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Abstract: Stress distribution and its magnitude during loading heavily influence the osseointegration
of dental implants. Currently, no high-resolution, three-dimensional method of directly measuring
these biomechanical processes in the peri-implant bone is available. The aim of this study was to
measure the influence of different implant materials on stress distribution in the peri-implant bone.
Using the three-dimensional ARAMIS camera system, surface strain in the peri-implant bone area was
compared under simulated masticatory forces of 300 N in axial and non-axial directions for titanium
implants and zirconia implants. The investigated titanium implants led to a more homogeneous
stress distribution than the investigated zirconia implants. Non-axial forces led to greater surface
strain on the peri-implant bone than axial forces. Thus, the implant material, implant system, and
direction of force could have a significant influence on biomechanical processes and osseointegration
within the peri-implant bone.

Keywords: dental implants; implant biomechanics; peri-implant stress distribution; implant materials;
implant loading; optical measurement

1. Introduction

The replacement of missing teeth with osseointegrated dental implants has been an
established dental procedure since the late 1960s [1]. With the ever-increasing interest and
innovations in the field of treatment planning and implementation, research in the field of
biological–mechanical relationships is progressing [2]. The mechanical tension that acts at
the junction of dental implants and peri-implant bone can lead to micromovements of the
dental implants and is considered to influence osseointegration [3–5]. This aspect belongs
to the broad field of dental biomechanics, the understanding and influence of which are of
great importance for the long-term success of dental implants [6]. The transmission of force
from implant to bone and, thus, the mechanical stress at the implant–bone junction depend
on the direction of the applied force (axial vs. non-axial), the length and diameter of the
implant, the design of the junction, and the quality of the bone [7–10]. Several different
implant materials are currently being scientifically investigated or already in clinical use.
The most common are titanium and zirconium oxide ceramic (zirconia) [11]. Titanium
is the gold standard, as it is by far the best-studied implant material since its first use in
the late 1960s [1,12,13]. Its advantages are excellent biocompatibility and well-studied
and predictable osseointegration [14–16]. In addition, due to the very widespread use of
dental titanium implants in dental practice, many different implant systems are available,
which can be flexibly selected according to the patient’s situation [17]. The disadvantages
include limited esthetics, particularly in the case of a high smile line with exposed implant
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shoulders, such as in the case of soft tissue loss or a very thin mucosa through which
titanium implants can show [18]. Furthermore, the modulus of elasticity of titanium
(~110 GPa) is significantly higher than that of cortical bone, which has a modulus of
elasticity of ~13 GPa [19,20]. Over the last 15 years, zirconia has become established as an
implant material [21]. This material also offers very good biocompatibility, and the absence
of a microgap in one-piece zirconia implants is also seen as an advantage, in conjunction
with reduced biofilm [22]. With the exception of very thin mucosal layers, Jung et al.
found no color difference in the area of the gingival margin after implantation of zirconia
implants in the porcine jaw [18]. In contrast, exposed portions of zirconia implants can
lead to esthetically unsatisfactory results due to the appearance of an unnatural coloration
in the event of mucosal recession [23]. Another disadvantage for a long time was that
zirconia dental implants were mostly manufactured in one piece (i.e., the implant–abutment
complex consisted of a single workpiece). This means that the possibility to individualize
implant therapy was low. In a regular case, it was only possible to choose from differently
configured, prefabricated implant–abutment complexes [24,25]. Two-piece implant systems
made of zirconia are now also available [26]. Another disadvantage of zirconia implants is
their extremely high modulus of elasticity (~210 GPa) relative to the modulus of elasticity
of bone [27]. Therefore, this implant material could lead to high stress peaks in the peri-
implant bone [28]. In addition, zirconia implants were established in the dental field
only a few years ago and are not as well studied as titanium implants. Little is currently
known about the influence of different implant materials on the stress distribution in the
peri-implant area under masticatory loading. Studies simulated the stress distribution in
this area using the finite element method in a three-dimensional computer model, but this
procedure is subjected to the limitation of the mathematical simplification of virtual test
models [29]. The direct, three-dimensional measurement of stress distribution on the peri-
implant bone under simulated masticatory force application was established for the first
time by this working group. Surface changes during measurement by the ARAMIS system
from Carl Zeiss GOM Metrology GmbH (Braunschweig, Germany) under masticatory
loading correspond to the accuracy of strain gauges [30]. The aim of the present study
was to investigate the influence of different implant materials, specifically, titanium and
zirconia, on stress distribution in the porcine jaw. For this purpose, zirconia implants and
titanium implants were loaded axially with masticatory forces of 300 N at an angle of 30◦

