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Abstract: Situational awareness (SA) is crucial in disaster response, enhancing the understanding of
the environment. Social media, with its extensive user base, offers valuable real-time information for
such scenarios. Although SA systems excel in extracting disaster-related details from user-generated
content, a common limitation in prior approaches is their emphasis on single-modal extraction
rather than embracing multi-modalities. This paper proposed a multimodal hierarchical graph-based
situational awareness (MHGSA) system for comprehensive disaster event classification. Specifically,
the proposed multimodal hierarchical graph contains nodes representing different disaster events
and the features of the event nodes are extracted from the corresponding images and acoustic features.
The proposed feature extraction modules with multi-branches for vision and audio features provide
hierarchical node features for disaster events of different granularities, aiming to build a coarse-
granularity classification task to constrain the model and enhance fine-granularity classification. The
relationships between different disaster events in multi-modalities are learned by graph convolutional
neural networks to enhance the system’s ability to recognize disaster events, thus enabling the system
to fuse complex features of vision and audio. Experimental results illustrate the effectiveness of the
proposed visual and audio feature extraction modules in single-modal scenarios. Furthermore, the
MHGSA successfully fuses visual and audio features, yielding promising results in disaster event
classification tasks.

Keywords: situation awareness; graph learning; multimodal learning; disaster response

1. Introduction

Rapidly sensing and understanding the data generated during a disaster can help in
disaster response. On social media, data generated by users in the near future of a disaster
are likely to express the situation they are facing as well as disaster-related information,
such as the category of the disaster event. Situational awareness (SA) systems are par-
ticularly important in this area as they can automate the sensing and understanding of
user-generated information to help people perform rapid disaster response [1,2]. However,
user-generated information is usually multimodal and typically contains visual, audio, and
textual information. Appropriate integration of multimodal features has also been shown
in several works to improve the accuracy of data analysis [3,4] and it becomes a challenge
to deal with the multimodal information in these messages [5].

The introduction of artificial intelligence has greatly enabled disaster response and
situational awareness systems. In disaster response, the application of convolutional neural
networks (CNNs) provides a powerful tool to analyze visual information quickly and
accurately [6–8]. By performing feature extraction and pattern recognition on images of a
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disaster site, CNNs can help determine the type, scale, and impact of a disaster. However,
in the practical application of disaster response, the integration of multimodal data needs to
be considered in addition to visual information [9]. The synergistic analysis of multi-source
information such as speech data might provide a more comprehensive understanding of
the disaster scene.

In previous work, much research has focused on the processing of single-modal
information, such as processing only image [6] or text [10] data. Such approaches have
been successful in some contexts but they potentially fall short in fully leveraging the
correlations between different modal information, limiting the system’s ability to fully
understand the overall environment.

In recent years, with the rise of graph learning, multimodal information fusion has
become more flexible and efficient. By abstracting information from different modalities
into nodes of a graph and using graph convolutional networks (GCNs) for information
transfer and fusion, the GCNs can automatically learn the relationships between modalities,
enabling the whole system to better understand the association between multimodal
information [11]. It is worth noting that the introduction of graph learning does not mean
abandoning the deeper mining of each modality. On the contrary, combining graph learning
with traditional CNNs allows for a more comprehensive exploitation of the characteristics
of each modality, resulting in a more information-rich and robust multimodal feature
representation. The introduction of graph learning for modality data [11] can be divided
into reconstructing modalities into graph structure [12–14] and identifying graph nodes
from modalities [15–17]. We utilize the latter approach to extract nodes representing
different disaster events from multimodal data (visual and audio) and construct a graph
using the relationships of the disaster events. This suggests the two following challenges:

1. Providing an effective discriminative representation of multimodal data;
2. Placing demands on the construction of the graph structure to ensure that the network

can learn the relationships between the different modalities.

