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Abstract: Based on the principle of eddy current braking and hydraulic braking, a new eddy current-
hydrodynamic hybrid retarder (ECHHR) is proposed. Based on the introduction of the working
principle and structure of the ECHHR, the finite element analysis models of the electromagnetic field
and the flow field of the ECHHR were established, respectively. The electromagnetic field distribution,
the flow field velocity, and the flow field pressure in the ECHHR were numerically simulated. The
air gap magnetic density, the eddy current braking torque, and the hydraulic braking torque under
different excitation currents and different liquid filling rates were calculated. Finally, the braking
performance of the EHHR was tested via experiments, and the effectiveness of the finite element
analysis method was verified. The test results indicated that as the speed increased, the composite
braking torque of the ECHHR increased approximately linearly. When the speed was 1000 r/min,
the composite braking torque reached 2100 N·m. Compared to separate hydraulic braking and eddy
current braking, the composite braking torque was relatively high in the full-speed range.

Keywords: eddy current-hydrodynamic hybrid retarder; electromagnetic field; flow field; braking
torque; finite element simulation

1. Introduction

The retarder is a kind of auxiliary braking device for automobiles which can effectively
improve the safety of heavy vehicles and reduce the emission of non-exhaust particles [1,2].
The commonly used vehicle retarders are mainly divided into ECRs and HRs. The existing
ECR has fast response speed and large braking torque at low speeds but low braking power
density at high speeds and severe thermal degradation during continuous braking [3].
However, the existing HR is light in weight, small in volume, and large in braking torque
at high speeds but slow response and low power density at low speeds [4]. To sum up, the
ECRs and HRs are complementary in braking characteristics.

To improve the braking performance of the ECRs, Tian et al. [5] proposed an internal
liquid-cooled ECR, which solves the problems of torque heat decay and coil ablation
during continuous braking. Zhang et al. [6,7] proposed a self-excited ECR to solve the
power consumption problem during operation. Although the above research improved
the braking performance of ECRs to some extent, it still does not solve the problem of low
braking power at high speeds.

In terms of HRs, Yan et al. [8] used numerical simulation methods to study the velocity
distribution, pressure distribution, and turbulent kinetic energy distribution of liquid flow
inside the HR. Wei et al. [9,10] conducted research on the suppression method of air loss,
heat flow field, and parameters affecting the effectiveness characteristics of the HRs. Li
et al. [11] conducted in-depth research on the cavitation characteristics of the transient
coupled flow field of the HR. In summary, the research on HRs mainly focuses on pure
hydraulic braking, such as air loss, thermal field, flow field, and pressure field. Due to the
characteristics of hydraulic braking itself, these studies cannot truly improve the low-speed
braking performance of HRs. However, Gao et al. [12] and Zhang et al. [13], respectively,
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proposed a hydraulic electric composite retarder and verified its braking performance
advantages via recent experiments.

To further improve the power density of the retarder at full speed and ensure the safety
of vehicle deceleration, a new eddy current-hydrodynamic hybrid retarder (ECHHR) is
proposed. The electromagnetic field distribution, flow field velocity, and flow field pressure
distribution inside the ECHHR are analyzed by the finite element analysis method, and
the braking characteristics of the ECHHR under different working conditions are obtained
by experiments.

2. Structure and Working Principles

As shown in Figure 1, the proposed ECHHR is mainly composed of a rotor, a stator,
and an independently wound excitation coil. The rotor is a double disk integral structure,
and the left and right outer sides of the rotor are arranged with hydraulic circulation
semicircles of the hydraulic retarder. The stator comprises a left stator, a right stator, and a
stator connector with a salient pole structure. The left and right stators are symmetrical in
structure, and one side of the left and right stators is arranged with a hydraulic circulation
semicircle of a hydraulic retarder. The excitation coils are fixed on the stator connection, and
the wire is connected to the electronic control unit via the outlet on the stator. The ECHHR
adds the function of eddy current braking to the structure of traditional hydraulic retarders,
and both eddy current braking and hydraulic braking share the rotor of the ECHHR.
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Figure 1. (a) Overall cross-sectional view of the ECHHR. (b) Sectional view of stator connection of 
the ECHHR. 

The blades of the stator and rotor form a working chamber of hydraulic braking. 
Since the left and right structures of the ECHHR are symmetrical, two hydraulic retarders 
are formed. When the hydraulic braking of the ECHHR starts to work, the oil enters the 
hydraulic working chamber through the upper oil circuit. As the rotor rotates, the rotating 
rotor blade drives the oil in the hydraulic working chamber to undergo centrifugal 
acceleration movement. At the same time, the high-speed moving oil impacts the stator 
blades, and the rotor blades are also impacted by the oil, thereby hindering the rotation of 
the rotor. In this process, the oil constantly flows into the hydraulic working chamber from 
the liquid inlet, through the lower oil circuit, and finally discharges to the radiator from 
the liquid outlet so as to dissipate the heat energy converted by the rotating mechanical 
energy of the rotor. The rotor and stator connections are made of highly conductive 

Figure 1. (a) Overall cross-sectional view of the ECHHR. (b) Sectional view of stator connection of
the ECHHR.

