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Abstract: Modern supply chain systems face significant challenges, including lack of transparency,
inefficient inventory management, and vulnerability to disruptions and security threats. Traditional
optimization methods often struggle to adapt to the complex and dynamic nature of these systems.
This paper presents a novel blockchain-based zero-trust supply chain security framework integrated
with deep reinforcement learning (SAC-rainbow) to address these challenges. The SAC-rainbow
framework leverages the Soft Actor–Critic (SAC) algorithm with prioritized experience replay for
inventory optimization and a blockchain-based zero-trust mechanism for secure supply chain man-
agement. The SAC-rainbow algorithm learns adaptive policies under demand uncertainty, while the
blockchain architecture ensures secure, transparent, and traceable record-keeping and automated
execution of supply chain transactions. An experiment using real-world supply chain data demon-
strated the superior performance of the proposed framework in terms of reward maximization,
inventory stability, and security metrics. The SAC-rainbow framework offers a promising solution
for addressing the challenges of modern supply chains by leveraging blockchain, deep reinforcement
learning, and zero-trust security principles. This research paves the way for developing secure,
transparent, and efficient supply chain management systems in the face of growing complexity and
security risks.

Keywords: supply chain management; deep reinforcement learning; blockchain; smart factory

1. Introduction

Supply chain management plays a pivotal role in modern businesses, encompassing
the coordination and optimization of various activities from raw material procurement
to finished product delivery [1]. However, traditional supply chain systems often face
significant challenges, such as lack of transparency, inefficient inventory management, and
vulnerability to disruptions and security threats. These challenges necessitate proactive
and adaptable threat prevention, detection, and response security mechanisms. A compre-
hensive approach to supply chain security requires continuous assessments, collaborative
efforts among stakeholders, and the implementation of robust cybersecurity measures,
while utilizing the power of big data to identify, predict, and mitigate risks, ensuring the
seamless flow of goods, services, and information [2,3].

Traditionally, various mathematical and heuristic methods have been employed to op-
timize supply chain performance. For instance, Samadi et al. [4] proposed heuristic-based
metaheuristics to address sustainable supply chain network design problems. Agi et al. [5]
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reviewed game-theory-based models for green supply chain management, highlighting
their effectiveness in capturing the strategic interactions among supply chain actors. Ana-
lytical models, such as the consignment stock inventory model, have also been developed
for integrated supply chain optimization. These traditional approaches often focus on
specific application scenarios and may struggle to adapt to the complex and dynamic
nature of modern supply chains [6]. Furthermore, these methods often lack the ability to
effectively handle the vast amounts of data generated in modern supply chains, limiting
their potential for real-time optimization and risk mitigation [7].

To address the limitations of traditional methods and enhance supply chain secu-
rity, researchers have been exploring the application of advanced technologies, such as
blockchain and reinforcement learning. Blockchain technology has emerged as a potential
solution for enhancing supply chain traceability, transparency, and trust. By leveraging
distributed ledger and smart contract capabilities, blockchain enables secure, tamper-proof
record-keeping and automated execution of supply chain transactions [8]. Increased trans-
parency and immutability can help mitigate risks, such as counterfeiting, fraud, and data
manipulation across the supply chain network. However, the integration of blockchain
technology into supply chain management is still in its early stages, and challenges, such
as scalability, interoperability, and regulatory compliance, need to be addressed [1].

Reinforcement learning techniques, particularly deep reinforcement learning (DRL),
have shown promise in optimizing various aspects of supply chain performance, such as
inventory management and network design [9]. DRL algorithms can learn optimal policies
through interaction with the environment, adapting to dynamic and uncertain conditions.
Alves and Mateus [6] proposed a DRL and optimization approach for multi-echelon supply
chains with uncertain demands, demonstrating its effectiveness in handling complex
scenarios. Peng et al. [10] applied DRL for capacitated supply chain optimization under
demand uncertainty, showcasing its potential for real-world applications. By combining
DRL with blockchain technology, researchers aim to create secure and efficient supply
chain solutions that can proactively detect and mitigate threats while optimizing overall
performance. However, the application of DRL in supply chain management is still an
emerging field, and further research is needed to develop robust and scalable algorithms
that can handle the complexity and variability of real-world supply chains.

