
Citation: Guo, X.; Wang, C.; Fu, H.;

Tian, L.; Song, H. Rust Prevention

Property of a New Organic Inhibitor

under Different Conditions. Materials

2024, 17, 2168. https://doi.org/

10.3390/ma17092168

Academic Editor: X. Ramón Nóvoa

Received: 14 March 2024

Revised: 25 April 2024

Accepted: 27 April 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Rust Prevention Property of a New Organic Inhibitor under
Different Conditions
Xingxing Guo 1, Chengsheng Wang 2, Hua Fu 3, Li Tian 3,* and Hua Song 3

1 Department of Civil Engineering, Changzhi Vocational and Technical College, Changzhi 046000, China;
13485385732@163.com

2 Tianjin Port Engineering Design & Consulting Company Ltd. of CCCC, Tianjin 300456, China;
wcs90@126.com

3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
fs215379@163.com (H.F.); carrie_song@icloud.com (H.S.)

* Correspondence: tlsxf@163.com

Abstract: The corrosion resistance properties of a new type of environmentally-friendly organic
inhibitor containing amino ketone molecules are presented in this paper. To evaluate the prevention
effect of the inhibitor on corrosion of reinforcement, the electrochemical characteristics of steels
in the simulated concrete pore solution (SPS) were investigated under varied conditions of the
relevant parameters, including concentrations of the inhibitor and NaCl, pH value, and temperature.
The inhibition efficiency of the material was characterized through electrochemical impedance
spectroscopy (EIS), potentiodynamic polarization, and the weight loss of steels. The results reveal
a significant improvement in the corrosion resistance of steels with the inhibitor. A maximum
resistance value of 89.07% was achieved at an inhibitor concentration of 4%. Moreover, the new organic
inhibitor exhibited good corrosion protection capability for steels under different NaCl concentrations.
Its inhibition efficiency was determined to be 65.62, 80.06, and 66.30% at NaCl concentrations of
2, 3.5 and 5%, respectively. On the other hand, it was found that an alkaline environment was favorable
for an enhanced corrosion prevention effect, and an optimal pH value of 11.3 was observed in this work.
Besides, the inhibition efficiencies at different temperatures showed a trend of 25 > 35 > 40 > 20 > 30 ◦C,
with a maximum value of 81.32% at 25 ◦C. The above results suggest that the new organic material
has high potential to be used as an eco-friendly and long-term durable inhibitor for steel corrosion
prevention under complex conditions.

Keywords: inhibitor; weight loss; electrochemical impedance spectroscopy; potentiodynamic polarization

1. Introduction

Reinforced concrete has been widely used in various construction projects due to
its economical features, practicality, and durability [1,2]. The durability of reinforced
concrete structures has been receiving increased worldwide attention because durability
problems can cause heavy casualties and serious economic loss. There are many intrinsic
factors affecting concrete corrosion, such as the concrete structure type and property, the
construction quality, and the cover thickness [3]. In addition, problems and failures of
reinforced concrete structures could also be caused by other various factors, including
steel corrosion, carbonation, freeze-thaw damage, chemical erosion, and alkali aggregate
reactions, among which steel corrosion is a major reason [4–6]. Steels are susceptible to
corrosion in aggressive media containing chloride, sulfate, or nitrate ions, especially in
the marine environment [7]. Through diffusion and infiltration, chloride ions in seawater
can transfer into concrete and accumulate on the surface of steel bars [8,9]. When the ion
concentration reaches the specific threshold value on the steel bar surface, coupled with
sufficient oxygen and water supply, the passive film on steel bars generated in a strong
alkaline environment could be destroyed, which leads to so-called pitting corrosion [2,10].
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With the continuation of steel corrosion, the concrete cover around steel bars may crack and
detach from the structure, resulting in a decrease in the bearing capacity of the material [11].
Therefore, it is crucial to urgently and effectively prevent steel corrosion in the field of civil
engineering [12,13].

