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Abstract: Cutlery and flatware designs are an everchanging phenomenon of the manufacturing in-
dustry. Worldwide hospitality businesses demand perpetual evolution in terms of aesthetics, designs,
patterns, colours, and materials due to customers’ demands, modernisation, and fierce competition.
To thrive in this competitive market, modern fabrication techniques must be flexible, adoptive, fast,
and cost effective. For decades, static designs and trademark patterns were achieved through moulds,
limiting production to a single cutlery type per mould. However, with the advent of laser engrav-
ing and design systems, the whole business of cutlery production has been revolutionised. This
study explores the possibility of creating diverse designs for stainless steel 304 flatware sets without
changing the entire production process. The research analyses three key laser process parameters,
power, scanning speed, and number of passes, and their impacts on the resulting geometry, depth of
cut, surface roughness, and material removed. These parameters are comprehensively studied and
analysed for steel and zirconia ceramic. The study details the effects of power, scanning speed, num-
ber of passages, and fluence on engraved geometry. Fluence (power*number of passages/scanning
speed) positively influences outputs and presents a positive trend. Medium power settings and
higher scanning speeds with the maximum number of passages produce high-quality, low-roughness
optimised cavities with the ideal geometric accuracy for both materials.

Keywords: steel; zirconia; green compact; cutlery; Laser Surface Texturing (LST); engraving; pattern;
roughness; material removal; fluence

1. Introduction

Cutlery has proved to be a simple but extremely useful tool for generations around
the world to serve, cook, or consume edibles [1,2]. In terms of materials, stainless steel
has become a preferred metal for most cutlery, as it is easy to maintain, non-reactive,
and sturdy [2,3]. Stainless steel-304 (SS-304) is widely used in fields like food processing,
automobile parts, aerospace, and nuclear sectors due to its excellent mechanical properties
and distinguished corrosion resistance behaviour [4–8]. In the cutlery industry, aesthetic
is a major factor considered for the selection and purchase of items, thus, we see a huge
variety of cutlery available in different shapes, sizes, designs, colours and metals [2,9].

Globally, researchers and industrialists are on a constant quest to improve the lifespan
of metallic objects, tools, and housewares using surface engineering, as well as promoting
better aesthetics, patterns, and colours of these components [10–12]. Various techniques
have been used to modify the surface of steel components, namely: laser ablation, Electro-
Chemical Machining (ECM), Electrode Discharge Machining (EDM), sandblasting, chemical
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etching, surface coatings, and plasma [13,14]. Lasers (Carbon Dioxide (CO2), Yttrium
Aluminium Garnet (YAG), Fibre) in the form of machining, texturing, and treatment came
as a breakthrough to alter these surfaces in additive and subtractive ways. Laser is one
way to obtain surface characteristics like wettability, roughness, and engraved geometries
without altering the bulk properties of the substance [15]. Lasers are also independent of
the hardness of the working materials and can easily process from metal to ceramics to
polymers without much difficulty. The application of lasers can significantly reduce the
burden on the production lines that need to be changed entirely due to the addition of or
reduction in a few steps along the process. However, the use of laser is still amateur when
it comes to houseware industries, specifically the designing/patterning of aesthetically
appealing silverwares. Decades-old moulding processes to produce permanent designs in
bulk can be improved drastically by introducing lasers into these industries.

Zirconia (ZrO2), on the other hand, has always been the centre of attention in medical
fraternity because of its antibacterial properties and inert nature [16–19]. Nowadays, the use
of zirconia as a coating element or base material in prosthesis and dental implants is quite
common [20–25]. Green zirconia compacts are highly machinable through lasers, less time-
consuming, and offer extraordinary detailing and ease. These favourable characteristics
and properties can be exploited not only in the biomedical and implant industries, but
possibly also in the hospitality market, especially for flatware. Sintered zirconia is extremely
hard, has rigorous wear and impact resistance, and is antimicrobial. The designs, patterns,
shapes, looks, colours, and materials of cutlery have changed extraordinarily in recent
times by virtue of customer demand and aesthetic taste. Different cookery shows, celebrity
chefs, food vlogs, and media circles have created a market for sophisticated housewares
and a parallel economy has risen to existence in the name of food world.

At the different usages of zirconia incorporated with SS-304 using laser can offer a
transformation in the aesthetics and designs of flatware. For this reason, it is vital to study
the process and interactions of laser with both the substances in detail. Performing precision
milling to machine sintered zirconia has seen a trend recently, however, high-speed milling
produces very high temperatures and milling tools exhaust quickly [26]. Other precision-
impaired machining processes such as griding, turning, and spark plasma are also used,
depending on the application [27]. EDM is efficient, precise, and heat dissipative, but
unfavourable for zirconia due to its lack of electric conductivity. Spark plasma is used to
impart conductivity to zirconia and then worked up by EDM. These merging processes
are generally expensive and complicated in nature [28]. Another mode for machining
zirconia is not to remove material by machining, but instead by 3D printing using Digital
Light Processing (DLP) [29]. Based on the same DLP-Stereolithographic and thermoplastic
3D printing, zirconia ceramic parts with intricate shapes can be manufactured, however,
optimisation complexity from slurry preparation to sintering needs to be perfected [30,31].

