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Abstract: The present paper introduces an innovative strain energy function (SEF) for incompressible
anisotropic fiber-reinforced materials. This SEF is specifically designed to understand the mechanical
behavior of carbon fiber-woven fabric. The considered model combines polyconvex invariants
forming an integrity basisin polynomial form, which is inspired by the application of Noether’s
theorem. A single solution can be obtained during the identification because of the relationship
between the SEF we have constructed and the material parameters, which are linearly dependent. The
six material parameters were precisely determined through a comparison between the closed-form
solutions from our model and the corresponding tensile experimental data with different stretching
ratios, with determination coefficients consistently reaching a remarkable value of 0.99. When
considering only uniaxial tensile tests, our model can be simplified from a quadratic polynomial to a
linear polynomial, thereby reducing the number of material parameters required from six to four,
while the fidelity of the model’s predictive accuracy remains unaltered. The comparison between the
results of numerical calculations and experiments proves the efficiency and accuracy of the method.

Keywords: strain energy function (sef); anisotropic hyperelastic materials; large deformation;
nonlinear mechanics; carbon fiber woven fabrics

1. Introduction

Carbon fiber woven reinforcement materials have been widely used in many fields
of automotive, aerospace, national defense, and civil industry, especially favored by new
energy vehicles, owing to their superior mechanical characteristics, including high strength,
high modulus, good quality, strong designability, and processability [1]. Carbon-woven
fabric composites usually use resin as the matrix and carbon fiber as the reinforcement,
which is generally considered to be a hyperelastic anisotropic material. It is also noted that
the viscosity of resin and hardener mixtures, which remain liquid at room temperature
and for a short time at high temperatures, has little impact on the forming mechanical
properties of carbon fiber-woven fabrics. Fiber-reinforced woven fabrics, acting as the
reinforcement in composite materials, not only serve to bear loads but also endow the
composite with excellent formability and designability. Therefore, studying the mechanical
behavior of woven fabrics during the forming process is conducive to advancing the
development of stamping for woven composites. Currently, the mechanical properties
and deformation mechanisms of fiber-reinforced composite materials are mainly studied
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through experimental measurements and theoretical modeling. Many material performance
testing experiments were designed, commonly including uniaxial tensile tests, biaxial
tensile tests, bending tests, and frame shear tests [2–6]. Cao et al. established a standard
specification for mechanical performance experiments on composite materials [7].

In terms of theoretical modeling, the mechanical behavior of carbon fiber composites is
mainly studied from the micro model, meso model, and macro model. On the microscopic
level, a “kinematic model” has been established to analyze the stretchable properties of
fiber-reinforced woven composites. This model is developed based on the combination of a
unit cell model with microstructural parameters and the development of micromechanics,
but it has high computational costs and cannot be applied to stamping analysis [8]. At
the mesoscale, a single cell model for woven materials can effectively characterize the
internal structure of composite materials or the mechanical behavior of a single fiber,
but it cannot effectively indicate the performance of composite materials woven from a
large number of fibers and is not suitable for analyzing their forming process [9]. At the
macro level, phenomenological energy functions can be used to describe the macroscopic
mechanics of fiber-reinforced hyperelastic materials, which can be mainly divided into
statistical mechanical models, strain tensor component forms, and strain invariant forms.
A common way to build a hyperelastic strain energy function is by using strain invariants.
It has been shown that the strain energy function’s form should not be limited by any
preconceived constraints [10,11]. That led to the expansion of the expression form of the
SEF from early simple polynomials to different forms such as logarithmic, exponential,
or power forms [12–15]. Aimene et al. have decomposed the strain energy of carbon
fiber woven materials into two types of tensile energy and shear energy, successfully
simulating the hemispherical stamping and forming of materials [16]. This mechanical
model proposed by Islam et al. can predict the stress-strain behavior, deformation profile,
and shear strain angle of fiber-reinforced composite materials when subjected to uniaxial
tension [17]. Huang et al. [18] developed an SEF for woven composite reinforcements. This
SEF is additively decomposed into components that represent the tensile energy resulting
from fiber elongation, the compaction energy arising from the biaxial tension coupling in
the warp and weft directions, and the shearing energy that stems from interactions between
the fibers.

