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Abstract: Understanding the intricate relationships between climate and vegetation remains a fun-
damental challenge in contemporary ecology. The ability to anticipate the specific climatic factors
affecting different tree species and understand how they respond is crucial for mitigating the impacts
of climate change on forested ecosystems. Additionally, quantitatively assessing habitat loss resulting
from anthropogenic activities is essential for informed conservation efforts. Our objective is to evalu-
ate the potential distribution of pitch pine (Pinus rigida) in North America and assess the associated
habitat loss. To achieve this, we employ a stepwise multidimensional climate envelope modeling
approach, comparing two data-intensive models—the Variable Interaction Model (VIM) and the
Variable Non-Interaction Model (VNM). These models discern the influence of diverse combinations
of climatic characteristics on the distribution of the species. Both VNM and VIM employ Shapley
values for factor ranking during construction. VNM assumes independent effects, resulting in a
hyperrectangle-shaped climate envelope, while VIM considers interactions, yielding a complex,
data-driven multidimensional envelope. Data integration involves mining the US Forest Inventories
and climatic data, encompassing 19 parameters. The results unequivocally highlight the superior
predictive accuracy of VIM compared to the Variable Non-Interaction Model, VNM. The modeling
approach developed in this study has the potential to enhance species distribution models for various
tree species in the context of evolving climatic conditions.

Keywords: species distribution models; habitat loss; climate envelops; pitch pine; Shapley values;
variable interaction model; stepwise model

1. Introduction

Understanding the intricate relationships between climate and vegetation remains a
pivotal challenge in contemporary ecology. From a practical standpoint, the crucial need to
quantitatively evaluate habitat loss for tree species under varying climate change and land
use scenarios is imperative for preserving biodiversity, ecosystem services, and the overall
well-being of the planet. Species distribution modeling aims to tackle this challenge [1,2].
Within this field, diverse quantitative methodologies are employed to unravel the ecological
determinants influencing plant species distributions, predict potential changes in response
to various climate change scenarios, and assess assorted conservation strategies [1,3–5].
Correlative Species Distribution Models (SDMs) rely on statistical relationships between
environmental parameters and species occurrence, employing statistical techniques en-
compassing correlation and regression analyses, various distance-based metrics, entropy
measures, and machine learning methods [2,6–8]. These models possess the capacity to an-
ticipate species distributions when an extensive corpus of observational data is available [9].
The inherent limitations of both correlative and mechanistic species distribution models
(SDMs) are well established [8].

The data-intensive approach enables the quantitative assessment of relationships
within complex ecological systems [10,11]. Employing data mining and data-driven analy-
ses of spatially explicit climatic datasets and individual-based forest inventories serves as
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an effective tool for investigating the connections between various quantitative features of
climate and vegetation [12,13]. For example, data-intensive modeling allowed us to investi-
gate multidimensional forest dynamics [14], succession [15], and tolerance patterns [12,15].
In another data-driven study, we employed multivariate statistics and machine learning to
rank climatic factors by their effects on forest basal area in different ecoregions [13].

The objective of this research is to evaluate the relative importance of climatic fac-
tors regarding the distribution of pitch pine in North America. We develop multidimen-
sional climate envelope models of pitch pine distribution using a data-intensive paradigm.
Pitch pine, with its unique habitat preferences and native geographic distribution [16,17],
serves as a convenient model species for species distribution modeling (Section 4.1). Its
range, spanning across the Eastern United States provides a diverse set of environmental
conditions [18–20]. Understanding the factors influencing its presence within these var-
ied habitats can offer valuable insights into the ecological requirements and adaptations
of pitch pine [21]. Moreover, as a species well known for its preference for fire-prone
ecosystems [16,20,22], studying its distribution can contribute significantly to refining and
validating species distribution models, enhancing our comprehension of broader ecological
patterns and climatic influences on species’s ranges.

We constructed climate envelope models by ranking individual climatic factors ac-
cording to their average expected marginal contribution using the methodology derived
from cooperative game theory, specifically leveraging the concept of Shapley values. We
conceptualized climatic factors as individual players within a cooperative game framework,
wherein the Shapley values serve to quantify the impact of each climatic factor. The use
of Shapley values in this context allows us to quantify the specific impact of individual
climatic factors on the overall model’s predictions. Shapley values are broadly employed
in the realm of machine learning. They aim to explain the prediction of a machine learning
model by quantifying the contribution of each feature to the prediction. Shapley values
consider all possible coalitions of features and calculate the marginal contribution of each
feature to the prediction. In general, this methodology allows for a more nuanced under-
standing of how each climatic factor contributes to the overall model, potentially enabling
the identification of which factors are most influential or critical in shaping the climate
envelope models.

We developed multidimensional climate envelope models for the pitch pine species
using 19 distinct climatic parameters (Figure 1) in conjunction with spatial distribution
data obtained from the USDA Forest Inventories dataset. Our study involved the compara-
tive analysis of two distinct methodologies for climate envelope modeling: the Variable
Interaction Model (VIM) and the Variable Non-Interaction Model (VNM). These modeling
approaches are founded on differing assumptions regarding the interplay between climatic
factors and species distributions. The Variable Non-Interaction Model operates under the
assumption that each factor independently influences species distribution and formulates a
multidimensional climate envelope resembling a hyperrectangle. Conversely, the Variable
Interaction Model is structured to consider potential collective impacts resulting from
the interaction of various climatic factors, resulting in the creation of a multidimensional
climate envelope characterized by intricate, data-driven geometries. The construction of
these climate envelope models involved the ranking of individual climatic factors based
on their average expected marginal contribution. Overall, this method provides a better
understanding of how individual climatic factors contribute to the overall model, thereby
facilitating the identification of the most influential or critical factors in shaping the climate
envelope models.
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Figure 1. Bioclimatic variables extracted from the WorldClim dataset (see Table 1 for definitions).