Laser engraving and cutting processes present a resolve to machine zirconia and
SS-304 economically, intricately, with a very high production rate, and accurately and
precisely. A deeper understanding of laser parameters and their effects must be described
to operate with SS-304 and ZrO2. Zirconia can be machined in a green state followed by
sintering in a furnace to produce the desired shapes and sizes [32]. Pulsed lasers are a good
choice for highly temperature-reacting and oxidising substances, because materials like
zirconia or alumina start sintering with a continuous laser beam or oxidise and spoil the
surface finish of steels [33]. Utilising a fibre laser to engrave and texture is common due to
their high fluence, ease in metal absorbance wavelength, and cutting capacity. Studying
the relationships among power, scanning speed, number of passes, frequency, and other
relevant laser parameters is vital to attain the desired dimension and accuracy [34,35].

This study aims to use single Nd:YV04 Fibre Laser engraving equipment to engrave
SS-304 cutlery and remove zirconia blocks from a green compact, followed by sintering.
These different coloured zirconia blocks are to be cut in larger dimensions in order to
attain the required size after sintering. The objective of this study is to evaluate the
influence of laser parameters (power, scanning speed, and number of passes or loops) on
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the dimensional accuracy, i.e., geometry, depth obtained, volume removed or Material
Removal (MR), and surface roughness of SS-304 and zirconia. The grooves created on
SS-304 will accommodate zirconia blocks in different designs, colours, shapes, patterns,
and locations. Though the zirconia blocks were obtained by green compact cutting, we
analysed the cavity of the zirconia for its roughness, dimensions, and geometry. This
was performed for ease of analysis, because this groove will have approximately similar
surface characteristics, depth, geometry, and area after removal of the blocks, and it is very
hard to study 2 × 2 mm miniature blocks [36–39]. These design patterns were inspired by
Portuguese sidewalk designs (Calçada Portuguesa: The art of Portuguese pavement). A full
factorial Design of Experiments (DOE) was used to sort out the number of experiments
and different combinations of the parameters, which were further analysed based on the
output variables. The experiments were conducted simultaneously for SS-304 and zirconia
all throughout the study.

This work is a state-of-the-art experimental study to replicate design patterns on
silverware by introducing zirconia blocks. The uniqueness of the study lies in engrav-
ing the stainless-steel cutlery with intricate and aesthetic patterns inspired by the special
characteristics of a region, place, or a country. Embroidered patterns and designs have
always inspired designers, jewellers, architects, engineers, and scientists to adopt and
adapt symbolic representations of specific times and places. The use of laser engraving and
texturing tools for producing such effects is a novel approach due to performing subtractive
and additive manufacturing at the same time for two different natured substances. Fur-
thermore, parametric optimisation for a metal and a ceramic together by comparing their
interactions with laser irradiations is an added advantage of this study. The study might
prove to be incredibly interesting for industries to engrave and patternlike collection coins,
ceramic tiles, and metal surface designs with the required roughness, quality, dimensions,
and geometries, without hampering the surface by oxidation or bulk melting. We hope
this study helps and complements the manufacturing community with optimisation and
patterning and provides a different perspective on aesthetics in day-to-day life.

2. Materials and Methods

In this work, alumina-toughened zirconia graded as ATZ 20/80 2.5YSZ BA from
NANOE Ceramics, Ballainvilliers, France was used. The characteristics of the zirconia
are mentioned in Table 1. Green zirconia palettes were prepared by powder metallurgy
(PM) cold pressing. Difficulties lying in processing the sintered zirconia were an immense
challenge and the processing of the green zirconia was conducted by laser. Nevertheless,
the zirconia was sintered during laser treatment. Zirconia powder was placed inside
a hardened steel cylindrical die-punch system with a 40 mm diameter and compressed
uniaxially at a 200 MPa pressure for 60 s to obtain a 5 mm thickness. After the compaction of
the palettes, the pressure was gradually released and used for further laser-based processes.
The composition of the SS-304 (cutlery material) cut into 40 × 40 × 4 mm is depicted in
Table 2.

Table 1. Specifications of zirconia powder used for palettes.

ZrO2 (%wt) Al2O3 (%wt) Y2O3 (%wt) HfO2 (%wt) MgO NaO2
SiO2, K2O,
CaO, Fe2O3

73.1 20 4 <2 200 <40 <30

Average
Crystallite Size

Minimum Purity
(Zr + Y + Hf + Al)

Alumina
Content

Specific
Surface Area Granulate Size Intercept Zr/Al

Grain Size

Al:150/Zr:50
nm 99.9% 20% 15 ± 2 m2/gm 35 µm 0.4/0.6 µm
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Table 2. Specification of SS-304 used for laser engraving.