and the deformation of the bone surface was detected using the ARAMIS system. As null
hypotheses, we assumed that the implant material and the masticatory force direction had
no influence on stress distribution in the peri-implant bone under masticatory loading.

2. Materials and Methods

Five pieces of bone were prepared from the dorsal ramus region of five pig mandibles
and embedded in plaster (Fujirock®, super hard stone type 4, GC Europe N.V., Leuwen,
Belgium). It was necessary to keep the sample size as small as possible, as the porcine
mandibles available for scientific use were limited. The relatively small sample size of
5 specimens allowed for a meaningful statistical evaluation in this context. Due to the
nature of porcine bone, there were individual differences in the shape of the bone pieces,
which were approximately 8 cm wide and 6 cm high. The drill studs for the two implants
examined in each piece of bone (titanium: bone-level implant, diameter 4.1 mm, length
10 mm; zirconia: ceramic implant monotype, diameter 4.1 mm RD, length 10 mm; Strau-
mann GmbH, Freiburg, Germany) were prepared according to the supplier’s instructions.
Regarding the bone dimension around the implant after insertion, it varied individually.
Typically, approximately 1 mm of bone remained buccally and orally around the implant
site. These variations reflect the natural variability in the bone structure. The bone surface
was then sprayed with an acrylic resin-based varnish (Sparvar color spray, Spray-Color
GmbH, Merzenich, Germany) and a graphite varnish (CRC Industries Deutschland GmbH,
Iffezheim, Germany) to create a stochastic contrast pattern. For both implant types exam-
ined, five implants were inserted individually into one bone block each and loaded by a
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compression testing machine (inspekt mini, Hegewald & Peschke Mess- und Prüftechnik
GmbH, Nossen, Germany) with a 300 N force in two different directions (0◦, “axial” and
30◦, “non-axial”). The sample size of five implants per implant type was chosen deliberately.
This number allowed statistical comparisons to be made with confidence, as it met the
requirement for meaningful statistical analysis. For the titanium implants, insertion posts
were inserted and screwed into place to support the masticatory load. The zirconia implants
were a one-piece implant system. In the 0◦ test series, the force was applied in the direction
of the longitudinal axis of the implant. In the 30◦ test series, the force was applied with
an inclination of 30◦ with respect to the longitudinal axis of the implant (Figure 1a,b). The
strain on the surface of the bone caused by the load on the implants was measured using
the ARAMIS 3D optical camera system (Carl Zeiss GOM Metrology GmbH, Braunschweig,
Germany), a non-contact optical three-dimensional deformation measurement system that
is able to analyze movements and deformations through digital image correlation [31].
The displacement was calculated by assigning gray value distributions in the deformed
image to gray value distributions in the undeformed reference image. The ARAMIS system
was positioned orthogonally to the course of the examined bone. The calibration and
distance between the peri-implant measurement area and the lenses of the ARAMIS system
corresponded to the manufacturer’s specifications. The ARAMIS Professional software
Version 2020 (Carl Zeiss GOM Metrology GmbH, Braunschweig, Germany) was used to
examine the technical strain in the X and Y directions, as well as the main deformation. In
the study, the X-axis corresponded to the mesio-distal orientation, whereby the left side in
the test arrangement was defined as mesial. Accordingly, the force was applied in the 30◦

test series from a distal direction. The Y-axis corresponded to the corono-apical dimension.
Figure 1c,d show the visual surface representation using the ARAMIS system without force
application and, therefore, without deformation (plain blue region of interest in Figure 1d).
An exemplary visual evaluation with force application of 300 N is presented in Figure 1e,f.
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a blue light lamp); (b) macrograph of the bone preparation with an inserted zirconia implant and
a stochastic contrast pattern; (c,d) exemplary representation of the ARAMIS Professional software
without force application (test setup with force direction of 30◦); (e,f) exemplary representation of the
ARAMIS Professional software with force application of 300 N (test setup with force direction of 30◦,
changes in shape in green, yellow, and red).