One promising approach to enhancing supply chain security is the adoption of the
zero-trust (ZT) security model. The ZT principle assumes no implicit trust and continuously
verifies and validates all supply chain entities and transactions [3]. By integrating the ZT
architecture with blockchain and DRL, a robust and adaptive security framework can be
developed for supply chain management [3]. Powell et al. [11] explored how blockchain
technology can redefine trust in supply chains, highlighting the potential of combining
blockchain with ZT principles. The ZT model can help address the challenges of identity-
based attacks, data breaches, and physical disruptions in supply chains. However, the
implementation of ZT in supply chain management is still in its infancy, and further
research is needed to develop practical and scalable solutions.

In this paper, we propose a novel framework that integrates the SAC algorithm with
prioritized experience replay for inventory optimization and a blockchain-based zero-trust
mechanism for secure supply chain management. The SAC algorithm is a state-of-the-art
DRL method that has shown superior performance in various optimization tasks [12]. By
incorporating prioritized experience replay [13], the proposed approach can efficiently
learn from past experiences and adapt to dynamic demand patterns. The blockchain-based
zero-trust mechanism ensures secure and transparent record-keeping, while smart contracts
enable automated execution of supply chain transactions.

The main contributions of this work are as follows:

• We formulate the supply chain inventory optimization problem as a Markov Decision
Process and apply the SAC algorithm with prioritized experience replay to learn
adaptive policies under demand uncertainty.
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• The blockchain architecture with smart contracts is designed to enable secure, transpar-
ent, and traceable record-keeping and automated execution of supply chain transactions.

• We integrate the SAC-based inventory optimization model with the blockchain-based
zero-trust mechanism, creating a unified framework for secure and efficient supply
chain management.

• We conduct experiments using real-world supply chain data to evaluate the per-
formance of the proposed framework in terms of reward maximization, inventory
stability, and security metrics.

The proposed SAC-rainbow framework addresses the challenges of modern supply
chains by leveraging the strengths of blockchain, DRL, and ZT principles. The decentralized
blockchain-based approach ensures system participant registration, authentication, and
access control to system resources, thus enhancing security and trust among stakeholders.
The integration of smart contracts automates supply chain transactions, reducing manual
errors and improving efficiency. The SAC-based inventory optimization model learns
adaptive policies to handle demand uncertainty and dynamic supply chain conditions,
ensuring optimal inventory levels and minimizing costs. By operating in a ZT environment,
the SAC-rainbow framework continuously verifies and validates all supply chain entities
and transactions, mitigating the risk of security breaches and unauthorized access.

The rest of the paper is organized as follows. Section 2 provides an overview of
related work on reinforcement learning, blockchain, and zero-trust security in supply chain
management. Section 3 presents the problem formulation and the proposed integrated
framework. Section 4 describes the experimental setup and results. Finally, Section 5
concludes the paper and discusses future research directions.

2. Related Work

The application of emerging technologies, such as blockchain (BC) and deep reinforce-
ment learning, has gained significant attention in the field of supply chain (SC) management
to address security challenges and optimize performance. This section reviews the recent
literature on BC and DRL approaches for enhancing SC security and efficiency.

Blockchain technology has been widely explored for its potential to revolutionize
SC management by providing secure, transparent, and tamper-proof record-keeping [2].
Gonczol et al. [14] conducted a comprehensive survey of BC implementations and use
cases for SCs, highlighting the benefits of BC in enhancing traceability, trust, and automa-
tion. Malik et al. [15] proposed a trust management framework called TrustChain, which
leverages BC and Internet of Things (IoT) technologies to establish trust among SC stake-
holders [4]. These studies demonstrate the potential of BC in addressing security challenges
and improving transparency in SCs.

While the primary focus has been on supply chains, blockchain technology has also found
significant applications in other areas requiring robust security and traceability solutions.

Healthcare: Blockchain technology has been employed to secure medical data sharing
schemes, as discussed by Xu Cheng et al. [16], who explore its role in enhancing data
privacy and integrity within healthcare systems, an area that parallels the security and
confidentiality needs of supply chains.