Element C Mn Si Cr Ni N

Weight (%) ≤0.08 ≤2.00 0.75 18.00–
20.00 8.00–10.50 0.10

Laser Surface Texturing (LST) was executed using an Nd: YV04 (Model: XM-30D Fiber
Laser Marking Machine, Wuhan, China) with a maximum power of 30 watts, spot size
of 10 µm, pulse width of 10 µs, and 1064 nm wavelength. The textures were produced
in the form of square cavities of 2 × 2 mm. These grooves were produced by equally
spaced 10 µm cross-hatched lines inclined at 45◦ on EzCAD laser software (JCZ, Beijing,
China), as shown in the Figure 1. A schematic depicts the laser setup in Figure 2, which
has a focal distance of 160 mm. To remove the disintegrated material from the textured
surface and avoid the oxidation or reaction of the substrate, an argon inert atmosphere was
maintained during the whole LST. As the minimum spot diameter/spot width of the laser
was 10 µm, the cut line width was a minimum 10 µm. The parameters considered were
power, scanning speed, and number of passes, keeping the frequency at 20 kHz. As the
zirconia was in the green state, it was advocated not to use laser wobbles, as wobbles would
eventually increase the area of the removed materials with greater-intensity sintering of
the periphery and a Heat-Affected Zone (HAZ) produced. For zirconia, laser power levels
of 6, 9, and 12 watts were used alongside scanning speeds of 500, 1000, and 1500 mm/s
with varying numbers of passes of 50, 100, and 150. However, for the harder SS-304, higher
power levels of 15, 22.5, and 30 watts and greater numbers of loops of 400, 800, 1200 were
used by keeping the scanning speeds same. The number of runs for the experiments was
designed by DOE’s full factorial design for 3 factors at 3 levels (33 = 27). Tables 3 and 4
show 27 combinations of experiments or run orders for the zirconia and steel, respectively.
After texturing, to observe the cavities, the cross-sections of the specimens were polished
with SiC abrasive papers from 1200 to 4000 mesh and ultrasonically cleaned (only SS-304)
in an Iso-Propyl Alcohol (IPA) bath for 5 min before performing the surface analysis. Laser
fluence was also calculated to figure out the combined effect of input variables based on
Equation (1).

Laser Energy Fluence (F) =
Power (watts)

Scanning Speed (mm/s)× Interspacing (mm)
× Loops (1)

where Fluence (F, J/mm2), Power (P, watts), Scanning Speed (S, mm/s), and Interspacing
(I, mm) were between the adjacent lines. To perform this study, the following equipment
were used: (i) cold press, (ii) fibre laser engraving machine, (iii) ultrasonic vibrator, and
(iv) rotary polishing machine.
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Figure 2. Schematic representation of laser engraving on SS-304. Laser engraving will be performed
on zirconia palettes removing stainless steel and replacing it with zirconia.

Table 3. Full factorial DOE of zirconia for 3 variables at 3 levels for random runs.

Standard
Order Run Order Power

(watts)
Speed
(mm/s) Loops

14 1 9 1000 100
15 2 9 1000 150
13 3 9 1000 50
1 4 6 500 50

18 5 9 1500 150
23 6 12 1000 100
3 7 6 500 150
6 8 5 1000 150

17 9 9 1500 100
7 10 6 1500 50

25 11 12 1500 50
2 12 6 500 100
4 13 6 1000 50

24 14 12 1000 150
27 15 12 1500 150
9 16 6 1500 150
9 16 6 1500 150

22 17 12 1000 50
19 18 12 500 50
8 19 6 1500 100
5 20 6 1000 100

10 22 9 500 50
20 23 12 500 100
21 24 12 500 150
16 25 9 1500 50
11 26 9 500 100
12 27 9 500 150
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Table 4. Full factorial DOE of SS-304 for 3 variables at 3 levels for random runs.

Standard
Order Run Order Power

(watts)
Speed
(mm/s) Loops

17 1 22.5 1500 800
6 2 15 1000 1200
8 3 15 1500 800
1 4 15 500 400
24 5 30 1000 1200
10 6 22.5 500 400
20 7 30 500 800
14 8 22.5 1000 800
16 9 22.5 1500 400
11 10 22.5 500 800
7 11 15 1500 400
26 12 30 1500 800
3 13 15 500 1200
15 14 22.5 1000 1200
19 15 30 500 400
4 16 15 1000 400
12 17 22.5 500 1200
18 18 22.5 1500 1200
22 19 30 1000 400
13 20 22.5 1000 400
5 21 15 1000 800
27 22 30 1500 1200
9 23 15 1500 1200
21 24 30 500 1200
2 25 15 500 800
23 26 30 1000 800
25 27 30 1500 400

3. Results and Discussions

A highly productive process is one that results in more material removal with a good
cut quality in less time. Parameters like surface roughness and geometrical error are signifi-
cant, because higher roughness values of the removed zirconia blocks will help to create
interlocking with the SS-304 grooves’ roughness and adhesive used. Nonetheless, a very
high roughness of the SS-304 groove wall or zirconia block surface can also pose problems
during block accommodation. Simultaneously, geometry and errors in geometry (differ-
ence between achieved and ideally drawn dimensions) are crucial because of dimensional
accuracy. With optimised laser parameters, we can achieve a balance between the quality
and MR of the groove/block.

