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Abstract: Name resolution system is an important infrastructure in Information Centric Networking
(ICN) network architecture of identifier–locator separation mode. In the Local Name Resolution
System (LNMRS), a hierarchical name resolution system for latency-sensitive scenarios; higher-level
resolution nodes serve more users and suffer more storage pressure, which causes the problem
of unbalanced storage load between layers, and requires inter-layer collaborative storage under
the constraint of deterministic service latency characteristics. In this paper, we use the constraints
required for inter-layer collaborative resolution to construct an index neighbor structure and perform
collaborative storage based on this structure. This method relieves storage pressure on high-level
resolution nodes. Experimental results show that the increase of total storage load brought by the
proposed method is 57.1% of that by MGreedy algorithm, 8.1% of that by Greedy algorithm, and 0.8%
of that by the K-Mediod algorithm when relieving the same storage load for high-level resolution
nodes. Meanwhile, deterministic service latency feature is still sustained when our proposed method
is used for collaborative resolution.

Keywords: deterministic latency; collaborative storage; name resolution systems; storage scalability

1. Introduction

ICN is an emerging future network architecture proposed in recent years [1–5].
ICN takes information as the center of the network, which adopts the paradigm of separa-
tion of the identifier and locator, and shifts the communication model from host-centric to
information-centric. In-network caching, mobility, security, and other features are easily
supported in ICN, which is compatible with the requirements of emerging applications
such as IoT, big data, and cloud computing [6–10]. According to the mode of routing
and forwarding, ICN architectures can be classified into two categories [11–13]: identifier-
based routing mode and identifier–locator separation mode. In the ICN architecture of
identifier-based routing mode, routing and forwarding are coupled, which cannot realize
smooth transition with IP networks and is difficult to solve the problem of routing scalabil-
ity. In the ICN architecture of identifier–locator separation mode, an independent name
resolution system is responsible for the identifier to locator mapping, and content delivery
cannot be achieved unless the name resolution process is completed. Here, the routing
and forwarding process are decoupled, and could evolve separately. In the scenario of IP
and ICN hybrid networking, the identifier–locator separation mode is mostly adopted, in
which the name resolution system is an important infrastructure.

1.1. Name Resolution Systems in ICN

ICN name resolution system structure is classified into single-layer structure and
hierarchical structure, and the hierarchical structure is further classified into tree-based
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hierarchical structure and DHT-based hierarchical structure [14–17]. In the name reso-
lution system with single-layer structure, the DHT algorithm is performed for structure
maintenance, storage, and resolution of mapping records among resolution nodes. A
resolution system with single-layer structure can achieve good storage load balancing
among resolution nodes, but a resolution request may be redirected several times before it
is responded to, which leads to high resolution latency. In a hierarchical name resolution
system, resolution nodes in the same network region form a local structure, and one of
them is considered a super node of this local structure and participates in the construction
of structure among resolution nodes in the larger network region (the upper layer). Here,
resolution of a mapping record is firstly performed in the local structure; if it fails, it is
performed in the upper layer, until the resolution process reaches the top layer. Hierarchical
name resolution systems take storage localization as a character, which also brings a kind
of load balancing. In a tree-based hierarchical name resolution system, resolution nodes in
the same region form a tree structure, in a DHT-based hierarchical name resolution system;
resolution nodes in the same region form DHT structure.

LNMRS is a tree-based hierarchical name resolution system [18–23], which is designed
mainly for latency-sensitive application scenarios. In LNMRS, users of each name resolution
node form the service area of that node, and a resolution node provides name resolution
service with deterministic service latency only to users in its service area. The deterministic
service latency value of name resolution nodes in the same level is the same, and the
deterministic service latency value of high-level name resolution nodes is larger than that
of low-level name resolution nodes. At the same time, service area of a low-level name
resolution node is completely included by the service area of its parent node. High-level
name resolution nodes cover more users and suffer larger storage pressure, while low-
level name resolution nodes suffer smaller storage pressure, which causes the problem
of unbalanced storage load between layers in LNMRS. It is worth studying inter-layer
collaborative storage and resolution under the constraint of a deterministic service latency
feature to achieve better storage load balancing in LNMRS.

1.2. Collaborative Storage and Resolution Methods

Name resolution systems with different structures use different collaborative storage
and resolution methods. In name resolution systems based on single-layer structure (e.g.,
NetInf [24], DHT-NRS [25], etc.), when resolution requests cannot be fulfilled locally,
the resolution request is routed to the next resolution node according to different DHT
implementations. In tree-based hierarchical name resolution systems (e.g., DONA [26],
Ftree [27], etc.), resolution requests are forwarded up along the tree structure until the
request is fulfiled by a resolution node or the request reaches the root of the tree structure.
In DHT-based hierarchical name resolution systems (e.g., MDHT [28], HSkip [29], etc.), if a
resolution request is not fulfilled locally, it is firstly redirected in the local DHT structure; if
it is still not fulfilled, it will be redirected by the super node in the local structure to nodes
in the DHT structure of the higher level, until it reaches the highest level. In LNMRS, a
user can only resolve mapping records from the resolution node in whose service area it
resides, and it is because of this special service pattern that resolution service latency is
guaranteed to be smaller than a deterministic latency value. If a user sends a resolution
request to a resolution node outside of the service area it resides in, as in the commonly
used collaborative resolution methods mentioned above, the special service pattern is
violated, and the resolution service latency cannot be guaranteed.

