Figure 23a,b.

5. Conclusions

In the initial section of the paper, an elasto-plastic phase-field model (micro-mechanical
model) for simulating fractures in concrete materials is presented. The model is calibrated
and validated through a comparison of experimental data with numerical results obtained
from simulations of pullout tests considering different lengths of a single steel fiber embed-
ded within HPC. These findings not only validate the accuracy of the calibrated material
parameters but also serve as a foundational basis for simulations of virtual experiments
using the homogenization approach. The calibrated parameters, the constructed ellipsoidal
RVEs and the incorporation of concrete phase heterogeneity collectively result in a realistic
representation of steel-fiber-reinforced HPC along the preferred fiber direction. Simulations
of various types of virtual experiments allow for an understanding of complex interac-
tions and failure behavior within the individual phases of heterogeneous materials at the
microscopic level.

Furthermore, a phenomenological material model is presented. Therein, separate
energy functions that individually characterize the behavior of the embedded steel fibers
and HPC matrix are used. The use of an additive form of the energy functions makes
it possible to simulate the macroscopic behavior of both pure and reinforced HPC by
adjusting the values of the phase fraction. The effective utilization of different yield criteria
for the fibers and HPC matrix enhances the capability of the presented model in capturing
the comprehensive material behavior of fiber-reinforced HPC. These criteria account for the
unique nonlinearities that exist within each phase. The concept of numerically integrating
the fibers and calibrating the phenomenological (macroscopic) model using the macroscopic
response obtained from virtual experiments based on RVEs circumvents the complexity
associated with employing direct homogenization techniques in conjunction with the phase-
field approach. Moreover, implementing different combinations of fiber orientations and
distributions can also be seamlessly achieved using this approach.

The observed additional macroscopic stress level in the simulation results of BVPs
using cuboids of fiber-reinforced HPC validates the efficiency of the model in capturing
the material behavior of fiber-reinforced HPC. Moreover, it is observed during the compar-
isons that the macroscopic stress–strain characteristics are significantly influenced by the
introduced heterogeneity through random perturbations in HPC parameters. It is notable
that the macroscopic stress–strain characteristics in virtual experiments II and IV and
macroscopic BVPs do not align precisely with each other. This discrepancy arises from the
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difference in the construction of RVEs, which involve three materials (steel fiber, interface
zone, HPC matrix), as opposed to a cuboid where the fibers are represented numerically.
To improve these results, it could be beneficial to incorporate all types of macroscopic BVPs
during the calibration and regularization of the phenomenological material model.

The concept of representing fibers phenomenologically through a one-dimensional
elasto-plasticity model enables the numerical definition of embedded fibers. This not only
simplifies the complexity and time required for geometrically representing fibers but also
conserves computational efforts. Moreover, it also opens up the possibility of implementing
an orientation distribution function to accommodate the orientations and distribution of all
the embedded fibers with little effort. Therefore, this numerical approach holds potential
for further development to comprehensively capture the overall material behavior of fiber-
reinforced HPC. This can be accomplished by utilizing the calibrated numerical parameters
and incorporating realistic distributions and orientations of fibers used in the experiments,
as planned for future work.
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Appendix A

Appendix A.1. Simulation Results of Virtual Experiments II–V

Here, the distribution comparing various quantities obtained from the simulations
conducted in virtual experiments II to V are analyzed. For additional information on
the boundary value problems associated with each virtual experiment, please refer to
Section 3.3.