Therefore, in the light of the challenges outlined above, we focus on extracting disaster-
related information from paired visual and audio data (usually represented as video) in this
work. Our proposed multimodal hierarchical graph-based SA system can classify disaster
events at coarse- and fine-grained for primary and advanced sensing based on visual and
audio, referring to the multi-level sensing introduced by the three-layer model of SA [18].
The main contributions of this paper are as follows:

1. We propose a multi-branching feature extraction framework that consists of shared
convolutional layers and branching convolutional layers for events of specific granu-
larity to provide independent trainable parameters for different granularities during
end-to-end joint optimization;

2. We construct an event-relational multimodal hierarchical graph to represent disaster
events at different granularities to improve the performance of the system in advanced
perception by multilayering the perception of the SA system;

3. We propose a method for multimodal fusion using hierarchical graph representation
learning, which enhances relational learning of multimodal data;

4. The proposed MHGSA system is evaluated on datasets and consists of a significant
improvement over the unimodal baseline approach.

2. Proposed Methodology

This paper presents the proposed multimodal hierarchical graph-based situational
awareness (MHGSA) system for disaster response. It consists of a visual feature extrac-
tion module, an audio feature extraction module, and the multimodal hierarchical graph.
Figure 1 shows the architecture of the proposed system. This section will first introduce the
two multi-branch feature extraction modules for vision and audio and their implementation
setups and the subsequent sections will present the proposed methodology for hierarchical
graphs, including graph construction, gated graph convolutional neural network, and
classification of graph nodes.
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Figure 1. The proposed multimodal hierarchical graph-based situation awareness (MHGSA) system.

2.1. Multi-Branch Featrue Extraction Module

This section describes two feature extraction modules that provide nodes features
for hierarchical graphs. Their role is to extract a representation from a given piece of
image and its accompanying audio clip suitable for the task of classifying disaster events.
We first define a set of fine-grained disaster events and corresponding coarse-grained
disaster events, denoted as E f and Ec, and the number of events they contain are N and
M, respectively.

Ec = {Ec1, Ec2, . . . , EcN}, (1)

E f =
{

E f 1, E f 2, . . . , E f M

}
, (2)

and any fine-grained event E f n has only one corresponding coarse-grained event Ecm,
as follows:

∀E f n ∈ E f , ∃Ecm ∈ Ec such that f
(

E f n

)
= Ecm. (3)

f : E f → Ec, (4)

The multi-branch structure aims to provide separate model parameters for E f and
Ec to cope with end-to-end joint training. This structure has been applied in some work
to provide hierarchical (i.e., multi-granularity) image classification [19–22]. In contrast
to the independent branching structure, the multi-branching structure employs a shared
convolutional network to extract common visual features in the image, which solves part
of the parameter redundancy problem. Using this multi-branch structure, we propose a
model derived from EfficientNet [23] for generating nodes feature for the visual and audio
outputs, which is designed to work with the event-relational hierarchical graph to model
image and acoustic features to features that correspond to different disaster events. As
shown in Figure 2, linear layers corresponding to the number of E f and Ec provided by the
nodes with features of the specified dimensions.
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Figure 2. Proposed multi-branch feature extraction module for constructing node features.

2.1.1. Visual Feature Extraction for Multigranularity

Visual signals, an important part of human perception, are understood by computers
in the form of pixels that are intuitive and easy to understand. In social media, visual
signals usually appear as images or videos (images with multiple frames), which are
usually single-channel (monochrome) or three-channel (RGB). Thanks to convolutional
neural networks, RGB images represented as three-dimensional arrays are converted into
one-dimensional vector representations through multiple layers of convolution and pooling.
A common approach is to use one or more layers of fully connected networks defining
appropriate input–output dimensions as classifiers for convolutional neural networks
to achieve downstream tasks. In this subsection, we only discuss the feature extraction
module before the fully connected layers.