The numerical evaluation was carried out in the form of absolute measured values
using raw data tables from the ARAMIS Professional software, which were transferred to
Excel (Microsoft Corporation, Redmond, WA, USA). To differentiate the strain distribution,
the peri-implant bone was divided into a total of 12 equally sized areas, which were
arranged in four three-part rows. The dimensions resulted from the macro design of
the implant. The width of each area was the same as the individual implant diameter,
while the length of the area was one-third of the implant’s individual length. One row
of measurement areas was added at the implant’s apex. The described arrangement led
to four measurement areas on the left (a,d,g,j), right (c,f,i,l), and in a projection (b,e,h,k)
of the implants examined. The measurement areas b, e, and h reflect the projection of
the implant on the surface of the bone. The areas j,k,l represent the area at the implant´s
apex. To enable statistical comparisons between the implant types, the deflection values
were averaged within the specified measurement areas. The mean values are presented
descriptively for the two implant types, separated by force and loading direction, and were
compared non-parametrically between the implant types using single-factor analysis of
variance (ANOVA) for statistical analysis. In addition, the percentage distribution of the
fields with the highest deflection in terms of an averaged normalized relative deflection per
field is presented graphically for both implant types and both force directions in relation to
each individual implant position.

3. Results

The comparison of surface deformation of the peri-implant bone under axial loading
showed a significantly greater main deformation when a force of 300 N was applied on
the zirconia implant; the same applied to the deformation in the X and Y directions (more
precisely). The titanium implant showed an average main deformation of 198.38 µm/m,
a deformation of 336.02 µm/m in the X-axis, and a deformation of 320.90 µm/m in the
Y-axis. The main deformation of the peri-implant bone with the zirconia implant amounted
to 898.95 µm/m. The deformation in the X-axis was 471.83 µm/m, and that in the Y-axis
654.69 µm/m. The overall descriptive statistics are shown in Table 1. Figure 2 shows the
data in the form of a box–whisker plot. When loading was applied at an angle of 30◦ to
the longitudinal axis of the implant, a significantly greater change in the main shape was
observed in the area of the peri-implant bone with the zirconia implant. There were also
significantly greater changes in shape in the X and Y directions. In this case, the titanium
implant was associated with in a main deformation of 720.77 µm/m, with a deformation of
501.09 µm/m in the X-axis and 475.05 µm/m in the Y-axis. For the zirconia implant, the
main deformation was 1601.46 µm/m, with a deformation of 906.31 µm/m in the X-axis
and 1095.38 µm/m in the Y-axis. The descriptive statistics regarding the force application
at an angle of 30◦ can also be found in Table 1, and the graphical representation in Figure 2.
Table 2 provides the p-values from the non-parametric analyses of variance.

To illustrate the results, Figures 3–5 show the percentage shape change in relation to
the peri-implant measurement areas for the axial and non-axial examinations, respectively.
This is the percentage of the average change in shape over the individual test series in rela-
tion to the largest change in shape within the test series. For example, a change in shape of
0.9 means that an average change in shape of 90% was calculated in the specified measure-
ment area, measured against the highest individually measured change in shape within the
test series. The largest deformation of the main shape was found in the axial direction for
both implant materials; in the case of the titanium implant, this was concentrated apically
to the implant (measurement area k), while for the zirconia implant, it was concentrated in
the area of the apical third in relation to the implant axis (measurement area h). For the
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change in shape in the X and Y directions, relatively symmetrical results were obtained
for the axial load in relation to the implant axis. On the X-axis (mesio-distal direction), the
greatest changes in shape were calculated in the cervical third for the titanium implant and
in the apical third for the zirconia implant, in the projection of the implant in each case. On
the Y-axis (apical–cervical direction), the largest changes in shape were calculated further
apically for both implant materials. Even in the test series with a force application at an
angle of 30◦, the largest deformation changes, including those on the X- and Y-axes, were
found in the projection of the longitudinal axis of the implant. Overall, when loading at
an angle of 30◦, an asymmetrical distribution of the size of the deformation changes was
observed in the individual observations. Larger changes in shape could be calculated on
the mesial side of the peri-implant bone, opposite to the load.