A variety of approaches have been widely applied to protect steel bars from corrosion,
for example, technologies of cathodic protection [14], conversion film [15,16] and coat-
ing [17,18], as well as the use of corrosion inhibitors. Cathodic protection is an effective way
to decrease steel corrosion [19,20]. However, it is difficult to carry out large-scale cathodic
protection for steel bars, due to the complexity of the technology construction and operation
in concrete structures [21–23]. Similarly, the conversion film technique also has limited
application for the protection of steel bars in concrete. Coating on steel bar surfaces can in-
hibit corrosion, but the presence of the coating layers greatly reduces the bonding behavior
between steel bars and concrete, leading to a decrease in the overall bearing capacity of the
material. In addition, during construction works, the coatings could be easily damaged
and peeled off, forming a status of small anodes and large cathodes, therefore accelerating
the steel corrosion process [24]. Generally speaking, high-performance corrosion inhibitors,
combined with their low cost, easy operation, and high safety characteristics, have been
determined to be a promising solution for preventing corrosion of steel bars in concrete.

Various inorganic inhibitors of alkalis, chromates, nitrite, phosphates, hypophosphates,
and fluorides, as well as organic inhibitors, have been widely used in modern civil engi-
neering areas. Several studies have reported that the application of inorganic inhibitors is
limited by their serious environmental pollution, whereas the corrosion resistance efficiency
of organic inhibitors varies greatly depending on the working environment [25,26]. Ma
et al. [27] introduced a thiadiazole-derivative inhibitor with high inhibition efficiencies of
78.73–95.67%, and the maximum value was achieved with an inhibitor concentration of
100 mg/L. Besides, in the investigated pH range of 5.5–9.5, a gradual increase in the inhi-
bition efficiency with the pH value was observed. Li et al. [28] showed that the corrosion
resistance of a mixed-type inhibitor (myclobutanil and hexaconazole) for copper material
decreases with a pH value order of 7.5 > 6.5 > 8.5 > 5.5, which reveals a better corrosion
inhibition capability of the compounds in a near neutral condition, than in acidic or alkaline
conditions. With respect to the influence of the temperature, it was found that although
the temperature increase restricts the adsorption of the myclobutanil and hexaconazole
inhibitor compounds, the charge transfer process in corrosion could still be decreased
greatly at elevated temperatures. Tian reported five environmentally-friendly inhibitors
with excellent corrosion inhibition effects, which showed a negative linear function between
corrosion resistance efficiency and temperature.

In this work, the corrosion inhibition properties and mechanism of a new environmentally-
friendly organic inhibitor containing amino ketone molecules were studied. The effect
of the inhibitor on concrete corrosion was evaluated by analyzing the electrochemical
characteristics of steels in the simulated concrete pore solution under different inhibitors
and NaCl concentrations, pH values, and temperatures.

2. Synthesis of the Inhibitor

The organic rust inhibitor used in the test contains the amino ketone molecules made
by the chemical reaction of ethanol, dimethylamine, formaldehyde, acetophenone, and
other substances, and its molecular generation formula is shown in Figure 1.
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Figure 1. Synthesis process of the amino ketone inhibitor.

The amino ketone inhibitor has the following characteristics:

1. The nitrogen and oxygen atoms of the carbonyl group in the amino ketone molecule
are all electronegative atoms, which can effectively adsorb on the oxide film at the
reinforced steel surface;

2. The amide and carbonyl groups of the amino ketone molecules can chelate the iron
atoms at the oxide film surface to form rings (Figure 2). The high stability of the chelate
ring structure enhances the adsorption of the inhibitor molecules on the steel surface;

3. The aromatic groups that are connected to the carbonyl groups can serve as a barrier
layer (steric hindrance effect) to separate the steel surface from the corrosive medium.
The electronegativity of the aromatic groups can repel chloride ions away from the steel
surface and therefore decrease the corrosion of chloride ions to the reinforced steel;

4. Polyhydroxy groups were added to the nitrogen atoms of the amino ketone molecule
to reduce the repulsive force between molecules, which is favorable to the densification
and stability of the adsorption film.
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Figure 2. The chelate ring structure of inhibitor molecule with steel surface ion atom.