In this paper, we propose a collaborative storage and resolution method between
layers under the constraint of deterministic service latency feature in LNMRS, by which
resolution nodes with excessive storage load could store part of the mapping records to
the child nodes with a lighter storage load, which relieves storage pressure on higher-
level resolution nodes and improves the overall storage resource utilization of the system.
The main contributions of this paper are as follows:
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• We analyze latency constraints required for inter-layer collaborative storage and
resolution under the constraint of a deterministic service latency feature, and define
the nodes that satisfy the above constraints as index neighbors. Then we propose an
index neighbor construction method based on the MK-Mediod algorithm.

• We propose the collaborative storage and resolution method based on index neighbor
structure, and conduct experiments to compare the latency measurement cost and
computation cost of our index neighbor construction algorithm against several other
approaches. Meanwhile, experiments are also conducted to compare the increase of
total storage load and service latency when the constructed index neighbor structure
is used to implement collaborative storage and resolution.

The rest of this paper is organized as follows: in Section 2, we analyze latency con-
straints that need to be satisfied by the resolution nodes used for inter-layer collaborative
storage in LNMRS, construct index neighbor structure based on the proposed MK-Mediod
algorithm, and use this structure to implement inter-layer collaborative storage and res-
olution. In Section 3, we evaluate and discuss the performance of the proposed method
through comparative experiments with several neighbor construction algorithms, and
Section 4 concludes our work.

2. Materials and Methods

In LNMRS, resolution nodes at each level form a tree management structure according
to service area inclusion relationship. The structure is defined and described in patent [30]
and standards [20,21]. Paper [19] clarifies the mathematical principles of this structure and
proposes algorithms for the construction of this structure, and paper [31] deals with the
server placement problem in this system.

Figure 1 shows the service area inclusive relationship of resolution nodes in two levels,
as well as the relationship with users in the physical network. The underlying network
represents the physical network, the gray solid dots represent users, the two upper layers
represents the distribution of resolution nodes at level i + 1 and level i, black solid dots
represent resolution nodes, dashed circles represent the service areas of the resolution
nodes. Dash circles in the physical network correspond to service areas in the two upper
layers. The service area inclusive relationship between nodes in neighbor levels reflects the
parent–child relationship of these nodes in the tree structure.

Figure 1. Service area inclusive relationship among name resolution nodes in higher and lower levels
of LNMRS. A resolution node in higher levels maintains a larger service area, which is consisted of
the service areas of its children nodes.

The following features of the LNMRS Structure will be used afterwards.

• A resolution node provides a name resolution service with deterministic service
latency only to users in its service area.
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• A user in the service area of a child node must also be in the service area of its parent
node, a user in the service area of the parent node must also be in the service area of a
particular child node of this parent node.

• Deterministic service latency value of name resolution nodes in the same level is the
same, while the deterministic service latency value of high-level name resolution
nodes is larger than that of low-level name resolution nodes.

2.1. System Model

In LNMRS, if there is a resolution node RNk
i+1, and its corresponding parent node is

RNi, then for any user ui+1 of RNk
i+1, its corresponding resolution node in level i must be

RNi. If some mapping records of RNi are stored on RNk
i+1, the resolution service latency

may still be guaranteed if a resolution request of ui+1 is responded to by RNk
i+1. Based

on the above idea, in order to alleviate excessive storage pressure on high-level resolution
nodes in LNMRS by collaboratively stored mapping records to low-level resolution nodes,
we propose a collaborative storage and resolution method based on index neighbor struc-
ture. In this method, the higher-level resolution node stores some mapping records with
compressed data structures such as BloomFilter, and these mapping records are stored
actually in the index neighbor of this higher-level resolution node, and resolution requests
related to these mapping records are finally responded to by the index neighbor. Here, the
index neighbor must satisfy some certain latency constraints.

Considering that record mapping table lookup and index table lookup in memory
are based on hash algorithm in microsecond order, and the resolution service latency is in
millisecond order, processing latency on the resolution node is ignored when considering
the resolution service latency.

Definition 1. Index neighbor.

Index neighbor is a structural relationship among name resolution nodes. An index
neighbor is dedicated for collaboratively storing and resolving mapping records for high-
level resolution nodes, an example index neighbor structure of the name resolution node RNi
is shown in Figure 2, and the latency constraint that the index neighbor should meet is in
Equation (1).