Table 1. Descriptive statistics of the mean surface shape changes in the investigated dimensions
regarding both implant materials 1.

Material Angulation Main Change in Shape Change in Shape in X-axis Change in Shape in Y-axis

Mean SD Mean SD Mean SD

Titanium
0◦ 198.38 155.57 336.02 139.62 320.9 270.41

30◦ 720.77 594.95 501.09 383.49 475.05 287.1

Zirconium
0◦ 898.95 373.53 471.83 47.25 654.69 271.02

30◦ 1601.46 661.08 906.31 499.68 1095.38 216.24
1 All measured values are in µm/m.
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Table 2. p-values regarding the differences between the two implant materials in relation to the mean
surface shape changes in the three dimensions investigated (calculation by ANOVA).

Angulation Dimension p-Value

0◦ main change in shape 0.009
X-axis 0.1172
Y-axis 0.0758
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Table 2. Cont.

Angulation Dimension p-Value

30◦ main change in shape 0.0472
X-axis 0.0758
Y-axis 0.0163
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4. Discussion

The 3D optical image correlation used in the present study to detect changes in
the shape of superficial bone due to stress induction is already well established in
dentistry [32–34]. The transfer of this technology to the measurement of peri-implant bone
during masticatory force application was presented as part of a pilot study in 2021 [30].
Good repeatability and measurement stability can be attributed to the method. The present
study is the first to use this technology to investigate peri-implant stress under masticatory
force application as a function of the implant material. Very few studies investigated stress
propagation in bone using the finite element method [11]. A finite element method-based
study showed that implant materials with a lower modulus of elasticity cause greater stress
within the cortical bone under a chewing force application of 100 N compared to those
with a higher modulus of elasticity. A chewing force simulation on one-piece implants
made of titanium, zirconia, and various PEEK materials was investigated. In contrast, a
study by Haseeb et al. comparing carbon-fiber-reinforced PEEK implants with conven-
tional pure-titanium implants showed a comparable stress distribution in the peri-implant
bone [11,35]. When considering these two studies, a particular limitation of the finite
element method becomes clear. It is a simulative research method that is dependent on the
parameter definitions and therefore makes it fundamentally difficult to compare different
studies [36]. In this context, the data collected in the present study showed contradictory
results. With regard to the main shape change, significantly greater superficial changes
in the shape of the peri-implant bone were found with the zirconia implant. Notably,
the measurement method used in this study, as a direct, optical procedure, differs funda-
mentally from the simulative method of the finite element method. In addition, different
masticatory forces were considered. At this point, it should be noted that the present
data were collected using an avital bone preparation. This means that osseointegration
could not take place, and the results, therefore, represent a situation of primary stability or
immediate loading. The results related to the axial force application revealed an overall
symmetrical distribution around the examined implants. The different localization of the
largest deformation changes depending on the implant material was striking. In the case
of the zirconia implant, the largest changes in shape were found in the apical third of the
projection of the implant, in relation to both the main change in shape and the X- and Y-axes.
In contrast, in the case of the titanium implant, a more heterogeneous distribution of the
largest shape changes was observed in the three dimensions. This indicated an overall
greater local concentration of stress in the area of the peri-implant bone with the zirconia
implant than with the titanium implant. Conversely, the results indicated a more even
distribution of stress in the peri-implant bone in the case of the titanium implant. This
was reflected in the comparatively smaller changes in shape in the case of the titanium
implant and could have a positive effect on osseointegration. The stronger concentration
of stress in implants with a comparatively higher modulus of elasticity (“stress isolation”)
was recently demonstrated by Masoomi et al. in a finite element analysis [37]. In this
context, this shows a very good comparability of finite element analysis and digital image
correlation. In particular, further investigation of the geometry of the implants and their
effect on stress distribution in the surrounding bone will be clinically relevant in the future.
The results of the analysis of force application at an angle of 30◦ suggested that the strain in
the dimensions examined was closer to the projection of the implant in the peri-implant
bone with the zirconia implant than with the titanium implant. For both implant materials,
greater elongation was observed in all dimensions on the side contralateral to the force
application compared to the ipsilateral side. In contrast, more eccentric strain distributions
were observed for the titanium implant. These were comparable to the those obtained with
axial force application, more homogeneous over the measurement area of the peri-implant
bone, and less pronounced overall. In principle, the greater modulus of elasticity of the
zirconia implants could lead to a more direct transfer of masticatory forces into the peri-
implant bone, which may be reflected in a greater surface deformation. However, despite
the significant differences in deformation, the overall differences were small. Incidentally,
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the zirconia implant was a one-piece implant system. In contrast, the titanium implant
consisted of a screw-retained implant–abutment complex, which represents a combination
of implant and abutment. This im-plant–abutment connection could potentially lead to
reduced stress distribution into the peri-implant bone. This could have come into play,
particularly with a masticatory force application at a 30◦ angle. A greater difference in
the change in shape between the titanium and the zirconia implants was found for each
of the three investigated changes in shape when force was applied at a 30◦ angle than
when an axial chewing force was applied. To the best of our knowledge, no directly
comparative data are available regarding stress distribution in the peri-implant bone with
single-piece implants and implant–abutment systems. In this context, Tribst et al. were able
to demonstrate that a semi-rigid implant–abutment connection can lead to a lower stress
propagation in the peri-implant bone compared to a rigid connection, which fundamentally
supports the results of the present study [38]. The overall greater and asymmetrical stress
transmission into the peri-implant bone with non-axial masticatory force transmission
could also argue against the immediate or early loading of implants in the anterior region,
as it was already shown that non-axial forces can lead to greater deflections even with
relatively low loading [39]. Such micromovements can lead to the formation of fibrous
tissue between the implant and the bone in implants that are not yet fully osseointegrated
and thus to implant loss [40–42].