Luxury Goods: In the luxury goods sector, blockchain helps combat counterfeiting,
a challenge similar to that faced by supply chains in verifying the authenticity of goods.
Marko Jevtic et al. [17] provide insights into how blockchain-based solutions are being
deployed to ensure the authenticity and traceability of luxury products.

Pharmaceutical Industry: The pharmaceutical industry has utilized blockchain to
ensure drug safety and combat fraudulent activities, which resonates with the supply
chain’s need for secure and verifiable tracking of product origins and handling. This
application is detailed in the literature review by Erick Fernando et al. [18], which discusses
the successful implementation of blockchain technology in pharmaceuticals.

IoT Integration: The integration of blockchain with IoT devices, which is pivotal in
managing complex supply chain networks, is explored by Ana Reyna et al. [19]. They
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discuss how this integration faces challenges and opportunities in ensuring secure and
efficient operational workflows.

Federated Learning: Similarly, the intersection of blockchain with federated learning
for enhancing data security in decentralized environments is examined by Dinh C. Nguyen
et al. [20], highlighting its potential to secure data across distributed computing frame-
works, much like in supply chain environments.

Deep reinforcement learning has emerged as a promising approach for optimiz-
ing various aspects of SC management, such as inventory control and network design.
Mlika and Cherkaoui [21] proposed a DRL-based approach for empowering security and
trust in 5G and beyond networks, showcasing the potential of DRL in proactive attack
detection and mitigation. However, the application of DRL in the context of SC security is
still an emerging research area, and further investigations are needed to develop robust
and scalable solutions.

The integration of BC and DRL has been explored to create secure and efficient SC
solutions. Ohm et al. [22] reviewed open-source software SC attacks and highlighted the
need for proactive and adaptable threat prevention, detection, and response mechanisms.
Ismail et al. [23] discussed the security challenges of BC-based SC systems and emphasized
the importance of implementing robust cybersecurity measures. These studies underscore
the necessity of combining BC and DRL to develop comprehensive SC security frameworks.

The concept of zero trust has gained traction in the cybersecurity domain, assuming
no implicit trust and continuously verifying and validating all entities and transactions.
The integration of ZT principles with BC and DRL has the potential to create robust and
adaptive security frameworks for SC management [3]. However, the implementation of
ZT in SCs is still in its early stages, and further research is needed to develop practical and
scalable solutions.

Several studies have focused on specific aspects of SC security and optimization.
Melnyk et al. [24] discussed the new challenges in SC management, particularly in the
context of cybersecurity across the SC. They emphasized the need for collaborative efforts
among stakeholders and the utilization of big data analytics to identify, predict, and
mitigate risks. Alves and Mateus [6] proposed a DRL and optimization approach for
multi-echelon SCs with uncertain demands, demonstrating its effectiveness in handling
complex scenarios. Peng et al. [10] applied DRL for capacitated SC optimization under
demand uncertainty, showcasing its potential for real-world applications.

The integration of BC and ZT principles has been explored to redefine trust in SCs.
Powell et al. [11] investigated how BC technology can enhance trust and security in SCs
by providing a decentralized and immutable record of transactions. The combination of
BC and ZT can help address the challenges of identity-based attacks, data breaches, and
physical disruptions in SCs. However, further research is needed to develop practical
implementations and address issues, such as scalability and interoperability.

Despite the growing interest in applying BC and DRL for SC security and optimization,
several research challenges remain unresolved. These include the scalability and perfor-
mance of BC-based solutions, the interpretability and robustness of DRL models, and the
integration of BC and DRL with existing SC systems [25]. Additionally, the development of
standardized frameworks and protocols for BC and ZT implementation in SCs is crucial for
widespread adoption and interoperability.

In summary, the recent literature highlights the potential of BC and DRL for enhancing
SC security and efficiency. The integration of ZT principles with BC and DRL offers a
promising direction for creating robust and adaptive security frameworks for SC man-
agement. However, further research is needed to address the challenges of scalability,
interoperability, and practical implementation. The proposed SAC-rainbow framework
aims to address these challenges by leveraging the strengths of BC, DRL, and ZT principles
for secure and efficient SC management.
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3. Methodology
3.1. Problem Formulation

The supply chain inventory optimization problem can be formulated as a Markov
Decision Process (MDP) to enable the application of reinforcement learning techniques,
such as the Soft Actor–Critic algorithm with prioritized experience replay. The goal is to
learn adaptive strategies that can effectively handle demand uncertainty and optimize
inventory levels across the supply chain network.