Table 1. Definitions of bioclimatic variables. Notation: Ti is the average temperature for the month
i; Ti = Tmaxi+Tmini

2 ; Tmaxi is the monthly mean of daily maximum temperatures for the month
i; Tmini is the monthly mean of daily minimum temperatures for the month i. SD is a standard
deviation. The wettest quarter is determined while comparing the total precipitations of each quarter:
PPTmax = max

{
PQ1 , PQ2 , . . . , PQ12

}
, and the values PQ1 = ∑3

i=1 PPTi,PQ2 = ∑4
i=2 PPTi,

PQ3 = ∑5
i=3 PPTi, . . . PQ10 = ∑12

i=10 PPTi, PQ11 = ∑1
i=11 PPTi,PQ12 = ∑2

i=12 PPTi are total precipita-
tions of 12 quarters (PPTi is a precipitation of the month i). The driest quarter is determined while com-
paring the total precipitations of each quarter: PPTmin = min

{
PQ1 , PQ2 , . . . , PQ12

}
. The warmest quar-

ter is determined comparing the total temperatures for each quarter: Tmax = max
{

TQ1 , TQ2 , . . . , TQ12

}
,

where TQ1 = ∑3
i=1 Ti,TQ2 = ∑4

i=2 Ti, TQ3 = ∑5
i=3 Ti, . . . TQ10 = ∑12

i=10 Ti,TQ11 = ∑1
i=11 Ti,

TQ12 = ∑2
i=12 Ti-total temperatures of quarters (Ti is an average temperature of the month

i). The coldest quarter is determined comparing the total temperatures for each quarter:
Tmin = min

{
TQ1 , TQ2 , . . . , TQ12

}
.

Code Appellation Formula

BIO1 Annual Mean Temperature BIO1 =
∑12

i=1 Ti
12

BIO2 Mean Diurnal Range BIO2 =
∑12

i=1(Tmaxi − Tmini)

12
.

BIO3 Isothermality BIO3 =
BIO2
BIO7

∗ 100

BIO4 Temperature Seasonality BIO4 = SD{T1, T2, ..., T12} ∗ 100

BIO5 Max Temperature of Warmest Month BIO5 = max{Tmax1 , Tmax2 , . . . , Tmax12}
BIO6 Min Temperature of Coldest Month BIO6 = min

{
Tmin1 , Tmin2 , . . . , Tmin12

}
BIO7 Temperature Annual Range BIO7 = BIO5 − BIO6

BIO8 Mean Temperature of Wettest Quarter BIO8 =
∑3

k=1 Tk
3

, where Tk is an average temperature

of the month k belonging to the wettest quarter.

BIO9 Mean Temperature of Driest Quarter BIO9 =
∑3

k=1 Tk
3

, where Tk is an average temperature

of the month k belonging to the driest quarter.

BIO10 Mean Temperature of Warmest Quarter BIO10 =
∑3

k=1 Tk
3

, where Tk is an average temperature

of the month k belonging to the warmest quarter.

BIO11 Mean Temperature of Coldest Quarter BIO11 =
∑3

k=1 Tk
3

, where Tk is an average temperature

of the month k belonging to the coldest quarter.

BIO12 Annual Precipitation BIO12 =
12

∑
i=1

PPTi.
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Table 1. Cont.

Code Appellation Formula

BIO13 Precipitation of Wettest Month BIO13 = max{PPT1, PPT2, ..., PPT12}.
BIO14 Precipitation of Driest Month BIO14 = min{PPT1, PPT2, . . . , PPT12}
BIO15 Precipitation Seasonality BIO15 =

SD{PPT1, PPT2, . . . , PPT12}
1 + BIO12/12

∗ 100

BIO16 Precipitation of Wettest Quarter BIO16 = max
{

PQ1 , PQ2 , . . . , PQ12

}
.

BIO17 Precipitation of Driest Quarter BIO17 = min
{

PQ1 , PQ2 , . . . , PQ12

}
.

BIO18 Precipitation of Warmest Quarter BIO18 =
3

∑
i=1

PPTi, month i is in the warmest quarter.

BIO19 Precipitation of Coldest Quarter BIO19 =
3

∑
i=1

PPTi, month i is in the coldest quarter.

2. Materials and Methods
2.1. Data Mining and Climate Envelop Modeling

The data mining procedure employed in our study closely aligns with the methodology
utilized in our previous research endeavors [12–14]. We utilized two datasets: the USDA
Forest Inventory and Analysis (FIA) dataset and the WorldClim dataset covering climate
data for 1970–2000, which can be accessed at the WorldClim data website. The USDA
FIA program, an ongoing forest inventory initiative initiated in the late 1960s, is designed
to survey forested ecosystems across all ecological domains in the United States. The
database is accessible from USDA Forest Service. Prior to statistical analysis, the data were
meticulously scrutinized to identify and eliminate any conspicuous outliers, following the
previously published data preparation procedures. We exclusively considered living tree
species within the forest plots for which detailed climatic characteristics were recorded.
This selection criteria led to a dataset comprising a total of 271,846 forest stands distributed
across the contiguous United States [15]. The inventory design ensures that each plot
samples a hexagonal area of approximately 6000 acres. Consequently, SDM statistics can be
computed directly based on plot information [12].

To predict the spatial distribution of pitch pine, we utilized 19 bioclimatic variables
accessible within the WorldClim dataset. The complete list of these variables is presented in
Figure 1 and further detailed in Table 1. FIA dataset includes the geographical coordinates
of FIA plots, designated by the fields LAT and LON, along with the associated values for the
19 bioclimatic attributes at these specific locations, which are identified as BIO1 through
BIO19. FIA deliberately alters certain plot locations to comply with privacy requirements;
however, this procedural adjustment does not introduce a substantial error in SDMs [12,23].
The information concerning the presence of pitch pine was obtained by using the Tree
Species Code 126, which corresponds to this particular species. Consequently, each forest
plot corresponds to a 19-dimensional vector representing the values of these climatic factors,
denoted as v = (v1, v2, . . . , v19).