The blades of the stator and rotor form a working chamber of hydraulic braking.
Since the left and right structures of the ECHHR are symmetrical, two hydraulic retarders
are formed. When the hydraulic braking of the ECHHR starts to work, the oil enters
the hydraulic working chamber through the upper oil circuit. As the rotor rotates, the
rotating rotor blade drives the oil in the hydraulic working chamber to undergo centrifugal
acceleration movement. At the same time, the high-speed moving oil impacts the stator
blades, and the rotor blades are also impacted by the oil, thereby hindering the rotation of
the rotor. In this process, the oil constantly flows into the hydraulic working chamber from
the liquid inlet, through the lower oil circuit, and finally discharges to the radiator from
the liquid outlet so as to dissipate the heat energy converted by the rotating mechanical
energy of the rotor. The rotor and stator connections are made of highly conductive magnet
materials. When the excitation coils are excited with direct current (DC), a magnetic field
generated by the excitation coils is closed via the left side of the rotor, the left air gap, the
stator connections, the right air gap, and the right side of the rotor. The rotor rotating with
the transmission shaft cuts the magnetic line of force generated by the tooth-shaped salient
pole of the stator connections to generate eddy current. The magnetic field generated by the
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eddy current interacts with the magnetic field generated by the excitation coils to produce a
braking torque. In this process, the heat generated at a certain depth on the radial surface of
the rotor is taken away by the circulating oil of the shared hydraulic retarder, thus reducing
the heat decay of the eddy current braking torque.

3. Theory Foundation
3.1. Hydraulic Brake

The working fluid flows in from the inlet of the rotor impeller of the ECHHR, and
the rotating rotor blades drive the fluid to realize liquid eddy current movement. The
momentum moment of the fluid changes constantly during braking, thus converting
the kinetic energy of the fluid into its own internal energy. According to the similarity
theory of pumps in fluid mechanics, the similarity theory represents that the braking
torque of geometrically similar hydraulic components under equal inclination conditions
is proportional to the 5th power of the equivalent diameter of the cyclic circle [14]. The
braking torque TH of the hydraulic braking part can be calculated by the empirical formula
as follows:

TH = αλρn2D5 (1)

where α is the filling rate; λ is the moment coefficient; ρ is the fluid density; n is the rotor
speed; and D is the cyclic circle equivalent diameter. It can be seen from the above formula
that the torque of the hydraulic braking part can be achieved by controlling the fluid filling
rate adjustment, and the fluid filling rate is affected by the inlet flow and outlet pressure.

3.2. Eddy Current Brake

When the eddy current braking part of the ECHHR starts to work, the original air
gap magnetic field B0 caused by the excitation coils is first established in the ECHHR.
With the generation and continuous increase of the eddy current on the rotor, the eddy
current magnetic field Bi formed on the rotor will affect the original air gap magnetic field
B0 and the final transient air gap magnetic field Bδ is composed of the original air gap
magnetic field and the eddy current air gap magnetic field, and can be calculated by the
following formula:

Bδ = B0 + Bi (2)

According to Ampere’s loop law, the relationship between eddy current magnetic field
Bi and eddy current density J can be expressed as

∇× Bi = µJ (3)

where µ is the relative permeability of the rotor.
According to Faraday’s law of electromagnetic induction, the relationship between the

strength of the electric field E and the final air gap magnetic density Bδ can be expressed
as follows:

∇× E = −∂Bδ

∂t
(4)

where t is the time.
According to Ohm’s law, the following equation can be obtained:

J = σE (5)

where σ is the rotor conductivity.
Based on the passivity of the magnetic field, the following equations can be obtained:

∇ · Bi = 0 (6)

∇ · B0 = 0 (7)
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Combined Equations (3)–(7):

1
σµ
∇2Bi −

∂Bi
∂t

=
∂B0

∂t
(8)

Combined Equations (3), (5), and (8), and the relationship between torque, speed, and
power, the eddy current braking torque TE can be calculated as follows:

TE =
y J2

ωσ
dV (9)

4. Finite Element Analysis

Solidworks software is used to establish a three-dimensional model of the new ECHHR.
The main parameters of the model are shown in Table 1. The three-dimensional model
is, respectively, imported into the electromagnetic field finite element analysis software
Jamg-Designer and the flow field finite element analysis software Fluent to simulate the
eddy current braking characteristics and hydraulic braking characteristics of the ECHHR.