Figure 2. An index neighbor structure example, which shows the relationships among master node,
index neighbor node, and users of the master node. In the service scenario involving index neighbor,
a resolution request is sent from a user of the master node to the master node, and then redirected to
the index neighbor. The resolution response is then sent by the index neighbor to the user.
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indexNeik = {RNk
i+1 | latency(ui, RNi) + latency(RNi, RNk

i+1) + latency(RNk
i+1, ui)

<= 2 ∗ Ti, ∀ui ∈ U(RNi)}
(1)

In the above equation, RNi denotes any resolution node in level i, which is called the
master node in index neighbor context, ui denotes any user in U(RNi), Ti is the deterministic
latency value corresponding to level Li, RNk

i+1 denotes an index neighbor of the master
node, and latency(ui, RNi) + latency(RNi, RNk

i+1) + latency(RNk
i+1, ui) is the round-trip

latency of the resolution service procedure, where the request is sent to RNi from ui, and
then redirected to RNk

i+1 and is responsed by RNk
i+1. From the formula we can see that if

the latency between RNi and RNk
i+1, and the latency between RNk

i+1 and ui, is delicately
constrained, the whole service latency might be smaller than the pre-defined upper bound.

Definition 2. Index neighbor group.

The definition of the index neighbor is closely related to users of the master node.
To construct an index neighbor structure, the most ideal situation is that the index neighbor
resolution node could provide resolution service for all users of the master node within
a deterministic latency upper bound. However, this constraint is too strict, and it may
be possible that none of the lower-level resolution nodes satisfy the latency constraint
of Equation (1) for all users of the master node. Alternatively, we divide the lower-level
resolution nodes into groups, and as long as an index neighbor can be found in each group to
satisfy Equation (1) for all users within that group, then Equation (1) can be satisfied for all
users of the master node as well, as shown in Figure 3. In this situation, mapping records
that need to be collaboratively stored for the master node will be assigned one copy to each
index neighbor group for the purpose that these mapping records could be resolved by any
user in different groups. Based on the above idea, the concept of index neighbor group is
proposed as follows.

indexNGk(RNi) ={indexNeik , [RN1
i+1, . . . , RNn

i+1]| latency(ui, RNi) + latency(RNi, indexNeik)+

latency(indexNeik, ui) <= 2 ∗ Ti,

∀ui ∈ {U(RN1
i+1) ∪ . . . ∪U(RNn

i+1)}and ui ∈ Ui}
(2)

Figure 3. LNMRS model with two levels, with a master node and two index neighbor groups.

In the above equation, an index neighbor group involves a master node, an index
neighbor node, and a set of index neighbor group sub-nodes, where RNi denotes the master
node in level i, indexNGk(RNi) denotes the k-th index neighbor group of RNi, indexNeik

denotes the index neighbor node in indexNGk(RNi), and [RN1
i+1 ,. . . , RNn

i+1] denotes the
index neighbor group sub-nodes. The above inequality indicates that for any user of the
sub-nodes, the corresponding index neighbor node in this group can provide a resolution
service with deterministic service latency with the upper bound of Ti, in the situation that
this user sends a resolution request to the master node, and the request is then redirected to
the index neighbor indexNeik, and the response is returned by the index neighbor finally.

In Equation (2), latency(ui, RNi) denotes the latency from the user to the master node, which
has an upper bound of Ti according to the hierarchical structure of LNMRS. Latency(RNk

i+1, ui)
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denotes the latency from the index neighbor to the user, assuming that the user’s corre-
sponding resolution node in level i + 1 is RNt

i+1, the latency from RNt
i+1 to this user has

an upper bound Ti+1. The latency from RNk
i+1 to RNt

i+1 is measurable. It can be inferred
that the upper bound of latency(RNk

i+1, ui) is latency(RNk
i+1, RNt

i+1) + Ti+1. Since it is
unpredictable which resolution node in level i + 1 ui corresponds to, the upper bound
of latency(RNk

i+1, ui) is max(latency(RNk
i+1, RNt

i+1)) + Ti+1, where RNt
i+1 is any node in

{RNi+1}. Therefore, the latency constraint in Equation (2) becomes

latency(RNi, RNk
i+1) + max(latency(RNk

i+1, RNt
i+1)) <= Ti − Ti+1, ∀RNt

i+1 ∈ {RNi+1}. (3)

2.2. Problem Statement

Constructing index neighbor structure is a problem that clusters the child nodes in
different groups, where the groups must meet some latency constraint mentioned above;
this is a typical combinatorial optimization problem. In a collaborative storage scenario,
each group will be assigned one copy of the mapping records to be co-stored for the
purpose that these mapping records could be resolved by all users of the master node,
which will obviously bring much storage load to lower-level resolution nodes. Thus, we
model the index neighbor construction problem as a combinatorial optimization problem
with the objective of the minimum of the number of index neighbor groups, which means a
minimum overall storage load of the system.