The models previously discussed, in common with the majority of studies in the
academic literature, are often assumed to satisfy convexity/multi-convexity conditions to
ensure the existence and unique solution of hyperelastic problems. However, in reality,
many existing strain energy functions do not satisfy convexity conditions, which may
lead to some numerical problems [19]. More recently, an original integrity basis made of
polyconvex invariants was introduced by Cai et al. [20], which can be used to build SEF
for anisotropic materials with two fiber families. This polyconvex integrity basis, inspired
by the work of Ta et al. [21], is mathematically substantiated by the theory of invariant
polynomials. One advantage of this new set of polyconvex invariants is that the SEF con-
structed with them is polyconvex, which is deemed essential to fulfilling the prerequisite
that guarantees the existence of solutions aligned with the physical requirements [22]. It
provides an alternative to the method of constructing the strain energy function SEF based
on the classical invariants Ii as found in the literature. In addition, traditional strain energy
functions, which are composed of classical invariants, have some material parameters
that lack physical meaning and are even more difficult to identify. These may lead to the
inability of this constitutive model to be used for subsequent finite element implementation,
limiting its application scope. The physical interpretation of these polyconvex invariants
has been demonstrated in our previous work [20]. However, to the best of our knowledge,
the invariants introduced by Cai et al. [20] have not yet been widely applied in practice.
Currently, the application of this set of invariants is primarily seen in the simulation of
orthotropic biological soft tissues, such as the responses of the peripheral arteries and the
passive ventricular myocardium [20,23]. Given the incompressibility of the considered
materials, how could the proposed SEF be incorporated into a finite element code? This is
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a key issue for the widespread application of this SEF. Kakavas et al. present a mixed finite
element formulation for approximating the large deformations observed in the analysis
of elastomeric butt-joints [24]. In our previous work, considering the incompressibility
of the material, we introduced a penalty function, and it has been successfully demon-
strated that the finite element implementation of the polynomial strain energy function
(SEF) constructed with this set of polyconvex invariants has been successfully executed
within the FER University code [25]. So, the main purpose of this article is to broaden
the application scope of these polyconvex invariants to model the behaviors of carbon
fiber-woven materials. In Section 2, we conduct uniaxial tensile tests on carbon fiber-woven
materials to explore their nonlinear and anisotropic mechanical properties under large
deformation conditions, providing a foundation for material parameters necessary for the
subsequent development of a constitutive model. To validate the precision and applica-
bility of our models, we have compared the predicted outcomes with experimental data
obtained from these uniaxial tensile and biaxial tensile experiments obtained from the work
of Huang et al. [26] with different stretching strain ratios (k =

εwe f t
εwarp

, k = 2, 1, 0.5) applied to
the warp and weft directions, respectively. We proposed a new strain energy function based
on the polyconvex invariants introduced in Cai et al. [20] in quadratic polynomial form.
Our model, which includes six material parameters, is capable of predicting biaxial tensile
experimental data with different stretching strain ratios. Distinguishing from traditional
anisotropic models that employ a case-sensitive material parameter to characterize the
tension and compression states of fibers, which may introduce discontinuities in the stress
tensor, our model ensures the continuity of stress. Considering specific tensile scenarios,
the number of material parameters can be further reduced. For example, in Section 4.1, we
demonstrate that under uniaxial tensile loading, our model can be simplified from six to
four material parameters, with the model taking on a linear polynomial form.

Notations

A bold lowercase Latin letter, for instance a, represents a vector, while a bold upper-
case Latin letter, such as A, signifies a second-order tensor. The standard Euclidean scalar
product is denoted by a pair of double vertical bars:

⟨Aa, a⟩ =
3

∑
i=1

Aijajai

The tensor product of two vectors, a and b, is defined as follows:(
a
⊗

b
)

ij
= aibj

2. Materials and Methods
2.1. Sample and Test

Considering the nonlinear and anisotropic mechanical properties that woven fabrics
exhibit during the forming process, in this paper, we perform uniaxial tensile tests on
carbon fiber woven materials to explore their mechanical behavior and deformation mecha-
nisms under conditions of large deformation. We focus on the plain weave carbon fiber
fabric, where the fiber strands are arranged in a simple alternating up/down pattern. The
directions of the warp and weft yarns are denoted as dwarp and dwe f t, respectively, as shown
in Figure 1.
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weight of 200 g/mଶ (referenced as material A). It was noted that the gripping range of the 
clamp is 20 × 40 mm. To match the width of the equipment jaws, the width of the specimen 
is set to 40 mm. Uniaxial tensile tests were performed on a carbon fiber woven fabric sam-
ple. The effective size of the sample is 80 ൈ 40 mm, the length of each gripping section is 
20 mm. For the uniaxial testing, the thickness of each sample was determined by measur-
ing at six different random sites, with an average thickness recorded as 0.5 mm. The test 
axes were aligned with the warp direction of the sample. The sample was secured to the 
testing apparatus using clamps, with sandpaper affixed to each end to prevent slipping, 
as shown in Figure 2b. 