All 27 grooves were produced on the single palette by laser engraving, keeping a
sufficient distance between them so as not to overlap the HAZs and geometries. The
input parameters were power in watts, scanning speed in mm/s, and number of passes,
maintaining the wobble diameter, wobble amplitude, and frequency of the laser constant.
The output parameters were the average surface roughness in microns, average depth in
mm, MR to obtain productivity in mm3, and periphery as the geometry of the grooves in
mm. Three-dimensional optical profilometry was used for the parametric analyses and
to obtain values for the output. All values were taken thrice and averaged to enhance
the precision of the calculations. The HAZ became irrelevant to study for this application
because of the controlled inert atmosphere and the use of zirconia ceramic [33]. Regression
curve fittings for obtaining the best fit regression lines were performed on OriginProLab
(OriginLab, Northampton, MA, USA) and Minitab for DOEs.

3.1. Findings for Zirconia

Table 5 summarises the results of the laser operation for the zirconia based on the
energy fluence of the laser in terms of the average roughness (Ra), average depth of the
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cut (D), MR, geometry (G), and geometrical error involved while obtaining the periphery
or geometry. It was noticeable that most of the obtained dimensions were smaller than
intended. The following table is a hand-on datasheet as a starting point. Figure 3a represents
the effects of power (P), scanning speed (S), and number of passes/loops (L) on the Ra.
Greater laser powers made the surface rough and followed a well-established dispersion.
On the other hand, speed had a stronger inverse correlation with Ra, which emphasised the
fact that mild power with higher scanning speeds produced smoother surfaces. Roughness
remained almost unaltered, with the number of passes having the least effect on the
Ra values. Fluence (F) is the combination of P, S, L, and the interspacing between two
consecutive hatched lines (10 µm). F had a positive correlation with Ra and loops, showing
that the effect of power on Ra was higher compared to speed, regardless of individual
trends [38–41]. Similarly, Figure 3b–d show the effects of the individual and combined
effects (in terms of laser fluence) on D, G, and MR, respectively. The average depth and
MR varied positively with P and L, except S. Nevertheless, the passes hugely decided
the MR from the substrate. It was observed that ample focus of the laser engraved the
substrate, however, as engraving progressed, the laser lost its focus and set power, F
became insufficient, and the desired cut could only be achieved by increasing the number
of passes [39,40]. Increments in S resulted in a better quality (less roughness) and was
inversely proportional to Ra and D, weakly proportional to G, and constant with MR.
Higher S values meant less time of laser interaction with the substrate surface and, thus,
less D. Furthermore, MR was mostly driven by L after the initial engraving.
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Table 5. Results obtained for zirconia from the laser operation in terms of average surface roughness,
average depth, volume removed, geometry, and error in geometry.

Experiment
Number/Run

Order

Fluence
(J/mm2)

Average Ra
Value (µm)

Average Depth
(mm)

Volume
Removed

(mm3)

Periphery/Geometry
(mm)

Designed
Periphery

(mm)

Error in
Geometry

(mm)

1 90 112.38 0.8613 3.244735691 7.767 8 −0.233

2 135 89.151 1.0893 4.673096753 8.289 8 0.289

3 45 112.95 0.6353 2.641554625 8.165 8 0.165

4 60 155.69 0.6753 2.641637919 7.909 8 −0.091

5 90 89.41 1.5253 5.565035285 7.642 8 −0.358

6 120 171.44 0.914 3.232497186 7.526 8 −0.474

7 180 125.09 0.7153 2.716376041 7.796 8 −0.204

8 90 105.59 0.977 3.892468631 7.985 8 −0.015

9 60 74.337 1.1503 4.536273931 7.943 8 −0.057

10 20 56.702 1.1757 4.62732642 7.936 8 −0.064

11 40 97.351 0.743 2.859873127 7.852 8 −0.148

12 120 131.1 0.6173 2.378056587 7.849 8 −0.151

13 30 112.36 0.609 2.06845023 7.374 8 −0.626
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Table 5. Cont.