To outline our methodology for modeling the spatial distribution of pitch pine, we
introduce a distinction between two pivotal concepts: the realized distribution and the
potential distribution. We define the realized distribution as the collection of forest plots (i.e.,
FIA plots in this study) where the tree species is observed to be present according to the
available dataset. In contrast, the potential distribution encompasses the set of forest plots
where the tree species could potentially exist based on the model’s predictions.

2.2. Multivariate Statistical Analysis

To explore the statistical relationships between climatic variables and pitch pine
distribution, we utilized two standard methods: correlation analysis and Principal Com-
ponent Analysis (PCA). The multidimensional statistical analysis was performed in R
using standard packages for correlational and principal component analyses (FactoMineR,
factoextra, and corrplot). All used software, detailed information, and supporting



Forests 2024, 15, 819 5 of 22

documentation are accessible from the Comprehensive R Archive Network, CRAN reposi-
tory (https://cran.r-project.org/) (downloaded in 10 April 2023).

While these analyses are widely used and their details can be found elsewhere [24], it
is important to note that both approaches are linear dimensionality reduction methods. Cor-
relation analysis constructs a matrix of correlation coefficients between all variables, while
PCA computes a set of orthogonal variables called principal components that sequentially
capture the largest variations.

2.3. Variable Interaction Model (VIM)

The Variable Interaction Model (VIM) proposed in this study discerns geographic
locations demonstrating climatic conditions akin to those conducive for the growth of pitch
pine. Notably versatile, this model is applicable across diverse tree species and geographical
regions, facilitating the identification of areas with the potential for supporting the growth
of a specific tree species.

The VIM discerns forest plots characterized by climatic factor values identical to those
observed in the realized distribution of pitch pine (Figure 2). Put differently, a plot is
deemed part of the potential distribution of pitch pine if the vector v = (v1, v2, . . . , v19) at
that location corresponds to the combination of variables identified in the realized distribution:

v = r, (1)

where r = (r1, r2, . . . , r19) represents the vector of climatic characteristic within the realized
distribution. Since vector equality is determined componentwise, the following logical
conjunction is upheld:

v1 = r1 & v2 = r2 & . . . & v19 = r19. (2)

BIOX

B
IO
Y

Figure 2. Hypothetical example illustrating the distinction between the Variable Non-Interaction
Model (VNM) and the Variable Interaction Model (VIM). The spatial distribution of the focal tree
species is depicted by green squares within the two-dimensional parameter space defined by two
climatic characteristics, BIOX and BIOY. The VNM is constructed to encompass the entire two-
dimensional region, represented as the Cartesian product of the intervals of BIOX and BIOY, inclusive
of all green and yellow squares. In contrast, the VIM is exclusively trained on the subset of locations
occupied by the green squares.

https://cran.r-project.org/
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2.4. Variable Non-Interaction Model (VNM)

The Variable Non-Interaction Model (VNM) is formulated as a traditional climate
envelope model. This model identifies geographic locations where climatic characteristics
align with the values encapsulated within the hyper-rectangle (hyperbox) that encompasses
all the observed values in the realized distribution. For instance, in the scenario where the
dimensionality of climatic variables is N = 19, a forest plot is considered part of the potential
distribution if the vector of climatic variable values, denoted as v = (v1, v2, . . . , v19), at that
specific plot satisfies the following criterion:

for every i = 1, 19 vi = r1
i or r2

i or . . . or rN
i , (3)

where r1, r2, . . . , rN represent vectors containing values of climatic characteristics within
the realized distribution of pitch pine. In essence, for a forest plot to be considered part of
the potential distribution, eachcomponent vi (1 ≤ i ≤ 19) of the vector v must align with
the corresponding component of some vector from the realized distribution.

The VNM is similarly crafted to recognize locations with climates resembling those
observed within the realized distribution. Notably, this model imposes fewer restrictions
on geographical locations (Figure 2), resulting in a more expansive predicted potential
distribution (See Section 3.2).

2.5. Ranking of Bioclimatic Variables Using Shapley Values

The Shapley value is a concept developed in cooperative game theory to fairly dis-
tribute the total payoff of the coalition among its members [25]. It captures the average
marginal contribution of a player across all feasible sequences in which players might join
the coalition. Calculated with fairness in mind, the Shapley value ensures that each player
receives recognition in proportion to their individual contributions to the group. Denoted
as player i, the Shapley value represents a numerical measure quantifying the significance
of this player within the broader coalition of players [26]:

∑
S⊆N\{i}

Ks

(
v(S ∪ {i})− v(S)

)
, (4)

where v represents a function that assigns real numbers to subsets of players, N is the total
coalition consisting of n players, S is a specific subset of players within the coalition N,
v(S) denotes the value or worth of the coalition S, v(S ∪ {i}) represents the value of the
coalition formed by adding player i to the subset S, and Ks is a combinatorial coefficient,
calculated as follows: Ks =

|S|!(n−|S|−1)!
n! .

The Shapley value of player i gauges their importance within the coalition N by
considering their contributions to the value of various coalitions formed when adding
player i to different subsets S of the total coalition. We consider all possible permutations
of players and calculate their marginal contributions to each coalition. The Shapley value
for a player is the average of their marginal contributions over all possible orderings.
It is calculated as a weighted average, with weights determined by the combinatorial
coefficients Ks. This approach ensures equitable distribution of the coalition’s total value
among its members by accounting for their respective contributions across all possible
arrangements [26].

We employ Shapley scores to assess the climatic characteristics that make the most
significant contributions to the potential distribution of pitch pine, taking into account both
the Variable Interaction Model (VIM) and the Variable Non-Interaction Model (VNM). In
our context, the Shapley inclusion score of an individual climatic variable, denoted as i,
concerning a combination of climatic variables in set S (where set S does not include i), is
determined as the scaled difference adjusted by the combinatorial coefficient Ks between
the “model score” of S with the inclusion of i and the “model score” of S (as shown in
Equation (4)). The “model score” in the Variable Interaction Model (VIM) is determined
by the number of FIA plots where all values in a specific set of climatic variables match
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exactly with at least one plot from the realized distribution. In the Variable Non-Interaction
Model (VNM), the “model score” for a specific set of climatic variables is determined by
the number of plots falling within the hyper-rectangle that is constructed from the values
in the realized distribution.