  

Figure 2. Uniaxial tensile and test specimen. (a) Uniaxial stretching equipment, (b) test specimen. 

The experiment was conducted at 20 °C with a stretching speed of 2 mm/min. Six sets 
of tensile tests were conducted, and the resulting force-displacement data were processed 
by averaging, with the final results depicted as shown in Figure 3. At first, as the displace-
ment increases, the applied force also increases. However, when displacement increases 
to 1.8 mm, the force sharply decreases because fiber fracture occurs during this stage. The 
tensile properties of carbon fiber-woven fabrics along the fiber direction exhibit highly 
nonlinear mechanical behavior. Therefore, when identifying material parameters, we only 
use experimental data before fiber fracture to compare with our model. 

Figure 1. 2D braided fabric structure.

To assess the tensile mechanical properties of plain-woven carbon fiber materials, a
uniaxial tensile test was performed using an EUT5000 universal testing machine (Shenzhen
Sansi Testing Co., Ltd., Shenzhen, China), as shown in Figure 2a. The 12 K carbon fiber
fabric (CF) utilized in this study was obtained from Toray Industries, Japan, with a weight
of 200 g/m2 (referenced as material A). It was noted that the gripping range of the clamp is
20 × 40 mm. To match the width of the equipment jaws, the width of the specimen is set to
40 mm. Uniaxial tensile tests were performed on a carbon fiber woven fabric sample. The
effective size of the sample is 80 × 40 mm, the length of each gripping section is 20 mm.
For the uniaxial testing, the thickness of each sample was determined by measuring at
six different random sites, with an average thickness recorded as 0.5 mm. The test axes
were aligned with the warp direction of the sample. The sample was secured to the testing
apparatus using clamps, with sandpaper affixed to each end to prevent slipping, as shown
in Figure 2b.
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Figure 2. Uniaxial tensile and test specimen. (a) Uniaxial stretching equipment, (b) test specimen.

The experiment was conducted at 20 ◦C with a stretching speed of 2 mm/min. Six sets
of tensile tests were conducted, and the resulting force-displacement data were processed by
averaging, with the final results depicted as shown in Figure 3. At first, as the displacement
increases, the applied force also increases. However, when displacement increases to
1.8 mm, the force sharply decreases because fiber fracture occurs during this stage. The
tensile properties of carbon fiber-woven fabrics along the fiber direction exhibit highly
nonlinear mechanical behavior. Therefore, when identifying material parameters, we only
use experimental data before fiber fracture to compare with our model.
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Figure 3. Load-displacement curve obtained from the test.

The Cauchy stresses were calculated as a function of the applied stretch in the warp
direction of sample as:

σ
exp
warp =

F
hexplwe f t

(1)

where hexp is the deformed thickness of the sample in the current configuration during the
uniaxial test, F is applied forces in the warp direction, and lwe f t is the deformed lengths
over which these forces act. Specifically, the local stretch ratio (λwarp) was calculated based

on λwarp =
lwarp
Lwarp

, while lwarp is the deformed lengths over which these forces act and Lwarp

is the distance in the warp direction at rest. Based on the assumption of incompressibility,
the Cauchy stress σ

exp
warp was calculated as

σ
exp
warp ==

Fλwarp

HexpLwe f t
(2)

where Hexp is the thickness of the sample at rest, and Lwe f t is the distance in the weft
direction at rest. Therefore, the stress and strain of the sample can be calculated, and the
constitutive relationship of the material is shown in Figure 4. It can also be seen that the
material exhibits nonlinear properties.
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2.2. Preliminaries

In the work of Ta et al. [21], a material symmetry group S8 has been identified for
fiber-reinforced materials with two fiber families. It is assumed that the two fiber directions,
denoted as a and b, are situated within the plane P3 defined by vectors e1 and e2. These
two fiber directions are symmetrically distributed along vector e1, as illustrated in Figure 5.
Vectors e1, e2, and e3 form an orthogonal coordinate system; plane P2 contains the co-
bisector e2 of a and b; and plane P3 is generated by e1 and e3.
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This group is composed of 8 invariant matrix operators, including the three reflections
related to planes P1, P2 and P3, three rotational operators performing a π radians rotation
around the axes e1, e2 and e3, as well as the identity matrix I and its negation −I. They
have shown that seven polynomial invariants constitute a complete set within the ring of
invariant polynomials for the material symmetry group S8.