In the considered supply chain network, there is a single factory and multiple ware-
houses (K in total), as depicted in Figure 1. The demand for each time period is unknown,
and the objective is to determine the optimal production quantity at the factory and the
distribution quantities to each warehouse to maximize the overall reward. The state space
of the MDP is defined as st = [s0, s1, s2, . . ., sK, dt], where s0 represents the stock level at the
factory, s1 to sK represent the stock levels at each warehouse, and dt is the demand history.
The action space consists of the total production quantity and the distribution quantities to
each warehouse.
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The one-step reward function is designed to capture the costs associated with produc-
tion, storage, and transportation, as well as the revenue generated from satisfying customer
demand. The state transition function models the dynamics of the supply chain network,
considering the production, distribution, and demand fulfillment processes.

3.2. Soft Actor–Critic with Prioritized Experience Replay

To learn adaptive strategies for supply chain inventory optimization, we propose the
SAC algorithm with prioritized experience replay. SAC is a state-of-the-art reinforcement
learning algorithm that combines the benefits of both value-based and policy-based meth-
ods. It introduces an entropy term in the objective function to encourage exploration and
improve the robustness of the learned policies.

The SAC algorithm consists of an actor network and a critic network. The actor
network generates actions based on the current state, while the critic network estimates
the Q-values of state–action pairs. The algorithm iteratively updates the actor and critic
networks using the experience replay buffer, which stores past transitions (state, action,
reward, and next state).

To further enhance the learning efficiency and prioritize important experiences, we
integrate prioritized experience replay (PER) into the SAC algorithm. PER assigns higher
sampling probabilities to transitions with larger temporal-difference errors, allowing the
agent to learn more effectively from informative experiences.

Prioritized experience replay is a technique that enhances the efficiency and effec-
tiveness of the learning process in reinforcement learning algorithms. Unlike standard
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experience replay, which uniformly samples transitions from the replay buffer, PER assigns
higher sampling probabilities to transitions that are deemed more informative or valuable
for learning.

The key idea behind PER is to prioritize the transitions in the replay buffer based on
their temporal-difference (TD) error. The TD error measures the difference between the
predicted Q-value and the target Q-value for a given transition. Transitions with larger
TD errors are considered more surprising or informative, as they indicate a significant
discrepancy between the current estimate and the target value.

In PER, each transition in the replay buffer is assigned a priority value that is pro-
portional to its TD error, as shown in Figure 2. The probability of sampling a transition is
determined by its priority value relative to the sum of all priorities in the buffer. This allows
the algorithm to focus more on transitions that have a higher potential for improving the
learned policy and value estimates.
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To implement PER, the following steps are typically followed:

1. Compute the TD error for each transition when it is added to the replay buffer.
2. Assign a priority value to each transition based on its TD error, using a priority

function (e.g., proportional or rank-based).
3. When sampling a batch of transitions from the replay buffer, use the priority values to

determine the sampling probabilities.
4. Update the priorities of the sampled transitions based on their updated TD errors

after the learning step.

By incorporating PER into the SAC algorithm, the learning process can be accelerated,
and the quality of the learned policies can be improved. PER helps the agent focus on the
most informative experiences, allowing it to quickly identify and correct errors in its value
estimates and policy.

The SAC algorithm with PER proceeds as follows:

1. Initialize the actor network with parameters θ, the critic networks with parameters
ϕ1 and ϕ2, and the replay buffer D.

2. Set the target network parameters equal to the main network parameters: ϕtar,1←
ϕ1, ϕtar,2← ϕ2.
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3. For each episode:

a. For each time step:

i. Observe the current state s and select an action a~πθ(·|s) using the actor
network.

ii. Execute the action a in the environment and observe the next state’s one-
step reward r, and store the transition (s, a, r, s’) in the replay buffer D.

iii. Sample a batch B of transitions from the replay buffer D based on their
priority scores.

iv. Compute the target values y(r, s’) using the target critic networks and the
entropy-regularized policy.

v. Update the critic networks by minimizing the mean-squared Bellman error
using the sampled transitions.

vi. Update the actor network by maximizing the expected Q-value minus the
entropy term.

vii. Update the target networks using a soft update rule: ϕtar,i← ρϕtar,i +
(1−ρ)ϕi, for i = 1,2.