Based on the optimization of depth, width, and resolution, EfficientNet, as a CNN
model, provides better classification accuracy with a smaller number of parameters by
virtue of efficient parameter settings. Seven such models are proposed in [23], from
EfficientNet-b0 to EfficientNet-b7, and their number of parameters gradually increases
from 5.3 M to 66 M. In the ImageNet [24] dataset, EfficientNet has a much smaller number
of parameters compared to other models with similar accuracy. For example, the classic
ResNet50 [25] has about 26M parameters but its performance is lower than EfficientNet-b1,
which has no more than 8M parameters. In this paper, we utilize the mobile inverted
bottleneck convolution (MBConv) block of EfficientNet as the basis to build the feature
extraction module. A single MBConv block contains a classical convolutional block (i.e., a
stack of convolutional, batch normalization, and activation layers), a squeeze-and-excitation
module [26] to provide a channel attention mechanism, and a 1 × 1 convolutional layer
paired with residual connections. As shown in Figure 3, our proposed multi-branch visual
feature extraction module employs a stack of convolutional layers in a multi-branching
pattern, which is divided into a front segment and a back segment. When the model uses
only shared convolutional blocks and one branch convolutional block, the model will
converge to the same as EfficienNet-b1.

The convolutional blocks in the front segment will be used as a shared set of convolu-
tional layers VisualConvshared and subsequently, two sets of identical convolutional layers,
VisualConvparallelc and VisualConvparallel f

, in the back segment are constructed for coarse-
and fine-grained event classification.
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Given a set of videos X = {x1, x2, . . . , xT} from dataset D with its corresponding
multi-granularity labels Y =

{
y f 1, yc1, y f 2, yc2, . . . , y f T , ycT

}
, frames Fi = { f1, f2, . . . , fK}

are extracted from ith video xi. The visual feature extraction module uses shared parameters
to process multiple frames in a single video; the feed-forward process of the network can
be represented as

VisualSharedFeat fk
= Convshared( fk), (5)

VisualCoarseFeatxi =
{

Convparallelc

(
VisualSharedFeat fk

)}
, k ∈ [1, K] (6)

VisualFineFeatxi =
{

Convparallel f

(
VisualSharedFeat fk

)}
, k ∈ [1, K] (7)

In this work, we extracted 10 frames (K = 10) to represent a video. The multi-
branching feature extraction module allows each frame to obtain two feature vectors
representing coarse and fine granularity for representing the disaster event. Thus, a single
video will obtain 2K feature vectors in order to construct a hierarchical graph for visual fea-
tures. We assign a linear layer to each convolutional branch to obtain a node representation
for each image frame, i.e., FC f and FCc, which is shown in Figure 3. In this way, the node
features of a single video in the hierarchical graph can be represented as

NodeFeatVisual
c xi = σ(Wc · VisualCoarseFeatxi), (8)

NodeFeatVisual
f xi = σ

(
W f · VisualFineFeatxi

)
. (9)

where Wc and W f are the learnable weights of FCc and FC f . σ is an activation function,
where the rectified linear unit (ReLU) is employed.

When using the module alone for vision-only disaster event classification, we add
the corresponding pooling and fully connected layers at the end of the two convolutional
branches to normalize the output categories.

ŷc = σ(Wc · VisualCoarseFeatxi), (10)

ŷ f = σ
(

W f · VisualFineFeatxi

)
. (11)

2.1.2. Audio Feature Extraction for Multigranularity

Audio data are typically represented as a sequence of waveforms in the time domain.
Our original idea to learn their representation and make them assist visual features for
downstream tasks lies in the fact that the occurrence of a disaster event is usually accompa-
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nied by a corresponding sound. For example, a fire is usually accompanied by the crackling
sound of burning objects or a storm is usually accompanied by the sound of rain or wind.
We designed an audio preprocessing algorithm to convert one-dimensional waveforms
into two-dimensional audio features. LFCC and CQT as acoustic features are extracted
after performing voice active detection (VAD) on the audio.