3. Materials and Methods
3.1. Materials and Sample Preparation

A commercial corrosion inhibitor containing amino ketone molecules was used in this
work. Samples of Q235 plain steel bars were cut into 50.0 × 25.0 × 5.0 mm for weight loss
tests, and samples with a size of 10.0 × 10.0 × 10.0 mm for electrochemical experiments
were embedded into epoxy resin and exposed to the electrolyte. All the samples were
polished with emery papers (grade 100 to 2000), then degreased with acetone washing, and
finally cleaned ultrasonically in ethanol and water.

3.2. Weight Loss Tests

After drying in a desiccator and weighing, the samples were immersed in a 400
mL solution containing 3.5% of NaCl and different amounts of the inhibitor (0, 1, 2, 3,
and 4%) for 7 days (Figure 3). Afterwards, they were washed first with water. Then
they were washed via a pickling solution prepared at a concentration ratio of 1:1:10 of
water, hydrochloric acid, and C6H12N4(hexamethylenetetramine). Finally, the samples
were ultrasonically cleaned with alcohol, dried with a desiccator, and weighed using an
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analytical balance. An average weight loss for each test group was calculated with values
from three parallel samples.
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3.3. Open Circuit Potential (OCP) Test

The prepared working electrode was soaked in a saturated calcium hydroxide solution
containing the rust inhibitor and sodium chloride for about 30 min, then the open-circuit
potential test was carried out, and the open-circuit potential was stable when the potential
change value was less than 2 mV within 5 min (300 s).

The specific test steps are as follows: open powersuit—new—opencircuit—Ecorr—Name
of—reference electrode—SCE(KCl)—Finish.

3.4. Electrochemical Tests

The experiments were conducted using a PARSTAT 2273 Potentiostat/Galvanostat
(AMETEK, Inc., Berwyn, PA, USA) in different solutions at 298 ± 2 K. The equipment con-
sisted of a working electrode with the steel sample, a counter electrode with platinum foil,
and a SCE reference electrode was connected with a three-electrode system (Cf. Figure 4).
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The working electrode was immersed in different simulated solutions for 0.5 h before
the electrochemical tests. The open-circuit potential (OCP) was recorded afterward at a
steady state (potential value change below 2 mV in 300 s). The AC frequency for the tests
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was in the range of 105 to 10−2 Hz with a peak-to-peak sine wave of 10 mV as the excitation
signal. For the potentio dynamic polarization tests, the potential was scanned with a rate of
0.5 mV/s for the range of −250 to +250 mV (versus OCP). All the collected electrochemical
data were analyzed with the software PowerSuite V2.5.0 and ZSimpWin Win10 version
3.60 [28]. There were four groups of tests in this work.

(1) The samples were immersed in 400 mL saturated calcium hydroxide (Ca(OH)2)
solution containing 3.5% NaCl and different amounts of the inhibitor (0, 1, 2, 3, and 4%);

(2) The concentration of NaCl added to the saturated Ca(OH)2 solution with/without
2% inhibitor was 2, 3.5, or 5%;

(3) The pH value of the saturated Ca(OH)2 solution containing 3.5% NaCl and 2%
inhibitor was adjusted with sodium bicarbonate (NaHCO3) to the range of 9.3–12.3;

(4) The temperature of the solution listed above was controlled with a thermostat
water bath at 20, 25, 30, 35, or 40 ◦C.

3.5. Surface Microscopic Analysis

The samples were immersed in SCPS containing 3.5% NaCl with and without 4%
inhibitor for 24 h. Subsequently, each sample was dried at 20 ◦C after removal from the
SCPS. The effect of corrosion inhibitor on the surface morphology of carbon steel was
observed by optical microscope.

4. Results and Discussion
4.1. Weight Loss Tests

The weight loss data were used to calculate the average corrosion rates (v, g/m2·h)
with Equation (1), and the inhibition efficiencies (IEw) against the exposure time were
determined with Equation (2) [28]:

V =
W0 − W1

s·t (1)

IEw =
V0 − V1

V0
× 100% (2)

where, v0 and v1 are the corrosion rates with and without the inhibitor, respectively.
The results of the weight loss tests are listed in Table 1. It can be seen that with the

increase in the inhibitor concentration, the steel corrosion rate decreased and the inhibition
efficiency of the inhibitor was improved. A maximum IEw of 88.73% was achieved at the
inhibitor concentration of 4%. This phenomenon could be explained by the good solubility
and high adsorption capability (significantly higher speed for adsorption than desorption)
of the organic inhibitor molecules. At a higher concentration, the molecules can form a
more compact and complete protective film on the steel surface, which can prevent the
local corrosion reactions more effectively.