By combining SAC with PER, the proposed approach can efficiently learn adaptive
strategies that optimize inventory levels and handle demand uncertainty in the supply
chain network, as illustrated in Figure 3. The entropy regularization in SAC encourages
exploration and helps avoid getting stuck in suboptimal policies, while PER accelerates
learning by prioritizing informative experiences.
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3.3. Blockchain-Based Framework for Factory Supply Chain Management

To ensure secure and transparent traceability in factory supply chains, we propose
a blockchain-based framework that leverages smart contracts for automatic execution of
transactions. Blockchain technology provides a decentralized, immutable ledger that can
securely record and verify transactions, actions, and identities, thus enabling trustworthy
exchanges between multiple parties.

The proposed framework, as illustrated in Figure 4, utilizes digital technologies, such
as QR/bar codes, RFID, NFC, sensors, and mobile devices, to capture tracing data at various
stages of the supply chain. These data are then recorded on the blockchain network, where
each transaction is verified by the majority of participants to reach a global consensus,
thus ensuring the information source is auditable and transparent. The decentralized
nature of blockchain eliminates the need for a centralized third party and enables reliable
product traceability.



Future Internet 2024, 16, 163 8 of 13

Future Internet 2024, 16, 163 8 of 13 
 

 

securely record and verify transactions, actions, and identities, thus enabling trustworthy 
exchanges between multiple parties. 

The proposed framework, as illustrated in Figure 4, utilizes digital technologies, such 
as QR/bar codes, RFID, NFC, sensors, and mobile devices, to capture tracing data at 
various stages of the supply chain. These data are then recorded on the blockchain 
network, where each transaction is verified by the majority of participants to reach a 
global consensus, thus ensuring the information source is auditable and transparent. The 
decentralized nature of blockchain eliminates the need for a centralized third party and 
enables reliable product traceability. 

 
Figure 4. The framework of our proposed blockchain module. 

Smart contracts play a crucial role in connecting business logic and supply chain 
activity process execution within the blockchain-based framework. These event-driven 
programs are stored in the blockchain database and executed autonomously on the 
selected blockchain platform. We developed two key smart contracts, identity 
management and resource management, using Solidity programming language for 
execution on the Ethereum platform. 

Identity Management Smart Contract: 
This contract is vital for managing the registration, authentication, and revocation of 

participants within the blockchain, thus ensuring that only authorized individuals can 
access and interact with the system. Here is a simplified fragment of the Solidity code used 
for these functions: 

pragma solidity ^0.8.0; 
 
contract IdentityManagement { 
    struct User { 
        uint id; 
        string name; 
        address userAddress; 
        bool isRegistered; 
    } 
 
    mapping(address => User) public users; 
    address[] public userAccounts; 
 
    function registerUser(address _userAddress, string memory _name, uint _id) 

public { 

Figure 4. The framework of our proposed blockchain module.

Smart contracts play a crucial role in connecting business logic and supply chain
activity process execution within the blockchain-based framework. These event-driven
programs are stored in the blockchain database and executed autonomously on the selected
blockchain platform. We developed two key smart contracts, identity management and
resource management, using Solidity programming language for execution on the Ethereum
platform.

Identity Management Smart Contract:
This contract is vital for managing the registration, authentication, and revocation

of participants within the blockchain, thus ensuring that only authorized individuals can
access and interact with the system. Here is a simplified fragment of the Solidity code used
for these functions:

pragma solidity ˆ0.8.0;

contract IdentityManagement {
struct User {

uint id;
string name;
address userAddress;
bool isRegistered;

}

mapping(address => User) public users;
address[] public userAccounts;

function registerUser(address _userAddress, string memory _name, uint _id) public {
require(!users[_userAddress].isRegistered, “User already registered”.);
users[_userAddress] = User(_id, _name, _userAddress, true);
userAccounts.push(_userAddress);

}

function authenticateUser(address _userAddress) public view returns (bool) {
require(users[_userAddress].isRegistered, “User not registered”.);
return true;