In particular, to calculate the Shapley scores for the 19 climatic variables, we create a
combination matrix with 18 columns and rows that represent all possible subsets of the set of
18 variables. Utilizing this combination matrix, we generate a 19-column matrix containing
the Shapley values. The entry in this matrix at the i-th row and j-th column represents the
Shapley inclusion score of the j-th climatic variable concerning the combination of climatic
variables corresponding to the i-th row of the combination matrix. It is important to note
that we do not consider the Shapley inclusion score of a climatic variable with respect to
an empty set, which leads to the Shapley matrix having one fewer row compared to the
combination matrix. Please refer to Appendix A for a comprehensive example illustrating
the calculation of Shapley scores.

3. Results
3.1. Climatic Conditions in Pitch Pine Habitats: Multivariate Statistical Analysis

The correlation analysis unveiled clusters of closely interlinked climatic factors. The
first cluster, identified as the largest cluster of positively correlated factors (Figure 1), encom-
passes nearly all precipitation-related variables (BIO12, BIO13, BIO14, BIO16, BIO17, BIO18,
and BIO19), with the sole exception of BIO15, representing Precipitation Seasonality. These
factors exhibit moderate-to-strong positive correlations among themselves. Notably, they
demonstrate minimal correlation with temperature-related and variability-related factors.

The second-largest cluster in Figure 1 comprises five temperature-related factors
(BIO1, BIO5, BIO6, BIO10, and BIO11). These factors exhibit moderate-to-strong positive
correlations with each other and display no significant correlation with the factors from the
first cluster of precipitation-related factors. However, two temperature-related factors do
not fall into this temperature-related cluster. One of them, BIO9 Mean Temperature of Driest
Quarter, demonstrates small-to-moderate positive correlations with many precipitation-
related factors of the first cluster and temperature-related factors of the second cluster. The
second exceptional factor in temperature-related group, BIO8 Mean Temperature of Wettest
Quarter, demonstrates a modest negative correlation with the precipitation-related factor
BIO19 Precipitation of Coldest Quarter but exhibits no significant correlations with any
other factors.

Two variability-related variables, BIO4 Temperature Seasonality and BIO7 Tempera-
ture Annual Range, can be regarded as the third and smallest cluster. This association is
distinctive, given that almost all significant correlations between the factors illustrated in
Figure 3 are positive. However, BIO4 and, to a lesser extent, BIO7 show negative correla-
tions with several precipitation- and temperature-related factors. An exceptional factor
from the precipitation-related group, BIO15 Precipitation Seasonality, is somewhat more
connected to this cluster, as BIO15 displays a small correlation with both BIO4 and BIO7.

Some of these observed associations can be readily explained by their respective
formulas (Table 1 and Figure 1), while certain outcomes are unexpected and pose challenges
for interpretation. In particular, a close positive correlation between BIO2 and BIO3 is
obviously expected; however, BIO3 is not correlated with BIO7, which is also involved in the
BIO2 definition (Table 1). Similarly, BIO7 shows a moderate negative correlation with BIO6,
which one would anticipate given how BIO7 is computed. However, counterintuitively,
BIO7 is not correlated with BIO5 but demonstrates another modest negative correlation
with BIO11 and a positive correlation with BIO4. The significant negative correlation
between BIO8 and BIO19 is a rare example of the association between temperature- and
precipitation-related factors, but a rational explanation of this association is not obvious.
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Figure 3. Climatic characteristics, correlation diagram.

The application of Principal Component Analysis (PCA) indicates a significant poten-
tial for dimensionality reduction within the dataset (Figures 4–9). The initial three principal
components account for approximately 70% of the variance, while the first six components
explain around 90%. We expect the PCI results to mirror the findings of the correlation
analysis, revealing three clusters roughly associated with three groups of climatic variables:
precipitation, temperature, and variability-related factors. This expectation stems from the
statistical similarities between correlation analysis and PCI, as both methods estimate linear
relationships and operate with covariances and correlations [27]. However, no climatic
factor contributes more than 10% to the first principal component (Figure 5). Counterin-
tuitively, the first principal component (Figure 5) is primarily influenced by uncorrelated
factors (BIO17, BIO4, BIO11, BIO12, and BIO14) representing all three groups of climatic
variables, along with seven other variables. The second and third principal components
(Figures 6 and 7) align more closely with our expectations. It seems that temperature-
related factors—BIO8, BIO1, BIO5, BIO10, BIO6, BIO11—predominantly contribute to the
second principal component (Figure 6), while variability-related factors—BIO2, BIO7, and
BIO3—have the most substantial impact on the third component (Figure 7). In summary,
PCA indicates that the dimensionality of the set of climatic variables can be significantly re-
duced through orthogonal linear transformation, with six principal components explaining
approximately 90% of the variance. It is noteworthy that these principal components do
not closely align with specific climatic variables.
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Figure 4. The percentage of explained variances of the principal components.

Figure 5. The contribution of the bioclimatic variables to the first principal component. The red
dashed line illustrates the anticipated average contribution calculated under the assumption of equal
contribution from all variables.

Figure 6. The contribution of the bioclimatic variables to the second principal component. The red
dashed line illustrates the anticipated average contribution calculated under the assumption of equal
contribution from all variables.
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Figure 7. The contribution of the bioclimatic variables to the third principal component. The red
dashed line illustrates the anticipated average contribution calculated under the assumption of equal
contribution from all variables.

Figure 8. The contribution of the bioclimatic variables to the fourth principal component. The red
dashed line illustrates the anticipated average contribution calculated under the assumption of equal
contribution from all variables.