A Voice Activity Detection (VAD) module was implemented [27] for data prepro-
cessing. This module filters activated speech by calculating the short-time energy and
short-time zero-crossing counter of the audio. Suppose there is a segment of audio wi that
is paired with xi, as mentioned before, thus:

W = {w1, w2, . . . , wT}. (12)

The energy and zero crossing counter of wi can be calculated as follows:

Energyi = w2
i , (13)

ZCCi = |sign(wi)− sign(wi−1)| (14)

By averaging the T-length audio into F segments, the short-time energy and short-time
zero-crossing counter can be expressed as follows:

Energyshort−time f = ∑
f∈F

Energy f (15)

ZCCshort−time f = ∑
f∈F

ZCC f (16)

Suitable audio clips are filtered through a set threshold with the filtering rule:(
Energy f > ThresholdEnergy

)
∧
(

ZCC f < ThresholdZCC

)
(17)

LFCC and CQT are extracted on the activated audio clips

LFCCactive = DCT
(
log10 LinearFreqFilterBank(STFT(wt=ActiveFrames))

)
, (18)

CQTactive = abs(ConstantQFilterBank(STFT(wt=ActiveFrames))), (19)

where LFCCactive and CQTactive are both matrices. They are concatenated to form an image-
like 2-channel acoustic feature vector for the subsequent audio feature extraction

AudioSharedFeatwi = Concat(LFCCactive, CQTactive) (20)

Multiple audio events may be included in a single audio clip. Inspired by [17], we
modified the originally shared single linear layer to linear layers containing only one neuron
corresponding to the number of events, i.e., FC f i and FCci, to obtain a node representation
of the corresponding events. Therefore, a single audio can provide feature vectors for all
events, i.e., E f and Ec, and the process can be briefly expressed as follows:

NodeFeatAudio
ci

= σ(Wci · WAudio · (AudioSharedFeatwi)) (21)

NodeFeatAudio
f j = σ

(
W f j · WAudio · (AudioSharedFeatwi)

)
(22)

where Wci and W f j is the learnable weights of FCci and FC f j for the ith and jth event in Ec
and E f . WAudio denotes the learnable parameters of the audio feature extraction module.
Figure 4 illustrates the structure of the audio feature extraction module.
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2.2. Hierarchical Graph for Disaster Event Classification
2.2.1. Hierarchical Graph Construction

A multimodal hierarchical graph consisting of events is built after having all the node
features of the fine-grained disaster event E f and the coarse-grained disaster event Ec in
visual and audio features. It aims to learn the relationships between different event nodes
and update the node features employing the subsequent graph convolutional learning.
Inspired by [17], we define a hierarchical graph containing multimodal multi-granularity
event nodes. They are all constructed in a fully connected manner. There is a graph
G = (V, E), where V and E denote the nodes and edges, respectively. The initial connection
of nodes can be represented as follows:

Ai,j = 1, i ∈ N, j ∈ N (23)

where A is the adjacency matrix of the graph and N denotes the number of nodes in the
graph. This type of connection requires each node to be self-connected, so the number of
edges contained in a single graph is indicated below:

|E| = N(N + 1)
2

, (24)

where |·| denotes the base of a set, i.e., the number of elements in the set.
The hierarchical graph construction is visually portrayed in Figure 5, where blue nodes

correspond to coarse-grained event categories, and yellow nodes signify fine-grained ones.
Visual features are represented by circular nodes, whereas audio features are denoted by
square nodes. The visual and audio features are output by their corresponding feature
extraction module and are concatenated outside the module to form node features for the
graph construction.
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Based on the proposed visual and audio feature extraction modules, we construct a
node for each disaster event and assign a node feature for it. In order to independently
learn the node features for each type of event, node features are constructed from the corre-
sponding granularity branches using linear layers, as described in Equations (8) and (9) for
visual features and Equations (21) and (22) for audio features.

For single-modal hierarchical graphs, i.e., GVisual
Single (visual only) or GAudio

Single (audio only),
their node features are obtained from the proposed multi-branch feature extraction mod-
ule for corresponding modality. A single modality hierarchical graph Gsingle can be
represented as

Gm
Single =

(
Vm

Coarse ∪ Vm
Fine, Em

Single

)
, m ∈ [Visual, Audio], (25)

where Nm
i denotes the node features. This allows subsequent GCN to learn the subordina-

tion relationship of coarse-grained and fine-grained events.
The proposed multimodal hierarchical graph GMulti, composed using all the event

nodes of different modalities, makes it have twice as many nodes as event categories.