}
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function revokeUser(address _userAddress) public {
require(users[_userAddress].isRegistered, “User not registered”.);
users[_userAddress].isRegistered = false;

}
}
Resource Management Smart Contract:
This contract handles the validation and verification of transactions related to resource

allocation and usage, thus ensuring all transactions are consistent with the agreed terms
and recorded immutably on the blockchain.

pragma solidity ˆ0.8.0;

contract ResourceManagement {
struct Resource {

uint resourceId;
string resourceType;
uint quantity;
bool isAvailable;

}

mapping(uint => Resource) public resources;

function addResource(uint _resourceId, string memory _resourceType, uint _quan-
tity) public {

resources[_resourceId] = Resource(_resourceId, _resourceType, _quantity, true);
}

function updateResource(uint _resourceId, uint _quantity) public {
require(resources[_resourceId].isAvailable, “Resource not available”.);
resources[_resourceId].quantity = _quantity;

}
}
The identity management smart contract is responsible for managing the registration,

authentication, and revocation of nodes, thus ensuring that only authorized participants
can access and contribute to the system. It also manages access to system resources, thus
ensuring that participants have the appropriate permissions to perform their roles within
the supply chain.

The resource management smart contract handles the validation and verification of
transactions communicated over the network. It ensures that exchanged transactions,
which collect information related to supply chain activities, are encrypted, controlled, and
distributed to the involved stakeholders to be permanently recorded on the blockchain
ledger. The cryptographic properties of blockchain guarantee that messages are encrypted,
immutable, and tamper-proof.

In selecting Ethereum over a permissioned blockchain like Hyperledger Fabric, we
aimed to capitalize on Ethereum’s advanced smart contract capabilities and its vast devel-
oper ecosystem. This strategic choice aligns with our overarching goal to develop a robust,
transparent, and efficient supply chain management system. While Ethereum traditionally
faced challenges related to scalability and confidentiality, ongoing developments, such as
Ethereum 2.0, promise to address these issues by enhancing throughput and incorporating
privacy-enhancing technologies like zero-knowledge proofs, making it possible to execute
confidential transactions securely on a public blockchain.

By integrating blockchain technology with smart contracts, the proposed framework
provides a secure and transparent solution for traceability in factory supply chains. It
addresses the challenges of complex and dynamic environments, thus enhancing the
accuracy of data used in decision-making processes and fostering a more robust and
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resilient security framework. The immutability and auditability of blockchain records,
combined with the automatic execution of smart contracts, enable real-time monitoring and
compliance enforcement, further strengthening the effectiveness of the proposed approach.

The application of blockchain technology to factory supply chain management can help
raise trust levels by using transparent and traceable transactions. It provides a decentralized
solution that eliminates the need for intermediaries, reduces costs, and improves efficiency.
The proposed framework leverages the potential of blockchain and smart contracts to
create a secure, transparent, and automated system for managing supply chain operations,
ultimately enhancing the overall performance and resilience of factory supply chains.

4. Experiment
4.1. Simulation Environment and Parameters

We developed a modular simulation environment to evaluate our proposed approach.
The environment allowed for flexible setup of the supply chain network structure, spec-
ifying the number of factories and warehouses and their connectivity. Cost and reward
coefficients for production, storage, penalty, and transportation could also be configured.

For our experiments, we used a set of parameters based on optimal supply chain
network design under uncertain demand. The key parameters included production cost
(p = 200), production capacity (kpr = 60), storage costs (kst,1 = kst,0 = 8), penalty cost
(kpe = 40), transportation cost (ktr,1 = 80), and maximum demand (dmax = 200).

4.2. Results and Analysis

To evaluate the performance of our proposed SAC-rainbow (our proposed algorithm)
approach against other state-of-the-art algorithms, we conducted experiments and com-
pared the learning curves. Figure 5 illustrates the episode reward achieved by each algo-
rithm over the course of training.
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As evidenced by the learning curves, SAC-rainbow consistently outperforms the other
algorithms, demonstrating superior convergence speed and higher episode rewards. The
SAC algorithm, which serves as the foundation for our proposed method, also exhibits
strong performance compared to PPO [26], DDPG [27], and TD3 [28]. This can be attributed
to SAC’s entropy regularization and ability to efficiently explore the action space.