Table 1. The average corrosion rate and the inhibition efficiency of the inhibitor calculated with data
from weight loss tests.

Inhibitor Concentration v (gm−2 h−1) IEw (%)

0 0.0403 /
1% 0.0089 77.73
2% 0.0077 80.85
3% 0.0060 84.91
4% 0.0045 88.73

4.2. OCP Test

The carbon steel electrodes were soaked in a saturated calcium hydroxide simulation
pore solution containing 3.5% sodium chloride, one group containing the rust inhibitor,
and another group without rust inhibitor. The open-circuit potential was measured after
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a certain period of time, and the results are shown in Figure 5. They showed that the
carbon steel electrode forms a passivation film slowly in the solution without rust inhibitor,
and it took more than 1 h for the open-circuit potential to be stable. After adding sodium
chloride, the potential immediately shifts and moves to a negative value. The carbon steel
electrode in the solution with rust inhibitor reached a stable potential in about 30 min, and
the potential is higher than that of the blank group without rust inhibitor. It indicated that
the addition of rust inhibitor promotes the appearance of passivation film on the surface of
carbon steel.
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4.3. Effect of the Inhibitor Concentration

The effects of the inhibitor concentration on the impedance behavior of steels in 3.5%
NaCl solution are shown in Figure 6. The information on |Z| at 10−2 Hz are provided
in Table 2. It can be seen from the Nyquist plots in Figure 6 that the impedance spec-
tra diameter in the inhibitor solution was significantly higher than in the absence of the
inhibitor. In addition, it increased with higher inhibitor concentrations. The difference
in the impedance arc at inhibitor concentrations of 1 and 2% was relatively small. How-
ever, an obvious increase in the electrochemical resistance was observed for specimens
with the inhibitor of 3%. This indicated that the corrosion reaction of the carbon steel
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surface was effectively decreased [29]. The results are consistent with Zhao’s [30] and
Xu’s [31] findings.
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Table 2. |Z| at 10−2 Hz.

Inhibitor
Concentration 0 1% 2% 3% 4%

|Z|/(Ωcm2) 9641.3 13,846 14,791 17,023 24,073

The minimum error and the most accurate system were determined by comparing the
fitted values of different equivalent circuits [1,5,28], as shown in Figure 7. Rs represents the
solution resistance between the working and reference electrodes. Rf is the resistance for
the film formed at the surface of copper. Rct is defined as charge transfer resistance in the
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steel corrosion process. Capacitor C1 represents the capacitance of the membrane (Cf) in
the corrosion process, which originates mainly from the dielectric function of the surface
film (the inhibitor film and/or the corrosion products). C2 represents the capacitance of the
double-layer (Cdl) [9].
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The fitted results are shown in Table 3. The inhibition efficiency in the EIS tests can be
calculated via Equation (3):

IE% =
Rct − R0

ct
Rct

× 100% (3)

where Rct and Rct
0 represent the charge transfer resistances with and without inhibitors,

respectively. In comparison with the inhibitor-free cases, the corrosion resistance of steel
samples under inhibitor-containing conditions was significantly higher. Moreover, an
obvious increase in the inhibition efficiency with the inhibitor concentration was detected.
From Table 3, it can be seen that Rs and Rct significantly increased with the addition of
corrosion inhibitors. On the contrary, the values of C1 and C2 show a decreasing trend. The
IE was increased by nearly 80% when adding 1% corrosion inhibitors. As the concentration
increased to 4%, the IE reached 89.07%. It can be concluded that the inhibitor improves
inhibition performance. This can be attributed to the corrosion resistance ability of the
protective inhibitor film formed with molecules adsorbed on the steel surface, which can
cover the activation area of the steel surface and effectively protect the steel from chloride
ion-induced corrosion. The protective film became more compact and complete with
the increase in inhibitor concentration, so the corrosion resistance was enhanced. This
is consistent with the results of the weight loss measurements. In addition, the fitted
data in Table 3 show a pattern almost similar to that of the experimental results from the
R(C(R(CR))) equivalent circuit (Cf. Figure 6).