Figure 9. The contribution of the bioclimatic variables to the fifth principal component. The red
dashed line illustrates the anticipated average contribution calculated under the assumption of equal
contribution from all variables.
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3.2. Stepwise Climate Envelop Modeling: VIM and VNM

Shapley scores were computed for both the Variable Interaction Model (VIM) and the
Variable Non-Interaction Model (VNM) to establish a ranking of climatic factors influencing
the distribution of the pitch pine (Figures 10–12). Figures 13 and 14 depict the alterations
in the potential area for pitch pine during the stepwise simulations conducted with VIM
and VNM. Ultimately, Figures 15 and 16 illustrate maps delineating the potential areas for
pitch pine across the conterminous United States, calculated through the VIM and VNM
stepwise models.

The Variable Interaction Model (VIM) demonstrates significant efficacy over the Vari-
able Non-Interaction Model (VNM) in terms of mitigating the potential area for pitch pine.
The initial potential area, representing the expanse covered by the network of USDA FIA
permanent plots across the conterminous United States, is considered as the baseline. Fol-
lowing the execution of only the first two steps, VIM (VIM,2) reduces this original potential
area by 50% (see Figure 11), effectively eradicating pitch pine from the western part of the
USA (Figure 15a, FIM,2). Conversely, VNM achieves a comparable outcome only upon
incorporating the first six factors (see Figures 12 and 15r, FNM,6). Upon the integration of
all 19 climatic variables, the outcomes of both models also exhibit significant disparities.
VIM,19 projects a potential area that, while larger than the realized area, does not deviate
significantly (Figure 10a,b). In contrast, VNM anticipates a potential distribution area
approximately four times greater than the observed area (Figure 10a,c).

(a) Pitch pine realized distribution

(b) VIM (c) VNM

Figure 10. The pitch pine realized distribution is depicted in (a), while the potential distributions
under the VIM and VNM models are represented in (b) and (c), respectively. These distributions are
based on the set of 19 climatic characteristics BIO1 through BIO19.

The dynamics of potential area reduction, observed through the sequential addition of
more regressors, manifests in three discernible stages: (1) an initial rapid decrease during
the initial iterations, succeeded by (2) a more gradual reduction over subsequent iterations
as the area converges towards a final state, and (3) the attainment of a stationary area during
the concluding iterations, demonstrating minimal alteration (Figures 11 and 12). Notably,
the initial stage of rapid decrease spans approximately six iterations, aligning broadly with
the findings of the Principal Component Analysis (PCA) as detailed in Section 3.1. Indeed,
we can regard the evolution of our stepwise climate envelope models guided by regressor
selection through Shapley values as an alternative manifestation of dimensional analysis.
In this context, the disparity in predictions between VIM and VNM underscores the pivotal
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significance of the relationships that pitch pine shares not only with individual climatic
variables but also with their collective and interactive effects.
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Variable Interaction Model Shapley scores

Figure 11. Shapley scores (in percentage from the maximal one) for the set of 19 climatic characteristics
according to the VIM.
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Figure 12. Shapley scores (in percentage from the maximal one) for the set of 19 climatic characteristics
according to the VNM.

Upon examining the group representation, it becomes apparent that the Variable
Interaction Model (VIM) predominantly features precipitation- and temperature-related
factors as the foremost six primary climatic variables (BIO15, BIO14, BIO9, BIO11, BIO1,
and BIO8, as indicated in Figure 11). Theoretically, the predominant inclusion of average
temperature and precipitation-related factors in the Variable Interaction Model (VIM) aligns
with and potentially justifies the conventional selection of these variables as pivotal in
species distribution modeling. Nevertheless, a more nuanced analysis reveals that the
scenario is inherently intricate and multifaceted.

The foremost variable, BIO15 Precipitation Seasonality, although officially categorized
within precipitation-related variables, is, in reality, more accurately characterized as a
variability-related quantity (Table 1). Furthermore, correlation analysis indicates that BIO15
is an exceptional variable within the precipitation-related group, displaying no significant
correlation with other variables in this group (Figure 3). Instead, it aligns with the third
cluster, comprised of variability-related characteristics (see Section 3.1). The second variable,
BIO14 Precipitation of the Driest Month, falls within the category of common precipitation-
related variables, aggregating in the first cluster as revealed by correlation analysis (see
Figure 3 and Section 3.1).
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Figure 13. Predicted potential area for pitch pine (expressed as a percentage of FIA plots) utilizing
the Variable Interaction Model (VIM). Histogram columns depict simulations ranging from VIM2
to VIM19. The vectors in brackets display climatic variables (BIO1–BIO19) ordered by Shapley
values (refer to Figure 11). Distribution maps for pitch pine in each VIM model are showcased in
Figures 15 and 16.

Figure 14. Predicted potential area for pitch pine (expressed as a percentage of FIA plots) utilizing the
Variable Non-Interaction Model (VNM). Histogram columns depict simulations ranging from VNM2
to VNM19. The vectors in brackets display climatic variables (BIO1–BIO19) ordered by Shapley
values (refer to Figure 12). Distribution maps for pitch pine in each VIM model are showcased in
Figures 15 and 16.

The third-ranked variable, BIO9 Mean Temperature of Driest Quarter, stands out
as an exceptional variable that does not align with any of the three clusters unveiled by
correlation analysis. Instead, it exhibits modest correlations with both temperature- and
precipitation-related factors (Figure 3). Subsequently, the variable BIO11 Mean Temperature
of Coldest Quarter aligns as a typical representative from the third cluster encompassing
temperature-related characteristics. It demonstrates high-to-moderate correlations with
other variables within this cluster. The fifth-ranked variable, BIO1 Annual Mean Tempera-
ture, represents another quantity from the third cluster. Significantly, this represents the
first occurrence where the algorithm selects a variable with substantial correlation to its
predecessor, given that BIO11 and BIO1 exhibit a high degree of correlation. The sixth
variable, BIO8 Mean Temperature of Wettest Quarter, stands out as another exceptional
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quantity within the temperature-related group. It displays no significant correlation with
other variables and exhibits a closer association with the third cluster of variability-related
factors (Figure 3). The VIM model, employing these six variables (VIM,6), results in a highly
significant reduction in the potential area relative to the addition of subsequent variables.
The inclusion of the next two variables leads to progressively smaller decreases in potential
area. Unsurprisingly, it seems that the algorithm prioritizes uncorrelated factors for the
selection of primary climatic variables.