Experiment
Number/Run

Order

Fluence
(J/mm2)

Average Ra
Value (µm)

Average Depth
(mm)

Volume
Removed

(mm3)

Periphery/Geometry
(mm)

Designed
Periphery

(mm)

Error in
Geometry

(mm)

14 180 125.9 1.063 3.76887341 7.534 8 −0.466

15 120 138.74 1.209 4.049890065 7.324 8 −0.676

16 60 67.472 1.486 5.513271012 7.705 8 −0.295

17 60 162.97 0.6487 2.810343468 8.334 8 0.334

18 120 224.63 1.2913 5.091225005 7.944 8 −0.056

19 40 63.962 1.0373 3.99795528 7.853 8 −0.147

20 60 83.292 0.888 3.463372716 7.899 8 −0.101

21 80 124.7 1 3.713076 7.708 8 −0.292

22 90 160.43 1.1907 4.473421585 7.754 8 −0.246

23 240 38.214 0.1543 0.573599912 7.712 8 −0.288

24 360 141.88 1.3673 5.905205017 8.313 8 0.313

25 30 925.88 0.5413 2.125011037 7.927 8 −0.073

26 180 306 1.152 4.68908928 8.07 8 0.07

27 270 214.56 1.112 4.670163144 8.198 8 0.198

This study is important for observing the range of S along with P and L to attain the
maximum production rate by keeping that engraving time at a minimum. It is evident
that raising the number of passes for optimized power–speed permutation will achieve the
maximum productivity by keeping the geometry within the given limits.

3.1.1. Quantitative Comparison of the Influence of the Input Variables on Output Variables

Table 6 separately records nine experiments for analysing the P, S, and L individually
by keeping the other two constant at a time. It was evident that, with an increase in P
(6, 9, 12 watts), this resulted in an increase in roughness (67.472, 89, 138.74 µm). This
happened because more energy impeded the surface at higher powers and removed bulk
material, and large bulk removal from the surface caused high irregularities in the grooves.
This bulk removal also caused more geometry differences, and in addition, peripheral
error (G) also rose with power inputs. A very high roughness corresponding to the
maximum power restricted us to finding out the MR due to limitations of the focus of the
3D optical profilometry.

Table 6. Comparison of the influence of the input parameters on output variables.

Basis for
Comparison

Experiment
Number

Ra
(µm)

D
(mm)

V
(mm3)

G-Error
Values

Power (P)
16
5

15

67.472
89.41

138.74

1.486
1.5253
1.209

5.513271012
5.565035285
4.049890065

−0.295
−0.358
−0.676

Scanning
Speed (S)

12
20
19

131.1
83.292
63.962

0.6173
0.888

1.0373

2.378056587
3.463372716
3.99795528

−0.151
−0.101
−0.147

Loops (L)
25
9
5

925.8*
74.337
89.41

0.5413
1.1503
1.5253

2.125011037
4.536273931
5.565035285

−0.073
−0.057
−0.358

Higher scanning speeds (500, 1000, and 1500 mm/s) are always favourable for a better
surface quality (131.1, 83.292, and 63.962 µm), because the laser stays less at one location
and melting–remelting occurs quickly. There was a substantial spike in the D and MR
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achieved with mounting speeds. A minute drop and rise were noted errors in geometry
during the engraving [40].

As discussed earlier, increments in L had a substantially positive effect on D and MR.
The geometry also changed a lot with the number of passes, because more loops passed
from the periphery and removed a higher amount. It was also observed that MR increased
quickly to some extent with L, however, this increment dropped with a further rise in
the number of L. For experiment 25, the value of roughness was an outlier (925.8*, i.e., a
through cut or a pinpoint hole where roughness shows an extremely high value) and could
be a specific location on the surface with very deep penetration. A greater number of passes
also means more energy, which results in a higher Ra or impaired surface quality due to
frequent melting–remelting [41].

3.1.2. Visual Inspection

A visual analysis through the Scanning Electron Microscopy (SEM, JSM-6010 LV, JEOL,
Mitaka, Tokyo, Japan) of two experiments (Run Order 10 and 24) is shown in Figure 4.
These cases were chosen because of the minimum and maximum laser energy fluence.
Figure 4a,b show cavities, and magnified views of the bottom surfaces’ grooves are shown
in the respective Figure 4a1,b1. The images clearly show that there was sintering for both
cases. For experiment number 10, P and L were minimum and S was maximum, resulting
in the lowest F, which gave a better surface finish, was smoother, and had cleaner cuts,
however, it produced smaller geometry than intended, lesser depth, and less MR compared
to experiment number 24 with P and L at the maximum and S at the minimum, resulting in
the maximum F.

Materials 2024, 17, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. Scanning Electron Microscopy (SEM) images of green zirconia engraved by Nd: YV04 La-
ser (a) Experiment 10: P = 6 watts, S = 1500 mm/s, L = 50 and Fluence (F) = 20 J/mm2, (a1) magnified 
version of (a), (b) Experiment 24: P = 12 watts, S = 500 mm/s, L = 150 and Fluence (F) = 360 J/mm2, 
(b1) magnified version of (b). 