GMulti =
(

VVisual ∪ VAudio, EVisual
Single ∪ EAudio

Single ∪ EVisual↔Audio
Multi

)
, (26)

where VVisual and VAudio denote the nodes from GVisual
Single and GAudio

Single, respectively. Regarding

them as subgraphs, EVisual↔Audio
Multi contains edges connecting them. Employing the gated

graph convolutional network, EVisual
Single and EAudio

Single can be learned by the previous layers and
be passed to the layer for GGlobal by adding initialed edges connecting VVisual and VAudio.

2.2.2. Graph Convolutional Network for Classification

To learn the relationship between coarse granularity events and fine granularity events,
we use the residual gated graph convolutional network (RG-GCN) proposed by Bresson
and Laurent [28]. It is known that the vanilla GCN can define the feature vector hi as [29]:

hl+1
i = GCN

(
hl

i ,
{

hl
j : j → i

})
= ReLU

(
Ulhl

i + ∑
j→i

V lh
l
j

)
, (27)

where l denotes the layer level, hj is a set of unordered feature vectors of all neighboring
nodes, and U, V are learnable parameters for the message passing on current node and
neighboring nodes. After adding a gating mechanism to the edge [30]:

hl+1
i = G-GCN

(
hl

i ,
{

hl
j : j → i

})
= ReLU

(
Ulhl

i + ∑
j→i

φij
⊗

V lhl
j

)
, (28)

φij = σ
(

Uhl
i + Vhl

j

)
, (29)

where φij denotes the edge gates it brings two sets of weight parameters U and V to learn
on edges. σ is the sigmoid activation function and ⊗ is the point-wise multiplication
operator. Adding the residual mechanism, the RG-GCN is simply denoted as [25]:

hl+1
i = RG − GCN

(
hl

i , {h l
j : j → i

})
= G − GCN

(
hl

i , {h l
j : j → i

})
+ hl

i , (30)

With the depth of graph convolution, each event node can aggregate the features
of neighboring event nodes to achieve the update to obtain new own features and the
weighting of edges in RG-GCN can model the correlation between different disaster events.
For all nodes Il+1

i in hl+1
i , as described in Equations (27)–(30), the node features at the

l + 1th layer will take into account both the features of its own node Il
i , the neighboring

node Il
j , and of the edge el

ij between Il
i and Il

j at the lth layer. el
ij is the edge feature weighted
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by the edge gates φij and its unweighted initial value can be obtained in the adjacency
matrix Aij described in Equation (23).

We used a three-layer RG-GCN for learning nodes and edges in the hierarchical graph.
We classify the learned event node features for classification. In the multimodal graph, we
fused event nodes of the same granularity, as follows:

ŷi = σ
(

W f c ·
{

Il
ij

})
i ∈ [Coarse, Fine], j ∈ [Visual, Audio], l = 3 (31)

2.2.3. Loss Function

The loss function of MHGSA is based on the cross-entropy loss function weighted
summation of coarse and fine granularity. It can be expressed as:

Lc = −log(
epcoarse

ŷi

∑j epcoarse
j

) (32)

L f = −log(
ep f ine

ŷi

∑j ep f ine
j

) (33)

L f inal = AcLc + A fL f (34)

where Lc and L f denote cross-entropy loss calculated for coarse- and fine- granularity
and L f inal denotes the final loss. pŷi represents the ith output logits and pj represents
the jth element of the logits. The value A denotes the loss weight of contributing to the
loss function.