(a) VIM,2 (b) VNM,2 (c) VIM,7 (d) VNM,7

(e) VIM,3 (f) VNM,3 (g) VIM,8 (h) VNM,8

(i) VIM,4 (j) VNM,4 (k) VIM,9 (l) VNM,9

(m) VIM,5 (n) VNM,5 (o) VIM,10 (p) VNM,10

(q) VIM,6 (r) VNM,6 (s) VIM,11 (t) VNM,11

Figure 15. Potential distribution for pitch pine in the USA based on Variable Interaction Models (VIMs)
and Variable Non-Interaction Models (VNMs) using sets of variables ranging from 2 to 11 (VIM2-11
and VNM2-11). Climatic variables (BIO1–BIO19) are arranged by Shapley values (Figures 11 and 12).
The areas of each potential distribution are provided in Figures 13 and 14. Distribution maps for
VIM12-19 and VNM12-19 are presented in Figure 16.
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(a) VIM,12 (b) VNM,12 (c) VIM,16 (d) VNM,16

(e) VIM,13 (f) VNM,13 (g) VIM,17 (h) VNM,17

(i) VIM,14 (j) VNM,14 (k) VIM,18 (l) VNM,18

(m) VIM,15 (n) VNM,15 (o) VIM,19 (p) VNM,19

Figure 16. Potential distribution for pitch pine in the USA based on Variable Interaction Models
(VIMs) and Variable Non-Interaction Models (VNMs) using sets of variables ranging from 12 to
19 (VIM12-19 and VNM12-19). Climatic variables (BIO1–BIO19) are arranged by Shapley values
(Figures 11 and 12). The areas of each potential distribution are provided in Figures 13 and 14.
Distribution maps for VIM2-11 and VNM2-11 are presented in Figure 15.

The comparison with PCA analysis reveals some similarities, despite the complexity
of PCA outcomes, where many variables contribute almost equally to the leading principal
components. Nevertheless, we attempt to identify the variables that contribute the most
to the first five principal components (BIO17, BIO8, BIO2, BIO9, and BIO15) and compare
them with the first variables selected by VIM (BIO15, BIO14, BIO9, BIO11, BIO1). This
comparison results in two common variables (BIO15 and BIO9). Notably, both the sixth and
seventh variables, namely BIO8 and BIO17, are included among the primary contributors
to the top five principal components.

VIM manifests a notable proficiency in forecasting the distribution of pitch pine
while concurrently facilitating the prioritization of climatic factors and dimensionality
reduction within the system. Through a dimensional analysis involving PCA, VIM, and
VNM, it is apparent that these systems may be considered five–six-dimensional. This
estimation holds significance, particularly in addressing concerns of overfitting when
constructing models with multiple dimensions. Multidimensional statistical models entail
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a trade-off, necessitating the utilization of all available information to prevent underfitting,
while avoiding the construction of an overly fitted model that functions effectively solely
for a specific dataset. The convergence dynamics of VIM and VNM as summarized in
Figures 13 and 14, indicate the potential for overfitting after the inclusion of the initial
five–seven factors. However, this potential overfitting does not significantly impact the
model predictions, as the predictions remain unchanged after 14 steps. The substantial
contrast between VIM and VNM underscores the critical importance of the combined
effects of diverse climatic factors, highlighting the inefficacy of models built on averaged
aggregated climatic characteristics.

4. Discussion
4.1. Pitch Pine: Ecology and Modeling

To evaluate the efficacy of our species distribution modeling (SDM) methodology, we
seek a tree species meeting specific criteria: (1) the tree species must exhibit a distribution
confined exclusively within the contemporary United States, encompassing regions entirely
covered by the Forest Inventory and Analysis (FIA) dataset; (2) the tree should function
as a dominant species within certain habitats; and (3) the species should lack significant
commercial or decorative value, precluding intentional cultivation or selective harvesting.
Consequently, its range mirrors native habitats and is minimally impacted by silvicultural
practices and land management activities. The selection of pitch pine aligns closely with
our specified criteria, rendering it virtually ideal for our study.

The primary habitat of pitch pine (Pinus rigida) is predominantly situated in the east-
ern region of the United States, spanning from Southern Maine to Northern Georgia and
Alabama, with sporadic occurrences in the Midwest. Although the native range of pitch
pine is predominantly concentrated in North America, its distribution extends marginally
into Canada. In Canada, pitch pine is primarily localized in Southern Ontario and Quebec,
particularly around the vicinity of Lake Erie in environments characterized by well-drained
sandy soils and ecosystems susceptible to fires [28]. The Canadian distribution, in contrast
to its prevalence in the United States, is noticeably constrained and geographically concen-
trated. Notably, our model disregards this smaller Canadian population in its assessments.

The ecology of pitch pine is closely tied to its native habitat in the Eastern United
States [16,19,28]. This species is well adapted to thrive in a variety of challenging environ-
mental conditions and plays a significant role in the ecosystems where it occurs [18,29].
Pitch pines are medium-sized trees; typically, they attain maximum heights of approxi-
mately 20 m. They prefer well-drained, sandy soils and can tolerate nutrient-poor, acidic
soils [30]. Their ability to grow in nutrient-poor soils also reduces competition from other
tree species that may require more fertile soil conditions. Their range includes regions with
a history of frequent wildfires, and they have adapted to these conditions, more specifically,
the cones of pitch pines typically remain closed until exposed to the high temperatures of a
fire [16,20,29]. This heat triggers the cones to open and release seeds, allowing for post-fire
regeneration. Fires also help control competing vegetation, clear the forest floor, and create
open areas for new seedlings to establish [22,29]. The dominance of pitch pine in certain
ecosystems is a result of its unique ecological adaptations, and its ability to persist and
regenerate after wildfires [30,31]. Pitch pine often serves as a dominant species in a range
of fire-dependent ecosystems, encompassing pine barrens, sand plains, coastal dunes, early
successional habitats, heathlands, and savannas.