K1 = ρ1; K2 = ρ2; K3 = ρ3; K4 = ρ2
4;

K5 = ρ2
5; K6 = ρ2

6; K7 = ρ4ρ5ρ6
(3)

where the coefficients ρi stand for

ρ1 = ⟨Ce1, e1⟩; ρ2 = ⟨Ce2, e2⟩; ρ3 = ⟨Ce3, e3⟩
ρ4 = ⟨Ce1, e2⟩; ρ5 = ⟨Ce1, e3⟩; ρ6 = ⟨Ce2, e3⟩

(4)

The tensor C is recognized as the classical Right Cauchy–Green deformation tensor.

C = FTF (5)

The transformation gradient tensor, denoted as F, is defined by the following relationship:

F =
∂x
∂X

= I +
∂u
∂X

(6)

where x and X denote the current and reference positions, respectively, of a material point,
while u represents the displacement vector.

However, not every one of these invariants is polyconvex. To address this issue,
Cai et al. [20] proposed a set of 7 polyconvex invariants that constitute an integrity basis:
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L1 = Tr(Ce1
⊗

e1); L2 = Tr(Ce2
⊗

e2); L3 = Tr(Ce3
⊗

e3)

L4 = (L1 + L2)
2 + 4⟨Ce1, e2⟩2;

L5 = (L1 + L3)
2 + 4⟨Ce1, e3⟩2

L6 = (L2 + L3)
2 + 4⟨Ce2, e3⟩2

L7 = ⟨Ce1, e2⟩⟨Ce1, e3⟩⟨Ce2, e3⟩+ 1
2

{
L1L2L3 − L1⟨Ce2, e3⟩2 − L2⟨Ce1, e3⟩2 − L3⟨Ce1, e2⟩2

} (7)

It should be noted that plain weave carbon fiber woven fabric also satisfies the condi-
tion of material symmetry group S8 proposed by Ta et al. [21], if the directions dwarp and
dwe f t follow e1 and e2 respectively. Therefore, the invariants defined by Equation (7) can be
used to define our SEF for plain weave carbon fiber woven fabric. Moreover, it was also
proved in our previous work that L7 is correlated with the additional pressure p, which is a
redundant term in the formula [20]. So only the initial six polyconvex invariants, namely L1
through L6, should be taken into account when constructing the strain energy function W.

W = W(L1, L2, L3, L4, L5, L6) (8)

Regarding the stress tensors, the second Piola–Kirchhoff stress tensor, denoted as S,
and its corresponding Cauchy stress tensor, denoted as σ, can be articulated as follows:

S =
∂W
∂E

= 2
∂W
∂C

− pC−1 (9)

σ = J−1FSFT (10)

An additional pressure term p is integrated into the formulation to fulfill the incom-
pressibility condition J = det(F) = 1. Substituting Equation (9) into Equation (10) yields
the following:

σ = 2J−1F
∂W
∂C

FT − pI = 2J−1Fωi
∂Li
∂C

FT − pI (11)

The derivatives ∂Li
∂C , which are embedded in Equation (11), can be calculated based on

Equation (7):

∂L1
∂C = e1

⊗
e1 ; ∂L2

∂C = e2
⊗

e2 ; ∂L3
∂C = e3

⊗
e3

∂L4
∂C = 2

{
(L1 + L2)(e1

⊗
e1 + e2

⊗
e2) +

√
L4 − (L1 + L2)

2(e1
⊗

e2 + e2
⊗

e1)

}
∂L5
∂C = 2

{
(L1 + L3)(e1

⊗
e1 + e3

⊗
e3) +

√
L5 − (L1 + L3)

2(e1
⊗

e3 + e3
⊗

e1)

}
∂L6
∂C = 2

{
(L2 + L3)(e2

⊗
e2 + e3

⊗
e3) +

√
L6 − (L2 + L3)

2(e2
⊗

e3 + e3
⊗

e2)

} (12)

To derive the partial derivatives ωi =
∂W
∂Li

, featured in Equation (11), it is crucial to
establish a method for constructing a suitable strain energy function W based on these
invariants Li. This will be discussed in the subsequent sections.