3.2. Finding for Stainless Steel 
Table 7 summarises the results for the SS-304 for input variables P, S, and L with 

respect to the outputs Ra, D, MR, G, and error in geometry from the intended dimension. 
It can be observed from the data that all the dimensions achieved were less (although very 
close to the intended values) than the intended peripheral dimension of 8 mm, unlike the 
zirconia, where some grooves were larger than the intended size. That signifies the fact 
that SS-304 must be cut to larger dimensions than those intended with given errors, and 
zirconia blocks will sit comfortably inside the cavity. Figure 5a–d exhibit the trends of the 
output values obtained by applying a set of input parameters. Figure 5a represents the 
increments in the average roughness with power, which followed a positive correlation, 
but with roughness decreasing with scanning speeds. On the other hand, a slight inverse 
trend was seen with L, like the zirconia engraving process. Nevertheless, the decrements 
in Ra with L were more prevalent in the steel. The reason for this could be the higher 
sensitivity of the SS-304 with temperature, unlike zirconia, which has a far greater sinter-
ing temperature. Hence, increasing L remelted the groove material and could smoothen 
it. 

Any value less than 5 µmand above 20 µmwas not considered to maintain the con-
sistency of the results. Although the maximum roughness quotient was almost same for 
the 22.5 watts and 30 watts power set ups, the uniformity observed was persistent in the 
30 watts setting compared to that of 22.5 watts. This can be observed by the readings from 
experiments number 11 (at 22.5 watts) and 27 (at 30 watts) being 17.98 µm, 17.55 µm, 11.5 
µm, 14.99 µm, 13.49 µm, and 13.50 µm, respectively. Highly non-uniform values of Ra 
indicated the presence of ditches at a small span of cut, giving a spike in the roughness 
[43–46]. 

Fluence (F) represents the energy concentration and interaction of the laser beam 
with the substrate. The more energy absorbed by the metal, the more irregularities on the 
surface. Sometimes, due to a material’s anisotropy, this energy interaction varies from lo-
cation to location on the same material, exhibiting different levels of roughness profile. 
Roughness had the similar trend for SS-304 as that of zirconia with fluence. The roughness 
profiles can be deep pitting or pin hole types [47]. 

An observation of Figure 5b shows that, with a rise in power from 15 to 22.5 watts, D 
increased but started decreasing by further increasing the P. That implies that an increase 
in power will not necessarily increase the depth of the cut. Moreover, at a low P like 15 
watts, the D values obtained were coherent and dispersed in a narrow vertical range, 

Figure 4. Scanning Electron Microscopy (SEM) images of green zirconia engraved by Nd: YV04 Laser
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version of (a), (b) Experiment 24: P = 12 watts, S = 500 mm/s, L = 150 and Fluence (F) = 360 J/mm2,
(b1) magnified version of (b).

These values of fluence with lower power settings and a smaller number of passes
were used produce better-quality cuts qualitatively and quantitatively, as mentioned earlier.
However, the same inputs resulted in lower dimensions than desired and low material
removal. The mechanism behind this phenomenon is that medium or low power settings
caused less melting at specific location, a lower number of passes meant the number
of irradiations travelling from one location were less, and higher speeds offered a small
timespan at one location. Contrary to that, a maximum power (that melted a large quantity),
larger number of passes (the times of irradiations passing through locations were more),
and lesser speeds (slowness of the laser beam during engraving) produced rough and
oversized cavities.
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It was evident that any laser parametric setting would sinter the green zirconia and
periphery of the cut. The only difference here was that the sintered lobes and racks
generated were far bigger for the higher fluence settings, because with minimum speeds,
the molten materials started cooling down and created large granules. On the other hand,
with higher speeds, the material kept on melting frequently and did not solidify quickly in
a smaller and finer grain size [42].

To remove the blocks of green zirconia from the palette with a better roughness, a
surface study of Figure 4 is very crucial. It not only gives a qualitative picture of the MR,
but also dimensional accuracy. To obtain the dimensional accuracy (especially in implants
and prosthetics) of a removed piece, a balance must be struck between the parameters
and productivity.

3.2. Finding for Stainless Steel

Table 7 summarises the results for the SS-304 for input variables P, S, and L with
respect to the outputs Ra, D, MR, G, and error in geometry from the intended dimension. It
can be observed from the data that all the dimensions achieved were less (although very
close to the intended values) than the intended peripheral dimension of 8 mm, unlike the
zirconia, where some grooves were larger than the intended size. That signifies the fact
that SS-304 must be cut to larger dimensions than those intended with given errors, and
zirconia blocks will sit comfortably inside the cavity. Figure 5a–d exhibit the trends of the
output values obtained by applying a set of input parameters. Figure 5a represents the
increments in the average roughness with power, which followed a positive correlation,
but with roughness decreasing with scanning speeds. On the other hand, a slight inverse
trend was seen with L, like the zirconia engraving process. Nevertheless, the decrements
in Ra with L were more prevalent in the steel. The reason for this could be the higher
sensitivity of the SS-304 with temperature, unlike zirconia, which has a far greater sintering
temperature. Hence, increasing L remelted the groove material and could smoothen it.