Minimize:
number o f ({indexNG(RNi)}) (4)

Subject to

RNt
i+1 ∈ indexNGk(RNi), ∀RNt

i+1 ∈ {RNi+1}, ∃indexNGk(RNi) ∈ {indexNG(RNi)} (5)

latency(indexNeik, RNt
i+1) + latency(indexNeik, RNi) <= Ti − Ti+1,

∀RNt
i+1 ∈ [RN1

i+1, . . . , RNn
i+1] o f indexNGk(RNi)

(6)

2.3. Collaborative Storage and Resolution Method with Index Neighbor Structure
2.3.1. Existence of Index Neighbor

Latency between users and resolution nodes in different levels is the only constraint
in the LNMRS structure, it is not inevitable that there is one resolution node in the lower
level that satisfies Equition (6) with this loose constraint. Therefore, the existence of
index neighbors needs to be validated before the index neighbor structure is constructed.
The purpose of the validation process is to find a feasible construction of index neighbors
for the master node. In this paper we utilize a greedy method to seek a feasible construction:
check whether each child of the master node can find its own corresponding index neighbor
node in turn. If all child nodes could find their index neighbor nodes, it means that there is
at least one feasible solution for the index neighbor construction algorithm. In detail, we
first check whether a child node could serve as an index neighbor for itself, and if not, we
try to check other sibling nodes if they could serve as an index neighbor and include this
child node as a sub-node in its index neighbor group. The pseudo code of the validation
process is shown in Algorithm 1.
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Algorithm 1: Index Neighbor Existence Validation

Input: master node RNi, child nodes {RNi+1}, Ti, Ti+1
Output: validation result

1 for RN j
i+1 in {RNi+1} do

2 f oundFlag = false

3 measure latency from RN j
i+1 to RNi as latency(RN j

i+1, RNi)

4 if latency(RN j
i+1, RNi) > Ti − Ti+1 then

5 for RNk
i+1 in {RNi+1} do

6 measure latency from RNk
i+1 to RN j

i+1 as latency(RNk
i+1, RN j

i+1)

7 measure latency from RNk
i+1 to RNi as latency(RNk

i+1, RNi)

8 if latency(RNk
i+1, RN j

i+1) + latency(RNk
i+1, RNi) < Ti − Ti+1 then

9 f oundFlag = true
10 break

11 if f oundFlag then
12 continue
13 else
14 return false

15 return true

The validation algorithm may make every child node an index neighbor in the extreme
case, and the mapping records to be co-stored by the master node need to be placed in
each child node with a copy, which will inevitably cause a large amount of redundancy in
the system storage. The MK-Mediod algorithm proposed in this paper firstly clusters the
child nodes, and then constructs index neighbor structure with the clustered results. This
algorithm might construct less index neighbor groups, which in turn reduces storage costs
of the whole system.

2.3.2. Index Neighbor Construction with MK-Mediod

How to combine child nodes of the master node as index neighbor groups so that
at least one node in each group can be selected to meet the latency constraint mentioned
above, and simultaneously, make the number of index neighbor groups as small as possible,
is a typical combinatorial optimization problem, and is NP-hard. In this paper, we use
a greedy algorithm to solve the problem, firstly we select a small number, cluster the
child nodes according to the selected number, and then validate if each group could meet
the requirements of the index neighbor group, that is to say, whether there is a node in
this group meeting the above defined index neighbor latency constraint. If the validation
is successful, the final result is found; otherwise, we increase the selected number and
perform clustering and validation again, until the final result is obtained. The index
neighbor construction process includes two parts, one is the clustering procedure, the other
is the index neighbor structure validation procedure based on the clustering result.

MK-Mediod Algorithm

K-Means algorithm is the most classical division-based clustering method. The basic
idea of K-Means algorithm is to cluster k points in the space as the center of mass and
group the objects closest to them. By an iterative method, the value of each cluster center
of mass is updated round by round until the best clustering result is obtained. However,
the clustering result of the K-Means algorithm is easily affected by noise and isolated
points. K-Mediod and K-Means algorithm are similar in basic idea, the biggest difference is
that when updating the clustering center, K-Mediod calculates the minimum value of the
distance from each point to all other points in the cluster except for the cluster center to
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optimize the new cluster center. It is this difference that makes up for the shortcomings of
the K-Means algorithm.

For clustering child nodes, the original K-Mediod algorithm does not suit well in
the following aspects: (i) the initial cluster center selection in the K-Mediod algorithm is
random, thus it is easy to fall into a local optimum; (ii) the criterion of the cluster center
selection in the K-Mediod algorithm is the minimum distance to all other points, but index
neighbors should obey constraints in Equation (6), involving not only the distance from the
cluster center to other nodes in the cluster, but also the distance from the cluster center to
the master node.

Based on the two points above, this paper makes the following improvements to the
K-Mediod algorithm: (i) firstly, the child nodes are sorted according to their latency to the
master node, and child nodes that are closest to the master node are selected as the initial
cluster centers; (ii) during the cluster centers updating procedure, the sum of minimum
latency from the center to other nodes and latency from the center to master node is used
as the selection criteria.