As shown in Figure 6, two linear layers are employed to classify the coarse- and
fine-grained events from the event nodes of the multimodal hierarchical graph. The logits
ŷ output from the linear layers is then used to calculate the error between the true label y
utilizing the Equations (32)–(34). Fine-grained classification with more event categories
will be used as the final classification result.
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The weights assigned to the losses of different granularity classification tasks deter-
mine how much a branch contributes to the final loss function. When training with the
employment of Adam [31] as the optimizer, the network of branches involved in that
classification will not be updated when the weight of a classification task is equal to 0; on
the contrary, when the weight is equal to 1, the weights in the network will be involved
in training. This allows controlling their relative values to influence how well different
branches are trained as well as how fast they are optimized. Our original intention was to
add coarse granularity classification as an auxiliary task to the original classification task to
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better train the shared convolutional blocks. Therefore, the weight of the coarse granularity
is the same as that of the fine granularity in the early stage of training, e.g., [0.5, 0.5]. In the
later stages of training, the weight of fine granularity is gradually increased and the weight
of coarse granularity is decreased until the weight of coarse granularity is decreased to 0,
to improve the model’s ability to classify fine granularity.

3. Experiments and Results

In this section, we analyze the performance of the MHGSA system through two main
research questions: (1) whether the proposed multibranch structural feature extraction
modules for vision and audio lead to better model performance in the unimodal case; and
(2) whether the multimodal hierarchical maps lead to effective feature fusion and provide
additional performance in the multimodal case. In the following subsections, we provide a
detailed description of the experimental datasets and experimental setup and present our
experimental results and analysis.

3.1. Experiment Datasets

In order to evaluate each module in the MHGSA system in a more comprehensive
way, we introduced VGGSound [32] datasets in the experimental part to evaluate different
modules. It is worth mentioning that the datasets typically have only one granularity of
event labeling. In order to fit the multi-branching structure, we classified the labels of the
dataset with coarse granularity. VGGSound [32], an audio–visual dataset containing more
than 300 classes, consists of more than 200 k ten-second video clips, totaling about 560 h of
memory. We extracted 12 disaster-related classes from the dataset and categorized them
into three coarse-grained categories. The extracted dataset contains a total of 9289 video
clips, with 50 video clips in each class for testing.

3.2. Details of Implementation

We built the MHGSA system using the PyTorch (Menlo Park, CA, USA) framework
with hardware specifications of Intel (Santa Clara, CA, USA) Core i9 CPU and Nvidia
(Santa Clara, CA, USA) GTX 4090 GPU. To minimize losses, an Adam optimizer with
64 batches and an initial learning rate of 1 × 10−3 was used. To dynamically adjust the
learning rate, we defined a decay rate of 0.1, which was activated when the validation
set metrics did not improve within 5 epochs. We performed several training and testing
sessions using different random seeds to obtain more balanced results, which made the
experiment more credible.

3.3. Experiments on the MHGSA System

The MHGSA system, based on the two previously mentioned multi-branch feature
extraction modules for different modalities, uses a residual gated graph convolutional
neural network based on hierarchical graphs as multimodal feature fusion. We extracted
12 categories from the original VGGSound dataset and categorized them into three cat-
egories as coarse granularity labels (Figure 7). We referred the extracted dataset as VG-
GSound for Disaster Response (VGGSound-DR).

We conducted three experiments to compare the vision-only, audio-only, and mul-
timodal cases. ResNet50 [25], EfficientNet-b1 [23] ResNet3D [33], and PANNs [34] are
used as baselines to explore the performance of our models. It is worth mentioning that
the proposed models are constructed differently in terms of classifiers due to the use of a
multi-branch structure. We refer to the proposed feature extractor without graph learning
as MHSA and to the model that uses the proposed graph-based approach as MHGSA. In
addition, the comparison of MHSA and MHGSA demonstrates the effectiveness of the
graph-based approach in the multimodal case. The average accuracy and its standard
deviation, the best accuracy, the total number of trainable parameters, and the average
inference time for one video clip are shown to reveal the performance of models.
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Figure 7. Fine- and coarse-grained categories of the extracted VGGSound-DR dataset.