3. Homogeneous Deformations

Since the experimental data discussed in this paper is related to uniaxial and biaxial
tensile tests, we will derive the constitutive relationship during tensile loading in this
section. Consider biaxial stretching, as depicted in Figure 6, where loading is applied to
both the warp and weft directions with distinct ratios. The ratio is 0 in the case of uniaxial
tensile. These boundary conditions result in the subsequent homogenous deformation:

F =

λ1 0 0
0 λ2 0
0 0 λ3

 ⇒ C =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

 (13)
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where λ1, λ2, and λ3 represent the principal stretches. The incompressibility condition is
satisfied by J = det(F) = λ1λ2λ3 = 1.
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Substituting the components of C from Equation (13) into Equation (7) yields the
expressions for the six polyconvex invariants:

L1 = λ2
1 ; L2 = λ2

2; L3 = λ−2
1 λ−2

2

L4 =
(
λ2

1 + λ2
2
)2 ; L5 =

(
λ2

1 + λ−2
1 λ−2

2

)2
; L6 =

(
λ2

2 + λ−2
1 λ−2

2

)2 (14)

The derivatives ∂Li
∂C can be expressed as:

∂L4
∂C = 2

(
λ2

1 + λ2
2
)
(e1

⊗
e1 + e2

⊗
e2)

∂L5
∂C = 2

(
λ2

1 + λ−2
1 λ−2

2

)
(e1

⊗
e1 + e3

⊗
e3)

∂L6
∂C = 2

(
λ2

2 + λ−2
1 λ−2

2

)
(e2

⊗
e2 + e3

⊗
e3)

(15)

We next report Equations (12), (13) and (15) in Equation (11) to derive the three
diagonal components of the Cauchy stress tensor, with all other components being zero:

σ11 = 2λ2
1

{
w1 + 2w4

(
λ2

1 + λ2
2

)
+ 2w5

(
λ2

1 + λ−2
1 λ−2

2

)}
− p (16)

σ22 = 2λ2
2

{
w2 + 2w4

(
λ2

1 + λ2
2

)
+ 2w6

(
λ2

2 + λ−2
1 λ−2

2

)}
− p (17)

σ33 = 2λ−2
1 λ−2

2

{
w3 + 2w5

(
λ2

1 + λ−2
1 λ−2

2

)
+ 2w6

(
λ2

2 + λ−2
1 λ−2

2

)}
− p (18)

The free loading condition σ33 = 0 is finally used with Equation (18) for eliminating
the extra pressure p from Equations (16) and (17):

σ11 = 2
{

w1λ2
1 − w3λ−2

1 λ−2
2 + 2w4

(
λ4

1 + λ2
1λ

2
2

)
+ 2w5

(
λ4

1 − λ−4
1 λ−4

2

)
− 2w6

(
λ−2

1 + λ−4
1 λ−4

2

)}
(19)

σ22 = 2
{

w2λ2
2 − w3λ−2

1 λ−2
2 + 2w4

(
λ4

2 + λ2
1λ2

2

)
− 2w5

(
λ−2

2 + λ−4
1 λ−4

2

)
+ 2w6

(
λ4

2 − λ−4
1 λ−4

2

)}
(20)

Equations (19) and (20) furnish a closed-form solution for the homogeneous tension
test illustrated in Figure 6. The material parameters will be obtained by comparing these
closed-form solutions with their corresponding experimental values. When considering the
situation of uniaxial tension along the warp direction, which means T2 = 0, it is obvious
that σ22 = 0.
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4. Results and Discussion
4.1. A New Hyperelastic Model

Adhering to the approach established by Mooney and Rivlin for constructing isotropic
energy densities [27,28], this study employs a polynomial expression for the strain energy
function W. A significant advantage of utilizing this polynomial form is the considerable
simplification it offers in the identification of the model’s material parameters. To evaluate
if our model could be appropriate, a tensile test and biaxial tensile test of experimental data
of different plain weave carbon fiber-woven fabrics were compared with our closed-form
solution.