Index Neighbor Structure Construction Based on MK-Mediod Algorithm

The above MK-Mediod algorithm can cluster the child nodes into a given number of
groups, and the clustering results can be validated as candidate index neighbor groups.
The validation depends on whether the cluster center meets latency constraints in Equation (6).
That is, the sum of the maximum latency from the cluster center to other nodes in the group
and latency from the cluster center to the master node is within a certain latency constraint.

The main idea of our index neighbor construction algorithm proposed in this paper is
to validate candidate groups in a greedy manner: firstly, we set group number to 1, cluster
the child nodes into 1 cluster, and validate whether a node can be found in this group
as an index neighbor node of the master node, which satisfies the latency constraint in
Equation (6); if the validation is successful, then the construction procedure is over, and
the index neighbor and corresponding index neighbor group are found. If it fails, then the
group number is increased to 2, the child nodes are clustered into 2 clusters, and whether
there could be an index neighbor node in each group is validated. If the validation succeeds,
then the construction procedure is over, and the index neighbors and corresponding index
neighbor groups are found. If it fails, then we increase the group number to 3, and repeat
the same procedure until a final result is found. The algorithm pseudo code is shown in
Algorithm 2.

2.3.3. Collaborative Storage and Resolution based on Index Neighbor Structure

Based on the above index neighbor structure, it is feasible to store mapping records of
a higher-level name resolution node to its index neighbor nodes, and at the same time, the
deterministic service latency feature is still sustained. In this paper, we do not specifically
deal with the number of mapping records for co-storage and the selection of mapping
records. We assume that the set of mapping records for co-storage at the master node has
been determined as items by some load balancing mechanism, and the collaborative storage
method that should be executed is shown in Algorithm 3.

When a resolution request is sent to the main node, the mapping item requested might
be on the main node or on one of the index neighbor node of the main node. The first thing
to do is to determine whether the mapping item is on the main node, if not, the second
thing to do is to decide in which index neighbor group the mapping item resides. Then
it should be the right time to query the mapping record from the database of the main
node or the index neighbor node of a particular index neighbor group. The collaborative
resolution based on index neighbor structure is shown in Algorithm 4.
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Algorithm 2: MK-Mediod-based index neighbor construction

Input: master node RNi, child nodes {RNi+1}, Ti, Ti+1
Output: index neighbor groups {indexNeik, [RN1

i+1, RN2
i+1, . . . , RNt

i+1]}
1 sort {RNi+1} with latency to RNi in ascend order
2 for i in range(1, number o f {RNi+1}) do
3 choose the top i nodes as cluster centrics and each with a null sub-node list,

and initialize cluster result {centrick, []}
4 while true do
5 for RN j

i+1 in {RNi+1} do
6 measure latency from RN j

i+1 to each centric and choose the nearest

centric, add RN j
i+1 to sub-node list of this centric

7 for centrick, sub node list in {centrick, sub node list} do
8 for RN j

i+1 in sub node list do
9 lat = maximum latency from RN j

i+1 to other nodes in sub node list

10 lat = lat + latency(RN j
i+1, RNi)

11 sort sub node list with lat in ascend order, choose the first node as
cluster centric in this cluster

12 if all centric nodes remains the same as the former round then
13 break

14 for RNk
i+1 in {centrick} do

15 if lat > Ti − Ti+1 then
16 this clustering fails the validation, continue with the next loop

17 return {centrick, sub node list}

Algorithm 3: Collaborative Storage

Input: master node RNi, index neighbors set {indexNeik}, mapping items for
co-storage {items}

1 store index information of {items} in RNi

2 for index neighbor node in {indexNeik} do
3 store {items} in index neighbor node

4 remove {items} from RNi

Algorithm 4: Collaborative Resolution
Input: master node RNi, name in the resolution request name, user for this

resolution request ui
1 record = resolve name in the mapping record table of RNi
2 if record is null then
3 find the corresponding RNi+1 of ui
4 find the index neighbor group where RNi+1 belongs to
5 find the index neighbor node indexNeik of this index neighbor group
6 redirect the request to indexNeik

7 else
8 return record to ui
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3. Evaluation and Discussion
3.1. Experimental Setup

To evaluate the collaborative storage and resolution method in this paper, we generate
a two-level resolution system structure according to the latency constraint of LNMRS,
where level 1 corresponds to a latency parameter of 50 ms with only one master node, and
level 2 corresponds to a latency parameter of 25 ms. Nodes in level 2 are all children of
the master node, each with a random number of users assigned. The minimum one-way
latency between the master node and nodes in level 2 is 0.5 ms and the maximum is 25 ms,
the minimum one-way latency among the resolution nodes in level 2 is 5 ms and the
maximum is 30 ms, the minimum one-way latency between the user and the corresponding
level 2 resolution node is 0.5 ms and the maximum is 25 ms, the minimum one-way
latency between the user and the level 1 resolution node is 25 ms and the maximum is
50ms, and dijkstra tool in the networkx toolbox is used to generate the shortest point-
to-point latency matrix. In this experiment, we set the size of the resolution nodes as
50/100/150/200/300/500, and compare the latency measurement cost and computation
cost of our index neighbor construction algorithm against several other approaches, and
also, the increase of total storage load and service latency when the constructed index
neighbor structure is used to implement collaborative storage and resolution. The settings
of the experiment are also shown in Table 1.