For the clinical application of dental implants, it is imperative to meticulously examine
the strategies by which peri-implant stress can be mitigated during the period prior to
osseointegration. This phase is characterized solely by the attainment of primary stability,
which critically impacts the subsequent healing processes. Peri-implant bone’s stress dis-
tribution plays a pivotal role in the bone’s healing trajectory. When the loading exceeds
the mechanical tolerance of the peri-implant bone, pathological outcomes such as cartila-
gogenesis or fibrous tissue formation may ensue, highlighting the detrimental effects of
excessive mechanical loading during the initial healing phase [43,44]. This study posits that
a uniform stress distribution within the peri-implant bone may confer therapeutic benefits.
Consequently, it is evident that comprehensive investigations into the specific patterns
of peri-implant stress distribution and its influence on bone integrity are essential. These
studies are crucial for formulating precise clinical guidelines concerning the immediate
loading of dental implants, thereby optimizing treatment outcomes.

The design of the present study is subject to various limitations. First, an in vitro
procedure was used that cannot fully reflect the actual conditions in the oral cavity. In addi-
tion, the standardization of chewing force initiation, which was necessary for experimental
reasons, limits the possibility of generalizing the results of the present study. Furthermore,
the methodology used only detects superficial changes in shape and does not allow for
any direct transfer to processes within the bone. Overall, the results presented should be
supplemented by further investigations.

5. Conclusions

In the present study, the implant material and implant system significantly influenced
the deformation of the superficial peri-implant bone under masticatory force application.
Zirconia caused locally more concentrated stress propagation into the peri-implant bone,
with relatively small overall strain. In addition, non-axial forces led to greater peri-implant
stress than axial masticatory forces, and the strain was greater on the contralateral side
of the force direction than on the ipsilateral side. In connection with physiological bone
remodeling, which loads on dental implants may have positive or negative influences on
the physiological processes of bone metabolism remains to be investigated.
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