Table 3. Fitted results of equivalent circuit elements in concrete simulation.

Conc. (%) Rs
(Ωcm2)

C1
(µFcm2)

Rf
(Ωcm2)

C2
(µFcm2)

Rct
(Ωcm2)

IE
(%)

0 2.867 60.8 643.6 614.7 2381 /
1% 2.464 29.7 2909 72.4 11550 79.39
2% 1.097 31.8 1860 54.0 11940 80.06
3% 1.346 26.3 1835 35.0 13870 82.83
4% 2.018 24.2 1249 37.5 21780 89.07

4.4. Effect of the NaCl Concentration

The Nyquist plots and Bode plots of the steel electrodes immersed in the simulated
concrete pore solutions with different NaCl concentrations are shown in Figure 8, and the
polarization curves are shown in Figure 9. In addition, |Z| at 10−2 Hz is shown in Table 4.
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Figure 8 shows that with the increase in NaCl concentration, the steel corrosion became
more significant. After the addition of 2% inhibitor, the impedance spectra diameter of the
steel electrode turned to a higher value than that of the blank groups with different concen-
trations of NaCl. This suggests an excellent corrosion resistance of the inhibitor for steels at
different NaCl concentrations. Based on the fitted data, the inhibition efficiency according
to the Equation (3) was calculated to be 65.62, 80.06, and 66.30% at NaCl concentrations of
2.0, 3.5, and 5.0%, respectively.
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Table 4. |Z| at 10−2 Hz.

Inhibitor
NaCl 2% 3.5% 5%

0% 6916.911 3015.345 3368.133

2% 15,008.92 8890.527 7118.817

The cathodic polarization curves in Figure 9 indicate that the inhibitor does not affect
the cathodic reaction mechanism. Furthermore, the breakdown potential of the inhibitor-
containing solution is obviously higher than that of the inhibitor-free solution, and the
passivation current density is lower in the presence of the organic inhibitor. This is because
the protective film of inhibitor molecules on the carbon steel surface can repair the defects
and pores of the steel passive film, and therefore inhibit the occurrence of steel corrosion.
The results in Table 5 were obtained by fitting the linear polarization of carbon steel
electrodes in simulated corrosion fluids with different concentrations of sodium chloride
with 2% inhibitor and without inhibitor (Figure 9). Ecorr and icorr, based on Figure 9, are
shown in Table 5, which indicates that the icorr of carbon steel in the solution containing
rust inhibitors is lower than that of the blank group without rust inhibitor. It also indicates
that rust inhibitors adsorb on the surface of steel bars and effectively prevent chloride ion
corrosion, thereby improving the corrosion resistance of steel bars. The inhibition efficiency
can be calculated via Equation (4):

η =
(
icorr − icorr

′)/icorr (4)

where icorr and icorr’ represent the corrosion current density of the blank group without
inhibitor and the 2% inhibitor group, respectively. Calculation results show that the
inhibition efficiency is 45.5, 91.2, and 64.1% at NaCl concentrations of 2.0, 3.5, and 5.0%,
respectively. The result of the tafel polarization curve has a similar changing tendency as
the result of EIS.

Table 5. Ecorr and Icorr of the steel at different NaCl concentrations.

Solutions with Different
NaCl and Inhibitor Concentrations Ecorr (V vs. SCE) Log (Icorr) (A·m2) Icorr (µA/cm2) H (%)