Linear Strain Energy Density

We propose a linear polynomial formulation with respect to L1, L3, L4, L5, and L6:

W1 = a1L1 + a2L2+a3L3 + a4L4 + a5L5 + a6L6 (21)

The six polynomial coefficients a1, a2, a3, a4, a5, and a6 represent the material parame-
ters. The derivatives wi =

∂W
∂Li

can be directly calculated:

∂W
∂L1

= a1;
∂W
∂L2

= a2;
∂W
∂L3

= a3;
∂W
∂L4

= a4;
∂W
∂L5

= a5;
∂W
∂L6

= a6 (22)

In the reference configuration, the displacement field is null, means F = C = I, the
Equations (4), (7), (11), (12) and (15) can be expressed as:

ρ1 = ρ2 = ρ3 = 1, ρ4 = ρ5 = ρ6 = 0 (23)

L1 = L2 = L3 = 1, ρ4 = ρ5 = ρ6 = 0 (24)

∂L1

∂C
= e1

⊗
e1 ;

∂L3

∂C
= e3

⊗
e3 (25)

∂L4

∂C
= 4(e1

⊗
e1 + e2

⊗
e2),

∂L5

∂C
= 4(e1

⊗
e1 + e3

⊗
e3),

∂L6

∂C
= 4(e2

⊗
e2 + e3

⊗
e3) (26)

σ = 2

a1 + 4a4 + 4a5 0 0
0 a2 + 4a4 + 4a6 0
0 0 a3 + 4a5 + 4a6

− pI (27)

Finally, by accounting the fact that σ = 0 in the reference configuration, it is possible
to express a1 and a2 in terms of the remaining material parameters:

a1 = a3 − 4a4 + 4a6
a2 = a3 − 4a4 + 4a5

(28)

Reporting Equation (28) in Equations (19) and (20) yields to the final expression of the
Cauchy stress components σ11 and σ22, which depend only on five material parameters:

σ11 = 2a3

(
λ2

1 − λ−2
1 λ−2

2

)
+ 4a4

(
λ4

1 + λ2
1λ

2
2 − 2λ2

1

)
+ 4a5

(
λ4

1 − λ−4
1 λ−4

2

)
+ 4a6

(
2λ2

1 − λ−2
1 − λ−4

1 λ−4
2

)
(29)

σ22 = 2a3

(
λ2

2 − λ−2
1 λ−2

2

)
+ 4a4

(
λ4

2 + λ2
1λ

2
2 − 2λ2

2

)
+ 4a5

(
2λ2

2 − λ−2
2 − λ−4

1 λ−4
2

)
+ 4a6

(
λ4

2 − λ−4
1 λ−4

2

)
(30)

In the case of uniaxial tensile tests along the warp direction of carbon fiber-woven
fabric, that means no force is applied in the weft direction (T2 = 0). Thus, the free boundary
condition σ22 = 0 transforms Equation (30) into a fourth-degree polynomial equation this
time. Utilizing the fzero function from the MATLAB software (https://www.mathworks.
com/products/matlab.html), we have solved this equation and substituted the numerical
solution λ2 into Equation (29).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Was selected to obtain the best agreement between the theoretical results and the mea-
surements. To identify this set, we have used the classical coefficient of determination R2:

R2 = 1 − Sres

Stot
(31)

where Sres and Stot are the residual sum of squares and the total sum of squares, respectively,
calculated over the n experimental data points:

Sres = ∥y − f ∥2 = ∑n
i=1(yi − fi)

2; Stot = ∥y − y∥2 = ∑n
i=1(yi − y)2 (32)

The symbol yi represents the experimental data, fi denotes the theoretical data, and y
signifies the mean of the experimental data:

y =
1
n∑n

i=1 yi (33)

The closer the coefficient of determination R2 is to 1, the better the fit of the theoretical
data to the experimental data. Our objective, therefore, is to identify the set of material
parameters that minimizes the ratio Sres

Stot
. The data fitting was executed using the same

methods introduced by Cai et al. [20] for identifying material parameters on the Matlab
platform. The identified parameters and the coefficient of determination R2 for Material A
are detailed in Table 1. The comparisons between the experimental and numerical results
from Equation (21) are depicted in Figure 7. The results show better agreement between
predicted and measured Cauchy stress curves. The equally good fitting effect can also be
seen from the coefficient of determination R2 = 0.99, which is close to 1.

Table 1. Material A-strain energy density parameters W1 and determination coefficient R2.

Material Parameters (Mpa) a3 a4 a5 a6 R2

Material A 1212.833 −1434.922 949.724 −639.628 0.99
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Figure 7. Material A: A comparison between the numerical result and the experimental data-linear case.