Pitch pine has held historical economic significance, although its commercial value
for timber and resin production has waned. Presently, its ecological and conservation
importance, alongside its role in preserving specialized ecosystems, supersedes its eco-
nomic utility [19,21,29,30]. Since the 1950s, pitch pine has been used to a limited extent
in forest plantations in Korea [31,32]. The term “pitch pine” originates from the historical
application of its resinous sap, referred to as “pitch”, prized for its diverse uses, notably in
waterproofing and preserving wooden materials in shipbuilding. Previously, pitch pine
wood was harvested for shipbuilding, construction, and fuel due to its renowned durability
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and resistance to decay, ideal for outdoor applications. However, the ascendancy of other
pine species with larger, straighter trunks in the commercial timber market led to a decline
in the economic significance of pitch pine. Its ornamental use is also exceedingly rare
in landscaping. Nevertheless, certain anthropogenic factors continue to impact its range.
Historical land use practices like urbanization, agriculture, and fire suppression have no-
tably diminished the extent of pitch pine habitats [30]. Fire suppression in particular has
disrupted the natural fire regime crucial for pitch pines, leading to a decline in suitable
habitats [21]. These factors should indeed be considered when evaluating the validity of
modeling results. Nonetheless, the distribution of pitch pine, as a non-commercial species,
remains primarily confined to its native habitat, making it an advantageous option for
species distribution modeling.

4.2. General Discussion

The well-known limitations of mechanistic and correlative SDMs have led to extensive
efforts to evaluate these model types. This evaluation often involves inter-comparisons
utilizing well-studied model species [4,33]. Occasionally, researchers seek to integrate
both approaches, aiming to develop hybrid models that alleviate the constraints associated
with each model type [34]. In the context of SDMs that primarily consider climatic factors
as predictors, often referred to as climate envelope models, the conventional choice for
primary factors typically encompasses average temperature and precipitation [12,13,35].
However, a heightened degree of complexity arises when SDMs establish connections
between species abundance and a multitude of climatic factors, leading to the notable issue
of multicollinearity among these factors, which substantially exacerbates problems related
to model overfitting [13].

The selection of average temperature and precipitation as primary climatic factors in
SDMs is influenced by both historical conventions and practical considerations related to
modeling convenience [13]. The roots of climate–vegetation modeling trace back to 19th-
century biogeographical studies, with notable contributions from Alexander von Humboldt
and Aimé Bonpland [36], and the pioneering climate–vegetation classification by Wladimir
Köppen, developed between 1884 and 1936 [37–39]. Early studies recognized the complex-
ity of climate–vegetation interactions. The initial Köppen classification relied solely on
average temperature and precipitation [37]; however, subsequent refinements highlighted
the importance of incorporating inter-seasonal changes for effective climate–vegetation
classification [38,39]. This foundational work has been expanded upon [40–43] and applied
in delineating US ecoregions [44]. The later developed Holdridge system [45–47] incorpo-
rates three primary variables: precipitation, biotemperature (annual average temperature
adjusted according to the vegetation period’s duration), and the potential evapotranspira-
tion ratio. While the intricate nature of climate–vegetation systems is widely acknowledged,
many modern advancements, including Climate Envelope Models (CEMs), Correlative and
Mechanistic Species Distribution Models (SDMs), and Dynamic Global Vegetation Models
(DGVMs), still rely on averaged macroscopic climatic parameters [12,34].

5. Conclusions

Our original modeling methodology serves two main objectives: firstly, it facilitates
the examination of the individual impact of each climatic variable on the distribution of
pitch pine. Secondly, it enables the assessment of the significance of interactions between
various climatic factors for this species and isolates the most influential ones. We compare
two climate envelope modeling methods, the Variable Interaction Model (VIM) and the
Variable Non-Interaction Model (VNM), to evaluate their effectiveness in ranking the
19 climatic factors. Both the VNM and VIM methodologies involve the utilization of a
factor-ranking approach based on Shapley values during their construction processes.
The VNM assumes independent effects of each climatic factor on species distribution,
forming a hyper-rectangle-shaped climate envelope. In contrast, the VIM accounts for
interactions between climatic factors, creating a complex, data-driven multidimensional
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climate envelope. The findings unequivocally indicate a notable superiority of the Variable
Interaction Model (VIM) in terms of predictive accuracy when compared to the Variable
Non-Interaction Model (VNM). This underscores the significance of acknowledging the
intricate structure of the climatic system and the interconnected nature of various climatic
attributes that nonlinearly influence species distribution.
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Appendix A. Calculation of Shapley Values: Numerical Example

Here is an illustrative example demonstrating the calculation of Shapley scores for
VIM and VNM models. The dataset for consideration is as follows:

Plot ID Clim_var_1 Clim_var_2 Clim_var_3 Presence
1 1 2 3 1
2 1 2 3 0
3 3 2 1 1
4 2 2 1 0
5 3 3 1 1
6 3 3 2 0
7 2 4 3 1
8 4 1 1 0
9 4 3 3 0

10 2 2 1 1

Figure A1. In the dataset: Plot ID-identificator of a forest plot; Clim_var_1, Clim_var_2 and
Clim_var_3-climatic characteristics (having binned values); Presence-indicator of a tree species
presence (‘1’—if present; ‘0’—if not).