As indicated in Table 1, in the visual-only mode (VO), the best classification accuracy
of the MHSA-VO using 10 frames as input and fully connected layers as classifiers is
higher than that of EfficientNet-b1 (57.2%), ResNet-50 (54.8%), and R3D-18 (58.5%), at
65.3%, and the number of parameters is much lower than that of ResNet-50 and R3D-18.
This suggests that the multi-branch structure is effectively utilized to the coarse-grained
classification task to improve the model’s performance on the fine-grained classification
task. Multi-frame input significantly improves the performance of the model. MHSA-
VO improves accuracy by more than 5% when using multiple frames as input over the
single-frame case. To reduce the computational cost, we first trained MHSA-VO using
single-frame inputs and froze the trained parameters for multi-frame training. Thus, the
multi-frame input does not affect the number of parameters but only the inference time.
The MHGSA-VO adds hierarchical graph construction and three layers of RG-GCN for
classification compared to MHSA-VO, which provides a slight improvement in accuracy, at
66.7%. This indicates that introducing a single-modal event relational hierarchical graph in
the visual-only mode contributes to the model’s performance in disaster event classification.
It is worth mentioning that MHSA-VO serves as a subset of MHGSA-VO; the training
process of MHGSA-VO introduces and freezes the pre-training parameters of MHSA-VO,
i.e., it only trains the graph-related parameters.

Table 1. Experiment on VGGSound-DR in visual-only mode.

Mode Model Avg. Acc.
(S.D.) Best Acc. Avg. Time

(ms/Video) Params

Visual-Only

ResNet-50 54.1 (±0.5)% 54.8% 13.1 26M
Eff.Net-b1 57.2 (±0.6)% 58.0% 18.2 8M
R3D-18 * 58.2 (±0.2)% 58.5% 10.4 33M

MHSA-VO 59.4 (±0.5)% 60.0% 18.8 15M
MHSA-VO * 64.9 (±0.4)% 65.3% 37.8 15M
MHGSA-VO * 66.2 (±0.4)% 66.7% 46.1 17M

* Model using multiple frames.

In audio-only mode (AO), as shown in Table 2, MHGSA-AO achieved the highest
accuracy of 67.8%. It improved 0.6% over MHSA-AO without graph learning and 2.7%,
2.0%, and 15.2% over ResNet-50, EfficientNet-b1, and PANNs, respectively. This indicates
that hierarchical graph construction and learning play a positive role when applied to
concepts with multiple granularities.
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Table 2. Experiment on VGGSound-DR in audio-only mode.

Mode Model Avg. Acc.
(S.D.) Best Acc. Avg. Time

(ms/Video) Params

Audio-Only

ResNet-50 64.8 (±0.2)% 65.1% 49.2 26M
Eff.Net-b1 65.3 (±0.3)% 65.8% 52.6 8M

PANNs 51.9 (±0.5)% 52.6% 42.6 75M
MHSA-AO 66.7 (±0.4)% 67.2% 52.8 15M

MHGSA-AO 67.3 (±0.4)% 67.8% 74.7 17M

In multimodal mode, we assign a baseline model to vision and audio features and
concatenate their feature vectors as the input of the fully connected layer classifier. We used
this approach to construct ResNet-50-MM and EfficienNet-b1-MM as baseline models. On
the other hand, we used both visual and audio feature extraction modules and compared
fully connected layers (MHSA) and RG-GCN (MHGSA) as classifiers. As shown in Table 3,
the highest results were achieved by the MHGSA, obtaining 77.6% accuracy with 34M
parameters. The graph-based model outperforms the traditional fully connected layer by
about 4M higher number of parameters in the multimodal mode, proving the effectiveness
of multimodal hierarchical graph learning. Different from the visual-only and audio-only
cases, the introduction of a graph-based approach improves more significantly in the
multimodal case. This also confirms our idea of constructing a multimodal hierarchical
graph, i.e., modeling the relationship between events across modalities using a graph
learning approach, in order to improve the model’s ability to discriminate between different
events. We can see the improved performance of the model when using multimodal
information. Compared to VO and AO, all models show a substantial increase in accuracy
with a doubled number of parameters in the multimodal mode, with the highest increases
being in MHGSA at 10.9% and 9.8%.

Table 3. Experiment on VGGSound-DR in multimodal mode.