2%NaCl −0.792 −5.586 2.594
2%NaCl + 2%Inhibitor −0.526 −5.850 1.413 45.5

3.5%NaCl −0.548 −5.358 4.385
3.5%NaCl + 2%Inhibitor −0.524 −6.416 0.384 91.2

5%NaCl −0.566 −5.478 3.327
5%NaCl + 2%Inhibitor −0.635 −5.923 1.194 64.1

4.5. Effect of the pH Value

The strong alkali environment is beneficial to maintaining the stability of a passivation
film. Related studies have shown that a steel bar can be completely passivated in a strong
alkaline environment when the pH value is greater than 11.5. When the pH value near the
steel bar reaches 9.88–11.5, even if there is no chloride ion near the steel bar, the film will
also dissolve due to instability. It can be seen from Figure 10 that the impedance spectra
diameter of the steel electrode increased with the pH value, meaning that the alkaline
environment is favorable for enhanced corrosion resistance of the steel. It was also found
that both the steel dissolution and the oxygen reduction processes were restricted in the
presence of the inhibitor at all pH conditions. In addition, as shown in Figure 11, the
inhibition efficiency first increased and decreased again afterwards with the increase in the
pH value. The highest corrosion resistance value was observed at a pH value of 11.3, which
could be attributed to the formation of complete passive film on the steel bar surface under
this pH value condition.
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4.6. Effect of the Temperature

The environments of the reinforced concrete structure worked in are different, such
as in the different temperatures, so the simulated concrete pore solution with different
temperatures were designed in this experiment. In order to study the performance of the
rust inhibitor at different temperature, the electrochemical impedance spectra of carbon
steel electrodes in saturated calcium hydroxide simulated pore solutions containing 2%
rust inhibitor and 3.5% mass fraction sodium chloride at temperatures of 20, 25, 30, 35, and
40 ◦C, with one blank group without inhibitor set up for comparison.
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The results (Cf. Figure 12) revealed a good corrosion resistance of the inhibitor for
carbon steel electrode in 3.5% NaCl solution in the temperature range from 20 to 40 ◦C. The
efficiency under different temperatures followed an order of 25 > 35 > 40 > 20 > 30 ◦C and
the maximum inhibition efficiency of 81.32% was achieved at 25 ◦C. When the temperature
is below 25 ◦C, as the temperature rose, the corrosion inhibitor molecules were more
active than the corrosive medium and moved to the electrode surface first, maintaining
the stability of the passivation film. When the temperature exceeded a certain range, the
thermal movement of the corrosive medium was intensified, and its activity exceeded the
activity of the corrosion inhibitors, first reaching the electrode surface and quickly passing
through the phase interface film, then penetrating and diffusing into the metal substrate,
resulting in increased membrane capacitance, which prevented the corrosion products from
forming a dense film.
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4.7. SEM Analysis

The surface morphology of carbon steel immersed in the blank solution and corrosion
inhibitor solution after seven days have been enlarged 5000 times, as shown in Figure 13.
The observed white snowflake substance is caused by the adsorption and precipitation
of Ca(OH)2 on the surface of the carbon steel. It is evident that the surface morphology
of samples before and after adding the corrosion inhibitor is different. The surface of the
carbon steel in the new solution is rough and uneven, and a large number of pitting pits
and rust marks appear. This is an indication that the existence of chloride ions accelerates
the corrosion of the reinforcing bar surface. However, the surface of the carbon steel added
to the inhibitor solution is smooth, and there is no sign of corrosion. The surface is slightly
white, and a layer of film appears. It shows that the addition of the corrosion inhibitor can
create an adsorption film on the surface of the reinforcing bar, to prevent the corrosion
by chloride ions on the reinforcement. Hence, the corrosion inhibitor can give excellent
protection and repair effects on the reinforcement bar.
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5. Conclusions

The corrosion inhibition performance of the new type of organic inhibitor contain-
ing amino ketone molecules under different conditions was studied and the conclusions
aresummarized as follows:

1. With the increasing content of the corrosion inhibitor in the concrete pore solution, the
pitting potential (Epit) and the charge transfer resistance (Rct) increased, while current
density (icorr) and the double layer capacitance (Qdl) showed the opposite trend;

2. The corrosion inhibitors can be adsorbed on the surface of carbon steel to form a film,
which can effectively reduce the pitting corrosion of the steel bar caused by harmful
substances such as chloride;

3. Alkaline media was found to be favorable for improving the corrosion resistance of
steels. When the pH of the solution is 11.3 and the temperature is 25 ◦C, the rust
inhibition effect is best.
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