Table 1. Evaluation setting.

Parameter Value

Number of resolution nodes 50/100/150/200/300/500
Deterministic latency parameters 50 ms, 25 ms

Latency scope from master node to nodes in level 2 [0.5 ms, 25 ms)
Latency scope among child nodes [5 ms, 30 ms)

Total number of contents 100*(number of resolution nodes)
Ratio of contents to be co-stored 2%/5%/10%/20%

Contents for resolution all of the contents on master node
Latency scope from master node to users [25 ms, 50 ms)

Latency scope from resolution nodes in level 2 to users [0.5 ms, 25 ms)

The experimental environment was created and run in Python 3.6 on a computer
with an Intel Core (TM) i7-9750H CPU and 16 GB RAM. For each set of experiments, we
ran 20 times independently and analyzed the results. In each round of experiments, the
algorithms were run on the same name resolution system topology, with the same latency
among nodes and with the same mapping record allocation. The main metrics recorded in
the experiments include latency measurement times, the number of sorting operations, the
total storage load after load balancing using index neighbors, the average service latency
and maximum service latency when resolving mapping records using index neighbors.

3.2. Construction of Index Neighbor Structure

As the network size increases, the matrix involved in the index neighbor construction
process might increase in equal proportion. The matrix also varies for different index
neighbor construction algorithms. Several neighbor discovery ideas are replicated in the
experiments. The neighbor discovery algorithms used for comparison are as follows.

• Greedy algorithm [32]: This algorithm traverses each child node, uses the traversed
child nodes to form an index neighbor group and tries to pull the rest of the child
nodes into the group, this procedure is performed recursively until every child node
resides in an index neighbor group.

• Modified Greedy algorithm: Different from the Greedy algorithm, this algorithm
firstly sorts the child nodes by latency to the master node, and then greedily constructs
index neighbor groups in the same manner with the Greedy algorithm in decent order
of latency to the master node.
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• K-Mediod algorithm [33]: Like our proposed MK-Mediod algorithm, this algorithm
clusters the child nodes according to their latency to each other, and validates whether
the clustering results meet the latency constraints defined by index neighbor groups.
Clustering number increases one by one until a feasible resolution is found.

3.2.1. Latency Measure Times

In order to compare the latency measurement cost of each algorithm, we counted the
number of latency measurements of different index neighbor construction algorithms at
different network sizes, and simulation results are shown in Figure 4.

Figure 4. Latency measure times of each algorithm with different network sizes.

As shown in Figure 4, the MK-Mediod algorithm and K-Mediod algorithm have
the same latency measure times for each topology size—they require the most latency
measurement cost. The Greedy algorithm and MGreedy algorithm have less latency
measure times, and the MGreedy algorithm requires the least cost of latency measurements.

The reason for this is that the clustering algorithm needs to perform latency mea-
surements in each round with new cluster centers until the clustering algorithm obtains
converged results. Thus, these two clustering algorithms need to measure the latency
between every node to each other. The Greedy algorithm also traverses each resolution
node, but the nodes traversed will definitely find their index neighbors and index neighbor
groups, so there is no case of discarding the original traversal results and re-traversing, so
the number of latency measurements required is less. The MGreedy algorithm requires
fewer latency measurements because it firstly selects the children nodes nearest to the
master node for traversal, and these nodes have a higher probability of being selected as
index neighbors and building larger index neighbor groups.

Furthermore, we found that latency measurement times of various index neighbor
construction algorithms increases with increased network size, with MK-Mediod and K-
Mediod algorithms showing a particularly significant increase in latency measurement
times, while the other two greedy algorithms do not show a significant increase in the
latency measurement times.

3.2.2. Computation Cost

Each algorithm involves multiple sorting operations, and the sorting operations are com-
putationally intensive. We counted the number of sorting operation in different index neighbor
construction algorithms at different network sizes, which reflects the computational consump-
tion of each algorithm. The simulation results are shown in Figures 5 and 6, where the former
figure shows the number of sorting operations performed in four index neighbor construction
algorithms, Greedy, MGreedy, K-Mediod, and MK-Mediod, at different node sizes, and the
latter figure shows detailed comparasion among Greedy, MGreedy, and MK-Mediod.
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Figure 5. Number of sort operations of each algorithm with different network sizes.

Figure 6. Number of sort operations of each algorithm with different network sizes—detailed
comparision.

As shown in Figures 5 and 6, the K-Mediod algorithm involves the most number of
sort operations; MK-Mediod and MGreedy algorithms were less, and Greedy algorithm
was the least. The sort operation number in the MK-Mediod was 3.73% of that in K-Mediod.