Mode Model Avg. Acc.
(S.D.) Best Acc. Avg. Time

(ms/Video) Params

Multi-Modal

ResNet-50-MM 69.1 (±0.4)% 69.7% 61.4 52M
Eff.Net-b1-MM 71.3 (±0.5)% 71.9% 74.3 17M

MHSA * 75.9 (±0.5)% 76.5% 91.1 30M
MHGSA * 77.3 (±0.3)% 77.6% 149.3 34M

* Model using multiple frames on a visual path.

From the perspective of situation awareness, more comprehensive perception and
deeper understanding are important goals. In contrast to baseline models, the proposed
MHGSA uses audio–visual modalities to obtain a more comprehensive perception, whereas
multi-granularity classification allows the model to have a richer understanding of the
environment. The classification results of the events with different granularities provide a
richer understanding of the environment, enabling disaster response. Table 4 illustrates the
precision metrics for every coarse- and fine-grained category evaluated from the MHGSA
in different cases. The results from the coarse-grained categories intuitively show that
the visual and audio modalities have different representational capabilities in different
categories. For example, visual-only models are much more precise in the ‘Nature Disasters’
category than audio-only models, which is the opposite in the ‘Disaster Alerts’ category.
For the fine-grained categories, the multimodal model obtained the highest accuracy in
the vast majority of the categories, especially the ‘rocket launch’ category, which obtained
92.5% with less than 75% precision for both VO and AO. This indicates the rationality of
building a multimodal situational awareness system, i.e., using different modalities for
complementary information.
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Table 4. Classification precision of MHGSA for coarse-grained and fine-grained categories in visual-
only, audio-only, and multimodal cases.

Coarse-Grained VO AO MM Fine-Grained VO AO MM

Natural
Disasters

94.4 86.1 97.4

Hail 91.7 84.2 92.3
Thunder 56.7 81.2 87.1
Tornado Roaring 95.0 53.7 72.1
Volcano explosion 71.2 57.4 80.4

Conflicts 77.2 79.6 91.1
Cap gun shooting 50.7 74.1 75.4
Machine gun shooting 72.3 80.0 87.0
Missile launch 73.4 65.1 92.5

Disaster Alerts 90.3 96.2 98.8

Ambulance siren 33.3 48.7 44.2
Civil defense siren 55.7 89.6 91.7
Fire truck siren 67.4 49.1 65.9
Police car (siren) 49.2 44.0 51.0
Smoke detector beeping 86.0 91.7 97.8

Overall 88.4 88.7 96.4 Overall 67.0 68.3 78.2
Highest results are highlighted in bold.

For inference time, the introduction of multi-branching structure and graph learning
implies more computational consumption, so MHGSA-VO, MHGSA-AO, and MHGSA take
about 46.1 ms, 74.7 ms, and 149.3 ms, respectively, in recognizing the disaster category of a
single video clip, which is higher than the baseline model. However, it could be negligible
in comparison to the length of the video clip (10 s). The inference time may vary with the
size of the number of frame samples K. In addition, as mentioned previously, the training
process of MHGSA involves multiple stages. The feature extractors of the corresponding
modalities need to be trained in advance to obtain a reasonable representation of the
multimodal data. This may imply a more tedious training process when more modalities
are introduced. A potential challenge is to introduce textual information, including plain
text and text that appears in visual and audio, to obtain more comprehensive information
for disaster event recognition. In addition, graph learning approaches may help to introduce
modal information with multiple views and features.

4. Conclusions

In this work, we present a multimodal hierarchical graph-based situational awareness
system (MHGSA) for rapid disaster response. The multimodal feature extraction module in
this system employs a multi-branching architecture that allows it to provide independent
parameters for coarse and fine granularity branches to improve model performance in
end-to-end joint optimization. In addition, a multimodal hierarchical graph construction
method is used for visual and audio feature fusion. The proposed MHGSA has been
validated against several disaster-related datasets and has achieved promising results by
outperforming the baseline model in both unimodal and multimodal scenarios.
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