Any value less than 5 µmand above 20 µmwas not considered to maintain the con-
sistency of the results. Although the maximum roughness quotient was almost same for
the 22.5 watts and 30 watts power set ups, the uniformity observed was persistent in the
30 watts setting compared to that of 22.5 watts. This can be observed by the readings
from experiments number 11 (at 22.5 watts) and 27 (at 30 watts) being 17.98 µm, 17.55
µm, 11.5 µm, 14.99 µm, 13.49 µm, and 13.50 µm, respectively. Highly non-uniform val-
ues of Ra indicated the presence of ditches at a small span of cut, giving a spike in the
roughness [43–46].

Fluence (F) represents the energy concentration and interaction of the laser beam with
the substrate. The more energy absorbed by the metal, the more irregularities on the surface.
Sometimes, due to a material’s anisotropy, this energy interaction varies from location to
location on the same material, exhibiting different levels of roughness profile. Roughness
had the similar trend for SS-304 as that of zirconia with fluence. The roughness profiles can
be deep pitting or pin hole types [47].

An observation of Figure 5b shows that, with a rise in power from 15 to 22.5 watts, D
increased but started decreasing by further increasing the P. That implies that an increase in
power will not necessarily increase the depth of the cut. Moreover, at a low P like 15 watts,
the D values obtained were coherent and dispersed in a narrow vertical range, unlike
with the power settings of 22.5 or 30 watts. Considering S against D showed an overall
positive trend. There is a very crucial observation presenting a rise in D at a higher S,
i.e., 1500 mm/s though D suffered when the S increased from 500 to 1000 mm/s for some
combinations. Like zirconia, SS-304 also showed a strong positive correlation obtained for
D and L. D followed downward trend for a rise in F. This phenomenon can be attributed to
the energy dissipation effect of metal, unlike zirconia. SS-304 will dissipate the heat faster
and higher S values will not decrease the energy concentration, resulting in an overall loss
in D values. The dominance of P and L was visible and consistent (similar to zirconia)
from the run order 24, i.e., a cut penetrating the plate due to the highest fluence energy of
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7200 J/mm2 for the minimum speed [46]. Based on the analyses of zirconia, the variations
in F can be drawn for SS-304 as well.
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Table 7. Results obtained from the laser operation in terms of average surface roughness, average
depth, volume removed, geometry, and error in geometry.

Experiment
Num-

ber/Run
Order

Fluence
(J/mm2)

Ra Value
(µm)

Average
Depth
(mm)

Volume
Removed

(mm3)

Periphery
(mm)

Designed
Periphery

(mm)

Error in
Geometry

(mm)

1 1200 5.42633 1.39745 4.25614 6.63 8 −1.37

2 1800 6.5 1.40666 4.87007 7.72 8 −0.28

3 800 6.02525 0.70233 2.62383 7.732 8 −0.268

4 1200 7.14111 1.15566 4.39583 7.803 8 −0.197

5 3600 14.07 0.952 3.69948 7.887 8 −0.113

6 1800 10.518 1.40566 5.47762 7.897 8 −0.103

7 4800 8.91777 0.39733 1.56083 7.929 8 −0.071

8 1800 7.64388 1.291 4.93584 7.821 8 −0.179

9 600 12.5577 0.149 0.55596 7.728 8 −0.272

10 3600 14.9088 1.082 4.20002 7.881 8 −0.119

11 400 5.565 1.5 5.52423 7.677 8 −0.323

12 1600 9.49155 1.713 6.43871 7.756 8 −0.244

13 3600 5.43266 1.57933 5.86372 7.708 8 −0.292

14 2700 8.99677 1.459 5.56027 7.809 8 −0.191

15 2400 14.2233 0.67333 2.72222 7.990 8 −0.001

16 600 13.1355 0.75133 2.84050 7.779 8 −0.221

17 5400 148.56 * 0.80833 3.15538 7.905 8 −0.095

18 1800 9.75 1.85266 7.18772 7.88 8 −0.12

19 1200 10.1795 0.89666 3.43102 7.825 8 −0.175

20 900 11.1255 0.963 3.70286 7.844 8 −0.156

21 1200 9.41744 1.25966 5.68803 7.727 8 −0.273

22 2400 3.1086 * 1.787 6.78121 7.793 8 −0.207

23 1200 6.62722 1.43866 5.35040 7.714 8 −0.286

24 7200 Through * Through * Through * 7.687 8 −0.313

25 2400 4.2696 * 1.13133 4.27768 7.778 8 −0.222

26 2400 9.07511 2.02733 7.77585 7.834 8 −0.166

27 800 14.59 0.869 3.37069 7.878 8 −0.122

* The outliers i.e., the values that are extremely high or extremely low.

The geometry of SS-304 grooves is crucial, because the ceramic blocks must fit inside
them tightly, creating a strong adhesion bond with the adhesive glue interface. Periphery
or geometrical dimension were also used to determine the volume of the removed material.
Greater P settings positively influenced the G by clearing out the periphery, as shown in
Figure 5c, however, S showed a strong negative trend. This occurred due to the lower
concentration of the laser beam on a location at higher speeds. The effect of P dropped
while moving inside the cut, because of the absorption and reflection of the laser beam and
interaction with the oxidized metal [48]. L hardly influenced the G, as the laser moving
inside the cavity converged and depended mostly on the power of the laser due to beam
focus after the initial cuts. This phenomenon can be observed by analysing L changing
from 400 to 800 to 1200, slightly increasing the circumference but then almost remaining
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the same for all loop values. Besides the weak effect of L, F showed positive correlation
due to the heavyweight P in the equation.