The reason for this is that the Greedy algorithm greedily traverses each resolution node
without sort operations, so the sort operations in this algorithm are always 0. The MGreedy
algorithm sorts the children at the beginning of the traversal based on the latency of each
child node to the master node, so the MGreedy algorithm performs one sort operation.
Both clustering methods sort the lat values of each node at each round of cluster center
update operation, while the MK-Mediod algorithm performs fewer sort operations than
the K-Mediod algorithm because it finish the construction with fewer rounds.

3.3. Collaborative Storage and Resolution

To verify the impact on total system storage when using different index neighbor
structures for inter-layer collaborative storage, we adopt the simplest static load balancing
strategy; the master node stores a certain percentage of mapping records to index neighbors,
and we compare the increase in total system storage load after collaborative storage as well
as the average service latency and maximum service latency during collaborative resolution.

During the collaborative storage process, this experiment generates number o f system
nodes ∗ 100 mapping records and randomly selects level-2 resolution nodes for registration,
and the registration is then passed to the master node afterwards. During the collabora-
tive resolution process, this experiment take 20% of the mapping records of the master
node for co-storage, and resolves all mapping records on the master node from randomly
selected users.
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3.3.1. Total Storage Load

(a) Impact of number of resolution nodes

We set the number of resolution nodes as 50/100/150/200/300/500, and construct
index neighbor structure with Greedy, MGreedy, K-Mediod, and MK-Mediod algorithm.
Afterwards, the constructed index neighbor structure is used for collaborative mapping
records storage. Here, we take 20% mapping records from the master node for co-storage,
and compare the total storage load of the system. The situation without co-storage is used
as a benchmark for comparison.

As seen from Figure 7, the K-Mediod algorithm corresponds to the greatest total stor-
age load, the Greedy algorithm is the second, and the MK-Mediod algorithm corresponds
to the least total storage load.

Figure 7. Total storage load of each algorithm with different network sizes.

The reason is that, in the collaborative storage method based on index neighbor
structure, each index neighbor group will be assigned one copy of the mapping records to
be co-stored for the purpose that users of each index neighbor group could resolve these
mapping records within a determined service latency. If the number of index neighbor
groups is too large, it will cause a large increase in the total storage load. K-Mediod
algorithm does not consider the latency to the master node in the clustering process, so the
elected cluster center does not represent the best node position, and the clustering effect
is not ideal. In one round of the cycle, the number of index neighbor groups needs to be
increased as long as one clustering group does not pass the following validation process,
so the number of index neighbor groups generated by K-Mediod algorithm is the largest,
and the corresponding total storage load is also the largest. The two greedy algorithms
build index neighbor groups in a greedy manner, and the subsequent index neighbor group
constructing process will not affect the previous constructed index neighbor groups, so
the number of index neighbor groups built is less than that of the K-Mediod algorithm,
which corresponds to less total storage load. The MGreedy algorithm firstly selects nodes
close to the master node as an index neighbor, and the latency(indexNeik, RNt

i+1) part
in Equation(6) is then more easily fulfilled, so these nodes have a higher probability of
building larger index neighbor groups, which will result in fewer index neighbor groups,
and correspondingly, less total storage load. In the clustering process, the MK-Mediod
algorithm considers not only the latency between child nodes, but also the latency to the
master node, so the clustering results are more easily passed in the following validation
procedure. The construction result is the best of the four algorithms, which means the lest
number of index neighbor groups and the smallest total storage load.

(b) Impact of numbers of mapping records for co-storage

We set the resolution system node size as 500. Four algorithms of Greedy, MGreedy,
K-Mediod, and MK-Mediod were used to construct index neighbors, and the constructed
index neighbor structure was used for collaborative mapping records storage. Here, the
ratio of mapping records on the master node for co-storage was set to 2%, 5%, 10%, and
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20%. We compared total storage load in these situations to explore the impact of numbers
of mapping records for co-storage. Situation without co-storage was used as a benchmark
for comparison.

As seen from Table 2, the total storage load corresponding to the MK-Mediod algorithm
was the smallest and the total storage load corresponding to the K-Mediod algorithm was
the largest for different co-storage mapping record ratios. The total storage load increase
in the MK-Mediod algorithm was 57.1% of the MGreedy algorithm, 8.1% of the Greedy
algorithm, and 0.8% of the K-Mediod algorithm.

Table 2. Total storage load at different co-storage ratios.

2% 5% 10% 20%

Null 100,000 100,000 100,000 100,000
MK-Mediod 108,000 120,000 140,000 180,000

MGreedy 114,000 135,000 170,000 240,000
Greedy 198,000 255,000 590,000 1,080,000

K-Mediod 1,100,000 2,600,000 5,100,000 10,100,000

Both the table and the above figure reflect the difference in the number of index
neighbor groups constructed by these four algorithms. The K-Mediod algorithm constructs
the largest number of index neighbor groups, which results in the largest total system
storage and the largest increase in total storage load. The MK-Mediod algorithm, conversely,
construct the smallest number of index neighbor groups, and certainly, the smallest increase
in total storage load. Total storage load increases as the ratio number increases, but the
comparison of the total storage load for the four algorithms stays stable regardless of the
value of the ratio.