We make a combination matrix for two climatic variables. The logical-valued combi-
nation matrix is: 

T T
T F
F T
F F


Based on the combination matrix, we can see what combinations of climatic variables

we need for Shapley values computation:

M =


v1,

{
v2, v3

}
v2,

{
v1, v3

}
v3,

{
v1, v2

}
v1,

{
v2
}

v2,
{

v1
}

v3,
{

v1
}

v1,
{

v3
}

v2,
{

v3
}

v3,
{

v2
}

v1,
{

∅
}

v2,
{

∅
}

v3,
{

∅
}


Now, using matrix M, we can compute the Shapley scores.
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As we know, a Shapley value of a climatic variable vj is a scaled (by a combinatorial
coefficient) difference between the model score of the ensemble of climatic variables without
vj and the model score of this ensemble including vj.

Regarding the matrix M, its entry mij is mij = (vj,
{

. . .
}

), where vj is a single climatic
variable and

{
. . .

}
is the mentioned ensemble of climatic variables.

Appendix A.1. VIM Shapley Scores

Here, we calculate Shapley scores for the Variable Interaction Model (VIM).
Let SVIM be the matrix having VIM Shapley scores: SVIM = (sij).
The SVIM matrix is calculated based on matrix M: its entry sij is the VIM Shapley score

of the climatic variable vj with respect to the ensemble of climatic variables from the entry
mij of the matrix M.

For more detailed illustration of how the Shapley matrix is calculated, let us compute
the entry s11.

s11 is the VIM Shapley score of v1 with respect to the set of climatic variables
{

v2, v3
}

(see m11 of matrix M). So, s11 is a scaled difference between the VIM score of
{

v2, v3
}

and
VIM score of

{
v1, v2, v3

}
.

Now, what are VIM scores of the sets
{

v2, v3
}

and
{

v1, v2, v3
}

? To answer this
question, we need to look at the realized distribution (FIA plots where tree presents). In
our case, the realized distribution are the plots 1, 3, 5, 7 and 10.

The VIM score of
{

v1, v2, v3
}

is the number of plots having exactly the same values of
v1, v2, and v3 as in one of the plots from realized distribution:

• In plot 1, the values of v1, v2, and v3 are 1, 2, and 3 correspondingly. The second plot
is the only one that has the same values, so the VIM score of

{
v1, v2, v3

}
is 2.

• In plot 3, the values of v1, v2, and v3 are 3, 2, and 1 correspondingly. It is the only plot
having such values, so the VIM score of

{
v1, v2, v3

}
is 2 + 1 = 3.

• In plot 5, the values of v1, v2, and v3 are 3, 3, and 1 correspondingly. It is the only plot
having such values, so the VIM score of

{
v1, v2, v3

}
is 3 + 1 = 4.

• In plot 7, the values of v1, v2, and v3 are 2, 4, and 3 correspondingly. It is the only plot
having such values, so the VIM score of

{
v1, v2, v3

}
is 4 + 1 = 5.

• In plot 1, the values of v1, v2, and v3 are 2, 2, and 1 correspondingly. Plot 4 is the only
one that has the same values, so the VIM score of

{
v1, v2, v3

}
is 5 + 2 = 7.

This way, we obtain that the VIM score of the collection
{

v1, v2, v3
}

is 7. Using similar
considerations, we obtain that the VIM score of the set

{
v2, v3

}
is 7.

Finally, s11 is a scaled difference between the VIM score of
{

v2, v3
}

and the VIM score
of

{
v1, v2, v3

}
:

s11 = k(7 − 7) = 0,

where k is combinatorial coefficient from the definition of the Shapley score:

k =
| S |!(n− | S | −1)!

n!
.

In our case, in total, we have three climatic variables v1, v2, and v3, so n = 3, S is the
set

{
v2, v3

}
, so the number of variables in this subset is | S |= 2 and

k =
2!(3 − 2 − 1)!

3!
= 0.

This way, we compute the whole Shapley matrix:

SVIM =

0 0 0
0 0 1

3
1
3

2
3

2
3
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Next, the VIM Shapley score of climatic factor vi is the average value of the i-th column
of the matrix SVIM. Hence, the climatic variables v1, v2, and v3 have VIM Shapley scores
(0.3, 0.7, and 0.5) correspondingly. The second climatic variable v2 has the highest score,
and therefore, v2 plays the most important role in the VIM ’game’ of predicting the potential
area of a species.

Appendix A.2. VNM Shapley Scores

In this section, we calculate the Shapley scores for the Variable Non-Interaction
Model (VNM).

Let SVNM be a Shapley matrix with VNM Shapley scores: SVNM = (sij).
The SVNM matrix is also based on matrix M: its entry sij is the VNM Shapley score of

the climatic variable vj with respect to the ensemble of climatic variables from the entry mij.
Next, we compute entry s11, which is a scaled difference between the VNM score of{

v2, v3
}

and the VNM score of
{

v1, v2, v3
}

.
The VNM score of the set

{
v1, v2, v3

}
is the number of plots having the following

property: v1, v2, and v3 must be the same as in some of the plots from the realized distribu-
tion. In our case, v1 must be 1 or 2 or 3; v2 must be 2 or 3 or 4; and v3 must be 1 or 3. The
number of plots with this property is 7, so the VNM score of

{
v1, v2, v3

}
is 7. Similarly, we

obtain that the VNM score of
{

v2, v3
}

is 8.
Finally, s11 is a scaled difference between the VNM score of

{
v2, v3

}
and the VNM

score of
{

v1, v2, v3
}

:
s11 = k(8 − 7) = 0,

where k is combinatorial coefficient calculated above (see the section about the VIM Shapley
matrix); k = 0. This way, we can compute the whole VNM Shapley matrix:

SVNM =

0 0 0
1
3 0 1

3
2
3

1
3

1
3


Next, the VNM Shapley score of climatic variable vi is the average value of the i-th

column of matrix SVNM. Hence, climatic variables v1, v2, and v3 have VNM Shapley scores
(0.5, 0.3, and 0.7) correspondingly. The third climatic variable v3 has the highest score, and
therefore, v3 plays the most important role in the VNM ’game’ of predicting the potential
area of a tree species.
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