Virtual experiment II—uniaxial tensile test transversely constrained:

The simulation results of virtual experiment II using a reinforced ellipsoidal RVE
without perturbation of HPC parameters at macroscopic stress σ̄22 = 0.00394 GPa, see
Figure A1a–d and with 20% perturbation at macroscopic stress σ̄22 = 0.00364 GPa, see
Figure A1e–h, of material parameters are plotted at macroscopic strain ε̄22 = 0.175h.
Therein, the distribution of microscopic stress σ22 in y-direction in GPa, see Figure A1a,e,
microscopic equivalent plastic strain α, see Figure A1b,f and microscopic phase-field
parameter q in cross-sectional view, see Figure A1c,g and in front view, see Figure A1d,h
are shown. In the distribution of phase-field parameter q, compare Figure A1d,h, the effect
of random perturbations of material parameter can be easily observed.
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Figure A1. Virtual experiment II: uniaxial tensile test transversely constrained using ellipsoidal
RVE of reinforced HPC, (a–d) HPC parameters without perturbation at σ̄22 = 0.00394 GPa and
(e–h) with 20% perturbation at σ̄22 = 0.00364 GPa: distribution of (a,e) microscopic stress σ22 in
GPa, (b,f) microscopic equivalent plastic strain α and microscopic phase-field parameter q (c,g) cross-
sectional view and (d,h) front view at macroscopic strain ε̄22 = 0.175h.
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Virtual experiment III—uniaxial tensile test with transverse compression:

The simulation results of virtual experiment III using a reinforced ellipsoidal RVE
without perturbation of HPC parameters at macroscopic stress σ̄22 = 0.00525 GPa, see
Figure A2a–d and with 20% perturbation at macroscopic stress σ̄22 = 0.00509 GPa, see
Figure A2e–h, are plotted at macroscopic strain ε̄22 = 0.4h. Therein, the distribution of
microscopic stress σ22 in y-direction in GPa, see Figure A2a,e, microscopic equivalent
plastic strain α, see Figure A2b,f and microscopic phase-field parameter q in cross-sectional
view, see Figure A2c,g and in front view, see Figure A2d,h are shown. In the distribution of
phase-field parameter q, e.g. compare Figure A2d,h, the effect of random perturbations of
material parameter can be easily observed. In addition to that, the evolution of phase-field
parameter q, Figure A2c,d,g,h, is lower in magnitude as compare to the stress in y-direction
in GPa, see Figure A2a,e which indicates the delay in failure of concrete material due to
transverse compression.
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Figure A2. Virtual experiment III: uniaxial tensile test with transverse compression using ellipsoidal
RVE of reinforced HPC, (a–d) HPC parameters without perturbation at σ̄22 = 0.00525 GPa and
(e–h) with 20% perturbation at σ̄22 = 0.00509 GPa: distribution of (a,e) microscopic stress σ22 in GPa,
(b,f) microscopic equivalent plastic strain α and microscopic phase-field parameter q (c,g) cross-
sectional view and (d,h) front view at macroscopic strain ε̄22 = 0.4h.
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Virtual experiment IV—uniaxial tensile test in transverse direction:

The simulation results of virtual experiment IV using a reinforced ellipsoidal RVE
without perturbation of HPC parameters at macroscopic stress σ̄11 = 0.00425 GPa, see
Figure A3a–d and with 20% perturbation at macroscopic stress σ̄11 = 0.00379 GPa, see
Figure A3e–h, of material parameters are plotted at macroscopic strain ε̄11 = 0.15h. Therein,
the distribution of microscopic stress σ22 in x-direction in GPa, see Figure A3a,e, microscopic
equivalent plastic strain α, see Figure A3b,f and microscopic phase-field parameter q in
cross-sectional view, see Figure A3c,g and in front view, see Figure A3d,h, are shown.
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Figure A3. Virtual experiment IV: uniaxial tensile test in transverse direction using ellipsoidal RVE of
reinforced HPC, (a–d) HPC parameters without perturbation at σ̄11 = 0.00425 GPa and (e–h) with 20%
perturbation at σ̄11 = 0.00379 GPa: distribution of (a,e) microscopic stress σ11 in GPa, (b,f) microscopic
equivalent plastic strain α and microscopic phase-field parameter q (c,g) cross-sectional view and
(d,h) front view at macroscopic strain ε̄11 = 0.15h.
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Virtual experiment V—shear test:

The simulation results of virtual experiment IV using a reinforced ellipsoidal RVE
without perturbation of HPC parameters at macroscopic stress σ̄12 = 0.00285 GPa, see
Figure A4a–d and with 20% perturbation at macroscopic stress σ̄12 = 0.00276 GPa, see
Figure A4e–h, of material parameters are plotted at macroscopic strain ε̄12 = 0.25h. Therein,
the distribution of microscopic stress σ12 in GPa, see Figure A4a,e, microscopic equivalent
plastic strain α, see Figure A4b,f and microscopic phase-field parameter q in cross-sectional
view, see Figure A4c,g and in front view, see Figure A4d,h are shown. The effect of
perturbation of material parameters can be easily observed in the distribution of phase-field
parameter q, compare Figure A4c,d and Figure A1g,h, respectively.

y

x
z(a)

(σ̄12 = 0.00285)

y

x
z(b)

y

x
z(c)

y

x
z(d)

y

x
z(e)

(σ̄12 = 0.00276)

y

x
z(f)

y

x
z(g)

y

x
z(h)

Figure A4. Virtual experiment V: shear test using an ellipsoidal RVE of reinforced HPC, (a–d) HPC
parameters without perturbation at σ̄12 = 0.00285 GPa and (e–h) with 20% perturbation at
σ̄12 = 0.00276 GPa: distribution of (a,e) microscopic stress σ12 in GPa, (b,f) microscopic equivalent
plastic strain α and microscopic phase-field parameter q (c, g) cross-sectional view and (d,h) front
view at macroscopic strain ε̄12 = 0.25h.
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Appendix A.2. Simulations Results of Macroscopic BVPs II–V

Here, the distribution comparing various quantities obtained from the simulations con-
ducted in macroscopic BVPs II to V are analyzed. For additional information on the bound-
ary value problems associated with each virtual experiment, please refer to Section 4.2.

Macroscopic BVP II—uniaxial tensile test transversely constrained:

The macroscopic responses obtained from the simulations of macroscopic BVP II using
cuboids of reinforced HPC, are plotted in terms of the distribution of total stress σ22 in
y-direction, the equivalent plastic strain αHPC in HPC phase and the phase-field parameter q
in HPC phase at macroscopic strain ε̄22 = 0.175h. This is depicted for cuboids of reinforced
HPC without perturbations at macroscopic stress σ̄22 = 0.00458 GPa in Figure A5b–d, and
with a 20% perturbation of HPC parameters at macroscopic stress σ̄22 = 0.00456 GPa in
Figures A5f–h. Therein, the minor effect of random perturbations is particularly observed
when comparing the distribution of the equivalent plastic strain αHPC in Figure A5c,g, as
well as the phase-field parameter q in Figure A5d,h.
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Figure A5. Phenomenological material model applied to (a) macroscopic BVP II, (b–d) HPC parame-
ters without perturbation at σ̄22 = 0.00458 GPa and (e–h) with 20% perturbation at σ̄22 = 0.00456 GPa:
distribution of (e) perturbation parameter λpert, (b,f) total stress σ22 in GPa, (c,g) equivalent plastic
strains αHPC in HPC phase and (d,h) phase-field parameter q in HPC phase at macroscopic strain
ε̄22 = 0.175h.
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Macroscopic BVP III—uniaxial tensile test with transverse compression:

The simulation results of of macroscopic BVP III using cuboids without perturbation
of HPC parameters at macroscopic stress σ̄22 = 0.00556 GPa, see Figure A6a–d and with
20% perturbation at macroscopic stress σ̄22 = 0.00535 GPa, see Figure A6e–h, of material
parameters are plotted at macroscopic strain ε̄22 = 0.4h. The macroscopic responses are
plotted in terms of the distribution of total stress σ22 in y-direction, the equivalent plastic
strain αHPC in HPC phase and the phase-field parameter q in HPC phase at macroscopic
strain ε̄22 = 0.4h. As discussed earlier, the applied transverse compression resists the the
evolution of damage. This clarifies the less damage apparent in the distribution of the phase-
field parameter q in HPC phase, see Figure A6d,h. The influence of perturbations in the
material parameters of HPC phase is evident in the macroscopic stress-strain curves plotted
in Figure 21b, as well as in the comparisons involving the distribution of total stress σ22 , see
Figure A6b,f and the equivalent plastic strain αHPC in HPC phase, see Figure A6c,g.
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Figure A6. Phenomenological material model applied to (a) macroscopic BVP III, (b–d) HPC parame-
ters without perturbation at σ̄22 = 0.00556 GPa and (e–h) with 20% perturbation at σ̄22 = 0.00535 GPa:
distribution of (e) perturbation parameter λpert, (b,f) total stress σ22 in GPa, (c,g) equivalent plastic
strain αHPC in HPC phase and (d,h) phase-field parameter q in HPC phase at macroscopic strain
ε̄22 = 0.4h.
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Macroscopic BVP IV—uniaxial tensile test in transverse direction:

The macroscopic responses obtained from the simulations of macroscopic BVP IV
using cuboids of reinforced HPC, are plotted in terms of the distribution of total stress σ11 in
x-direction, the equivalent plastic strain αHPC in HPC phase and the phase-field parameter q
in HPC phase at macroscopic strain ε̄11 = 0.15h. The results for simulations with cuboids
of reinforced HPC without perturbations at macroscopic stress σ̄11 = 0.00558 GPa in
Figure A7b–d, and with a 20% perturbation of HPC parameters at macroscopic stress
σ̄22 = 0.00546 GPa in Figure A7f–h. A similar effect of random parameter perturbation
is observed in the macroscopic response of cuboids for macroscopic BVP IV, consistent
with previous cases. This effect is reflected in the scattered distribution of total stress σ11 ,
see Figure A7b,f, as well as a mirrored pattern in the distribution of equivalent plastic
strain αHPC and the phase-field parameter q in the HPC phase, compare Figure A7c with
Figure A7g, and Figure A7d with Figure A7h, respectively.
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Figure A7. Phenomenological material model applied to (a) macroscopic BVP IV, (b–d) HPC parame-
ters without perturbation at σ̄11 = 0.00558 GPa and (e–h) with 20% perturbation at σ̄11 = 0.00546 GPa:
distribution of (e) perturbation parameter λpert, (b, f) total stress σ11 in GPa, (c,g) equivalent plastic
strain αHPC in HPC phase and (d,h) phase-field parameter q in HPC phase at macroscopic strain
ε̄11 = 0.15h.
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Macroscopic BVP V—shear test:

The influence of parameter perturbation is clearly noticeable during the comparison of
the macroscopic responses of macroscopic BVP V using cuboid of reinforced HPC without
perturbation at macroscopic stress σ̄12 = 0.00283 GPa, see Figure A8b–d and with 20%
perturbation of HPC parameters at macroscopic stress σ̄12 = 0.00272 GPa, see Figure A8f–h.
The comparison includes distribution of total stress σ12 , the equivalent plastic strain αHPC

in HPC phase and the phase-field parameter q in HPC phase obtained from the simulation
of macroscopic BVP V using cuboids of reinforced HPC with and without perturbation
of HPC parameters. In this context, a notably random and scattered distribution of total
stress σ12 , see Figure A8b,f and the equivalent plastic strain αHPC within the HPC phase,
Figure A8c,g is evident. It is noticeable that the evolution in the phase-field parameter q in
HPC phase occurs in the different areas of cuboid, see Figure A8d,h.
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Figure A8. Phenomenological material model applied to (a) macroscopic BVP V, (b–d) HPC parame-
ters without perturbation at σ̄12 = 0.00283 GPa and (e–h) with 20% perturbation at σ̄12 = 0.00272 GPa:
distribution of (e) perturbation parameter λpert, (b,f) total stress σ12 in GPa, (c,g) equivalent plastic
strain αHPC in HPC phase and (d,h) phase-field parameter q in HPC phase at macroscopic strain
ε̄12 = 0.25h.
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