3.3.2. Average Service Latency and Maximum Service Latency

Figure 8 compares the average resolution service latency when the constructed index
neighbor is used for collaborative resolution. The situation without collaborative resolution
was used as a benchmark for comparison.

Figure 8. Average resolution service latency of each algorithm with different network sizes.

As shown in Figure 8, the average service latency was smallest when no index neighbor
structure was used, or when index neighbor structure constructed by K-Mediod algorithm
was used. The average service latency with index neighbor structure constructed by Greedy,
MGreedy, and MK-Mediod algorithms does not differ significantly when the system size is
small, while the average service latency corresponding to the MK-Mediod algorithm was
significantly smaller when the node size increased.

The reason is that, when index neighbor structure is not used for co-resolution, users’
resolution requests are directly responded by the master node without any redirection,
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the service latency is the smallest. The number of index neighbor groups constructed
by the K-Mediod algorithm was the largest. When the system node size was set to 500,
the K-Mediod algorithm will construct 500 index neighbor groups, which means every
resolution node in level 2 will be one index neighbor group by itself. In this situation,
for a specific user, ui, if its corresponding resolution node in level 2 is RNi+1, when the
resolution request send by ui cannot be fulfilled at the master node, it will be redirected to
RNi+1, which is the nearest resolution node to ui in level 2, and certainly, this structure will
result in a smaller service latency. For MK-Mediod, MGreedy, and Greedy algorithms, in
index neighbor groups constructed by the MK-Mediod algorithm, nodes in one group are
closer to each other, which means a user could find a closer index neighbor for collaborative
resolution, and the other two greedy algorithms do not take this into account, thus the
service latency corresponding to MK-Mediod algorithm is smaller.

Meanwhile, we compared the maximum service latency when these constructed
index neighbors were used for a collaborative resolution. As shown in Figure 9, the
maximum service latency distributes from 99.5 ms to 100 ms, and the latency increased
with topology size.

Figure 9. Maximum resolution latency of each algorithm with different network sizes.

The reason is that, for the same LNMRS topology, the longest forwarding path from
the master node to its users will always be found in any index neighbor structure as long as
the number of resolution requests is large enough. LNMRS topologies of different sizes are
randomly constructed according to the same latency rules, so the maximum latency from
the users to the master node is slightly different for different topologies, and the larger the
topology size, the more likely it is to traverse to a larger latency value.

4. Conclusions

In this paper, we address the problem of unbalanced storage load between layers
in LNMRS by co-store mapping items of a higher level resolution node to lower level
resolution nodes. We construct an index neighbor structure to find nodes for inter-layer
collaborative storage, and model the index neighbor construction problem as a combinato-
rial optimization problem. We propose an index neighbor structure construction method
based on our proposed MK-Mediod algorithm. Based on the constructed index neighbor
structure, this paper propose an inter-layer collaborative storage and resolution method
that satisfies the deterministic service delay feature.

We compare the cost and effect of the index neighbor structure-based collaborative
storage and resolution method in this paper with three other index neighbor construction
algorithms. The results show that to co-store the same number of mapping records for
the master node, the increase of total storage load is less when index neighbor structure
constructed in this paper is used for collaborative storage, which is is 57.1% of that in the
MGreedy algorithm, 8.1% of the Greedy algorithm, and 0.8% of the K-Mediod algorithm.
The computation overhead in the construction procedure of our algorithm is only 3.73% of
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that in the original K-Mediod algorithm, and the latency measurement overhead is the same
as that in the original K-Mediod algorithm. Although Greedy and MGreedy algorithms
have less latency measurement and computational overhead, their corresponding total
storage load increase is too large in the collaborative storage procedure. It is worth noting
that no matter which index neighbor structure is used for collaborative resolution, the
deterministic service latency constraint of the master node is still sustained. Experiment
results show that our proposed index neighbor structure-based collaborative storage and
resolution method could achieve collaborate storage with less computation and storage
cost compared with other algorithms. However, the proposed MK-Mediod algorithm has a
limit that it must be executed centrally, which means a bad scalability.

Future work can be considered in the following two aspects: First, the greedy algorithm
can be executed distributively at each child node. However, the K-Mediod algorithm
and the modified algorithm based on it need a complete latency measurement result
for execution. How to perform the MK-Mediod algorithm distributively, supporting
better scalability, should be considered. Second, we select one index neighbor in each
index neighbor group in this paper, but there might be more than one node meeting the
constraints of the index neighbor. It should be considered to maintain, as much as possible,
the index neighbors in one index neighbor group for the sake of storage load balancing.
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