As discussed earlier for zirconia, P alone cannot dictate the MR values. It is visible
from Figure 5d that P in relation to MR had a horizontal to negative tendency. With the
scanning speeds and L, MR increased, but F showed a horizontal trend, i.e., the increases
in P and L were balanced by a rise in S. Table 7 presents that large F values removed bulk
material, and hence, overall parametric combination and optimisation were necessary,
rather than independently changing the variables [48–50].

3.2.1. Qualitative Inspection

The quality and morphology of the cut can be seen in Figure 6. Figure 6 shows a
depiction of a perfectly removed engraved cavity and its corresponding bottom surface
roughness. The engraved quality was excellent, as achieved by a cross-hatched filled design,
and the edges obtained were perfectly square with very limited curvature. Thus, the study
will be found helpful in qualitative and quantitative ways, and other materials can also
be explored with other metals and ceramics based on this study for aesthetic and design
purposes [35].
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the bottom surface for Experiment 4 at (right).

3.2.2. Visual Inspection

From Figures 7 and 8, it can be visualized that this laser engraving offered very efficient
material removal without leaving much debris or HAZ because of the compressed inert
argon environment. For a visual analysis, the chosen experiments were 11 (F = 400 J/mm2)
and number 17 (Fluence = 5400 J/mm2), with intact bottom surfaces. It is not desired in the
case of cutlery engraving to oxidise the surface, as aesthetics are the prime requirement,
hence, an optimised combination of P, S, and L can only prove to be proper.
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(a) cut groove, (b) cut profile, and (c) roughness of the bottom.
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Figure 8. Scanning Electron Microscopy (SEM) images of laser-engraved SS-304 (Experiment-17);
(a) cut groove, (b) cut profile, and (c) roughness of the bottom.

Figures 7a–c and 8a–c represent the SEM images of the engraved cut for the minimum
F values. With a high F, the groove became narrower with depth due to the wall reflection
and defocusing of the laser beam (Figure 8a). On the other hand, with less F, the cuts were
not very deep, and the convergence of the laser beam was low as well (Figure 7a), resulting
in a less conical groove. A lower F could mean lower values of P or L or higher values of
S, which would result in a better surface finish, clean grooves, less depth of the cut, and
material removal (a higher S provided most of these outcomes, so it is appropriate to say
that this low F was a result of high S values). A high F could increase D with a large L
(Experiment 11 has 400 and 17 has 1200 passes), but as the conicity increased, MR decreased
gradually, resulting in less MR. Therefore, a higher F did not guarantee a greater MR.

4. Conclusions

The study presents a thorough picture of the correlation of input laser parameters
with output variables and their optimisation. The obtained outcomes were as follows:

(i) The total energy of the laser or fluence offered the full scenario of the surface quality
(roughness), material removal (volume removed and depth of cut), and cut dimensions
(geometry or periphery).

(ii) Material removal with a high surface quality and clean-cut cavity defined the pro-
ductivity. A combination of high-quality engraving with the least possible time of
production was favourable.

(iii) It was found that fluence had positive correlation with all the output variables, re-
gardless of the individual trends of the input power, scanning speed, or number
of passes.

(iv) The constant positive trend of fluence with respect to the outputs was mostly due to
the drop or constancy of the scanning speeds against the roughness (better finish),
depth of cut, geometry, or volume removed, rather than the dominance of power or
number of passes.

(v) The study proved that ceramics like zirconia and metals like stainless steel do not be-
have extremely different from each other when it comes to laser interactions. However,
the parametric optimisation is entirely distinct for both.

(vi) More power values attracted more roughness with constant geometry by maintaining
depth, volume removed, and constant geometry, except geometry for steel, where the
dimension increased with the power settings.

(vii) Higher scanning speeds provided a better surface finish, without any exceptions for
both substances.

(viii) A higher number of passages/passes meant more material removed for both materials.
(ix) Medium power settings and higher scanning speeds with the maximum number of

passes produced the best outcomes.

We segregated zirconia blocks from zirconia palettes and engraved SS-304 with these
optimised parameters, producing a wide variety of patterns on cutlery as graphical abstract
exhibits. The integration of perfectly safe, wear-resistant, antimicrobial, colourful, and
aesthetically appealing zirconia on cutlery is an attractive perspective. Moreover, zirconia
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does not corrode, oxidise, or change its composition with time. Hence, it is safe to say that
the process of laser engraving is a proven, accurate, fast, and affordable way to produce
state-of-the-art flatware/houseware/cutlery without making huge changes in the overall
production process.
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