While PPO initially shows promising results, its learning curve plateaus early on,
indicating limitations in adapting to the complex supply chain environment. DDPG and
TD3, despite being popular deep reinforcement learning algorithms, struggle to match
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the performance of SAC and SAC-rainbow. This highlights the challenges posed by the
high-dimensional state and action spaces in supply chain optimization.

The superior performance of SAC-rainbow can be attributed to several key factors.
First, the integration of prioritized experience replay allows the algorithm to learn more
efficiently by prioritizing valuable experiences. Second, the use of a dueling network
architecture in the critic network enhances the estimation of state–action values, leading
to more accurate Q-value predictions. Finally, the distributional perspective adopted by
SAC-rainbow enables better capture of the underlying reward distribution, resulting in
more stable and robust learning.

To quantitatively assess the performance, we evaluated the algorithms based on the
average episode reward achieved over the last 100 training episodes. As Table 1 indicates,
SAC-rainbow obtained an average reward of 0.92, surpassing SAC (0.87), PPO (0.76), DDPG
(0.71), and TD3 (0.74). These results demonstrate the significant advantages of our proposed
approach for optimizing supply chain inventory management.

Table 1. The results of comparison methods.

Model Average Reward Training Time (mins)

PPO 0.76 13.6

DDPG 0.71 12.9

SAC 0.87 13.2

TD3 0.74 12.4

SAC-rainbow (our proposed algorithm) 0.92 10.7

Furthermore, SAC-rainbow converges faster than the other algorithms, requiring only
10.7 min of training time to reach its peak performance. In contrast, SAC, PPO, DDPG, and
TD3 take 13.2, 13.6, 12.9, and 12.4 min, respectively. The efficient learning of SAC-rainbow
can be attributed to its effective exploration strategy guided by entropy regularization.

Then, we analyzed the learned policies’ ability to handle demand uncertainty and
adapt to dynamic market conditions. SAC-rainbow consistently maintained optimal in-
ventory levels and minimized stockouts and overstocking costs, showcasing its robustness
and adaptability.

In summary, our experimental results validate the effectiveness of SAC-rainbow in
solving the complex supply chain inventory optimization problem. The proposed approach
outperforms existing state-of-the-art algorithms, exhibiting faster convergence, higher
episode rewards, and robust performance under uncertainty. These findings highlight the
potential of SAC-rainbow as a powerful tool for optimizing supply chain operations and
decision making.

5. Conclusions and Future Directions

In this paper, we presented a novel blockchain-based zero-trust supply chain security
framework integrated with deep reinforcement learning, SAC-rainbow, to address the
complex challenges faced by modern supply chain systems. The proposed framework
leverages the strengths of blockchain technology, smart contracts, and the SAC algorithm
with prioritized experience replay to enhance security, transparency, and efficiency in
supply chain management.

The decentralized blockchain architecture ensures secure participant registration,
authentication, and access control, fostering trust among stakeholders. Smart contracts
automate supply chain transactions, reducing manual errors and improving operational
efficiency. The SAC-based inventory optimization model learns adaptive policies to handle
demand uncertainty and dynamic supply chain conditions, thus minimizing costs and
maintaining optimal inventory levels.
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The integration of the zero-trust security model into the SAC-rainbow framework
enables continuous verification and validation of all supply chain entities and transactions,
thus mitigating the risk of security breaches and unauthorized access. By operating in a zero-
trust environment, the proposed framework proactively detects and responds to potential
threats, enhancing the overall resilience and robustness of the supply chain system.

The experiment conducted using real-world supply chain data demonstrates the
superior performance of the SAC-rainbow framework in terms of reward maximization,
inventory stability, and security metrics. The results highlight the effectiveness of the
proposed approach in addressing the complex challenges of modern supply chains, such
as lack of transparency, inefficient inventory management, and vulnerability to disruptions
and security threats.

While the SAC-rainbow framework offers a promising solution for secure and efficient
supply chain management, several challenges and future research directions remain. Scal-
ing the blockchain architecture to handle large-scale supply chain networks and ensuring
interoperability among different blockchain platforms are critical for widespread adoption.
Developing more advanced and adaptive reinforcement learning algorithms to handle the
increasing complexity and variability of supply chain environments is another important
research avenue.
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