To verify the applicability of this set of invariants in constructing strain energy func-
tions for carbon fiber-woven fabrics, we compared our model results with different experi-
mental tests. The experimental data, as reported by Huang et al. [26], pertain to samples
that were examined using a specially fabricated biaxial testing apparatus. The sample was
obtained by cutting carbon fiber T300-3K plain weave fabric (referenced as material B).
Based on the geometric dimensions of the sample, the experimental Cauchy stress compo-
nent can be calculated from the known tensile force and strain curves in their work [26].
The carbon fiber woven fabric sample underwent biaxial stretching tests with varying
strain ratios, denoted as k =

εwe f t
εwarp

, applied to the warp and weft directions. The strain
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ratios tested were in the proportions of 2:1, 1:1, and 1:2. The parameters corresponding to
the strain energy density function in Equation (21) were subsequently identified, and the
coefficients of determination R2 in different stretching tests are presented in Table 2.

Table 2. Material B-strain energy density parameters W1 and determination coefficient R2.

Material Parameters (Mpa) a3 a4 a5 a6

Material B −10.683 1.075 0.621 1.443

k 2:1 1:1 1:2

R2 0.99 0.98 0.97

The comparison of experimental data with numerical predictions from the constitutive
model, as defined by Equation (21), is depicted in Figure 8 for Material B. The results of
model analysis were verified by the results of experiments, but there are still discrepancies
in some areas, especially in the cases of strain-stretch ratios of k = 1 : 2. This can also be
observed from the value of the determination coefficient R2, which is 0.97.

Materials 2024, 17, x FOR PEER REVIEW 11 of 15 
 

 

experimental tests. The experimental data, as reported by Huang et al. [26], pertain to 
samples that were examined using a specially fabricated biaxial testing apparatus. The 
sample was obtained by cutting carbon fiber T300-3K plain weave fabric (referenced as 
material B). Based on the geometric dimensions of the sample, the experimental Cauchy 
stress component can be calculated from the known tensile force and strain curves in their 
work [26]. The carbon fiber woven fabric sample underwent biaxial stretching tests with 
varying strain ratios, denoted as 𝑘 = ఌೢ೐೑೟ఌೢೌೝ೛, applied to the warp and weft directions. The 

strain ratios tested were in the proportions of 2:1, 1:1, and 1:2. The parameters correspond-
ing to the strain energy density function in Equation (21) were subsequently identified, 
and the coefficients of determination 𝑅ଶ in different stretching tests are presented in Ta-
ble 2. 

Table 2. Material B-strain energy density parameters W1 and determination coefficient R2. 

Material Parameters (MPa) 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 
Material B −10.683 1.075 0.621 1.443 𝑘 2:1 1:1 1:2  𝑅ଶ 0.99 0.98 0.97  

The comparison of experimental data with numerical predictions from the constitu-
tive model, as defined by Equation (21), is depicted in Figure 8 for Material B. The results 
of model analysis were verified by the results of experiments, but there are still discrep-
ancies in some areas, especially in the cases of strain-stretch ratios of 𝑘 = 1: 2. This can 
also be observed from the value of the determination coefficient 𝑅ଶ, which is 0.97. 

  

 

Figure 8. Material B: A comparison between the numerical result and the experimental data-linear 
case. 

  

11
(M

pa
)

11
(M

pa
)

11
(M

pa
)

Figure 8. Material B: A comparison between the numerical result and the experimental data-linear case.

4.2. Quadratic Strain Energy Density

To enhance the predictive accuracy, especially for biaxial stretching scenarios, we
have incorporated a quadratic polynomial expression for the strain energy density. It is
noteworthy that L1 and L2 correspond to the square of the elongation in the e1 and e2
directions, respectively. When we consider biaxial tensile tests of materials along the warp
and weft directions, respectively, the warp and weft mechanical properties of plain weave
fabrics are equivalent [26]. To reduce the complexity of the model, only one invariant from
L1 or L2 is needed to construct the strain energy function:

W2 = a1L1+a3L3 + a4L4 + a5L5 + a6L6 + a7L2
1 + a8L2

3 (34)

The derivatives wi =
∂W
∂Li

can be directly calculated:

∂W
∂L1

= a1 + 2a7L1;
∂W
∂L2

= 0;
∂W
∂L3

= a3 + 2a8L3;
∂W
∂L4

= a4;
∂W
∂L5

= a5;
∂W
∂L6

= a6 (35)
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We next report Equation (35) in the Equations (19) and (20), the Cauchy stress compo-
nents σ11 and σ22 can written as:

σ11 = 2
{(

a1 + 2a7λ2
1

)
λ2

1 −
(

a3 + 2a8λ−2
1 λ−2

2

)
λ−2

1 λ−2
2 + 2a4

(
λ4

1 + λ2
1λ

2
2

)
+ 2a5

(
λ4

1 − λ−4
1 λ−4

2

)
− 2a6

(
λ−2

1 + λ−4
1 λ−4

2

)}
(36)

σ22 = 2
{
−
((

a3 + 2a8λ−2
1 λ−2

2

))
λ−2

1 λ−2
2 + 2a4

(
λ4

2 + λ2
1λ2

2

)
− 2a5

(
λ−2

2 + λ−4
1 λ−4

2

)
+ 2a6

(
λ4

2 − λ−4
1 λ−4

2

)}
(37)

Similar to the method we used in linear case, we can obtain the following relationship
in the reference configuration:

a1 = a3 − 4a4 + 4a6 − 2a7 + 2a8 (38)

We concentrate on biaxial stretching with varying strain ratios applied to the warp and
weft directions, specifically using the proportions of 2:1, 1:1, and 1:2. The six polynomial
coefficients for the SEF, as outlined by Equation (34), have been determined using the same
methodology as detailed in the preceding section, with the aim of optimizing the classical
coefficient of determination R2. These identified coefficients are subsequently presented in
Table 3.

Table 3. Material B-strain energy density parameters W2 and determination coefficient R2.

Material Parameters (kPa) a3 a4 a5 a6 a7 a8

Material B −17.9810 1.3142 −4.9073 0.7657 5.8539 9.0914

k 2:1 1:1 1:2

R2 0.99 0.99 0.99

Figure 9 demonstrates a strong correlation between the numerical results and the
experimental data, indicating a good agreement. It is observed that the quadratic model
significantly enhances the precision of the numerical predictions, especially for the tensile
loading scenario with a strain ratio of k = 1 : 2. This enhancement is further substantiated
by the increase in coefficient of determination R2 from the SEF W1 to the SEF W2, where
the value rises from 0.97 to 0.99. It is generally accepted that an R2 value of 0.99 or higher
denotes a highly satisfactory fit to the experimental data.
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four material parameters to accurately capture the mechanical behavior of carbon fiber-
woven fabric, with a determination coefficient of 0.99. However, for biaxial tensile defor-
mation, discrepancies persist between the predictive outcomes and the experimental data, 
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degree, thereby transitioning from a linear model to a quadratic one defined by Equation 
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Figure 9. Material B: A comparison between the numerical result and the experimental data–quadratic case.
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5. Conclusions

In this study, a novel anisotropic strain energy function (SEF) is developed for mod-
eling plain weave carbon fiber woven fabric. This SEF is constructed upon a set of seven
novel polyconvex invariants recently introduced by Cai et al. [20], utilizing a polynomial
combination of these invariants. This ensures that the SEFs we construct have polycon-
vexity, a necessary condition for guaranteeing the existence of solutions that align with
physical requirements. Our model diverges from traditional anisotropic models by not
utilizing a case-sensitive material parameter that characterizes the tension and compres-
sion states of fibers. This particular setting guarantees the continuity of stress, which is
advantageous for the subsequent finite element implementation within the FER code. One
significant advantage of this method is its capability to perform least squares minimization,
thereby yielding a unique set of material parameters. Because the SEF we constructed is a
linear form of material parameters, we have confirmed that if we only consider the case
of uniaxial tensile loading, our linear models defined by Equation (21) require only four
material parameters to accurately capture the mechanical behavior of carbon fiber-woven
fabric, with a determination coefficient of 0.99. However, for biaxial tensile deformation,
discrepancies persist between the predictive outcomes and the experimental data, especially
under conditions of equibiaxial and stretching strain ratios k =

εwe f t
εwarp

= 0.5 applied to

the warp and weft directions. The determination coefficients R2 for the predictive model
correspondingly decreased to 0.98 and 0.97, respectively. And we have demonstrated
that the accuracy of predictions can be enhanced by elevating the polynomial’s degree,
thereby transitioning from a linear model to a quadratic one defined by Equation (34). This
quadratic polynomial function requires only six material parameters to accurately predict
the mechanical response of carbon fiber-woven fabric, with the determination coefficients
R2 for the biaxial tensile tests at three different stretching strain ratios (k =

εwe f t
εwarp

, k = 2,
1, 0.5) all increasing to 0.99. The results of this paper confirm that this new polyconvex
invariant system can be used to simulate plain carbon fiber-woven fabrics.
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