Table 1. Design parameters of ECHHR.

Parameters Value/Model

Outer diameter of stator/mm 490

Inner diameter of stator/mm 200

Outer diameter of rotor/mm 440

Inner diameter of rotor/mm 224

Axial length of one side stator/mm 45

Axial length of rotor/mm 80

Thickness of stator connection/mm 25

Stator material Aluminum

Rotor material 10CrMo

Material of stator connection 10CrMo

Excitation coils Copper

ECHHR quality/kg 165

4.1. Analysis of Eddy Current Characteristics

Since the left and right stators of the ECHHR are made of aluminum, and considering
the efficiency of simulation calculation, the left and right stators are deleted when establish-
ing the electromagnetic field analysis model. The size of the solid grid of stator connections,
rotors, and coils is set to 20 mm, and the working surfaces of the stator and rotor are set to
3 mm. The final grid model is shown in Figure 2.

To obtain the static magnetic field distribution in the ECHHR, set the coil current to
90 A, the rotor speed to 0 r/min, and set the analysis model to partial and full display,
respectively. The partial finite element analysis model established is shown in Figure 3.
The model is designed to clearly show the internal distribution of the magnetic field, and
only 1/12 of the stator and rotor are retained.

The electromagnetic field distribution vector diagram and electromagnetic field distri-
bution cloud diagram are obtained, as shown in Figure 4a,b. It can be seen from Figure 4a,b
that the magnetic field is mainly closed via the left side of the rotor, the left air gap, the
stator connection, the right air gap, and the right side of the rotor; the maximum magnetic
field strength is about 2 T at the salient pole of the stator connection.
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The static air gap magnetic density is an important parameter reflecting the eddy
current braking performance of the ECHHR. To obtain the static air gap magnetic density
under different currents, set the coil currents to 10, 20, 40, and 90 A, respectively, and
obtain the air gap magnetic density distribution in a cycle as shown in Figure 5. It can
be seen from Figure 5 that the air gap magnetic density first increases rapidly and then
increases slowly with the increase of excitation current. When the current is 90 A, the
air gap magnetic density tends to be saturated, and the maximum magnetic density is
about 2.3 T. On the other hand, when the excitation current is small, the maximum air gap
magnetic density is close to the center of the salient pole of the stator connection, while
when the excitation current is large (greater than 40 A), the maximum air gap magnetic
density is close to the two side ends of the salient pole of the stator connection. This is
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because when the excitation current is large, the magnetic field inside the ECHHR tends to
be saturated, which aggravates the magnetic leakage at the side end of the ECHHR, thus
increasing the magnetic density of the air gap at the side end.
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To predict the eddy current braking torque of the ECHHR, the excitation current is
set to 10, 20, 40, and 90 A, and the speed is set to 500, 1000, 1500, and 2000 r/min. The
braking torque under different excitation currents and speeds is shown in Figure 6. It can
be seen from Figure 6 that when the speed is constant, the braking torque increases with the
increase of excitation current; with the increase of rotating speed, the braking torque under
different excitation currents increases rapidly at first, and then increases slowly. When it
reaches its peak, the braking torque decreases gradually with the increase in rotating speed.
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4.2. Analysis of Hydraulic Braking Characteristics

The ECHHR has two hydraulic retarders in structure, and they are symmetrical in the
axial direction. Therefore, one of the hydraulic retarders is selected for CFD simulation.
Due to the complex structure of the hydraulic retarder and the unequal number of stator
and rotor blades, the full channel model is used in CFD simulation. To simplify the
calculation, the simulation model turns the inlet and outlet of the working fluid and stator
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into an integrated structure and then extracts the flow channel model from it. The model
parameters are shown in Table 2. The extracted runner model is discretized into meshes,
and the structure is shown in Figure 7.

Table 2. Geometric parameters of model.

Parameter Stator Impeller Rotor Impeller

Circular outer diameter/mm 427 410

Inside diameter of circular circle/mm 290 290

Number of blades 27 28

Blade thickness 4.5 4.5
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Before simulation, it is necessary to select algorithms and set boundary conditions.
The flow field of hydraulic braking is composed of liquid eddy current and complex shear
flow, so the SST turbulence model for shear stress transport and the Euler multiphase flow
model are selected. The specific setting conditions are shown in Table 3.

Table 3. Boundary condition setting.

Item Parameter

Analysis type Transient

Solution type Based on pressure

Turbulence model Realizable k-ε

Import boundary 2.1 kg/s (Flow), 3 × 105 pa (Pressure)

Exit boundary 3.5 × 105 pa (Pressure)

Stator and rotor domain sliding mesh

Time step 0.005

Time step 200

Set the speed of the retarder to 1000 r/min to obtain the velocity field and pressure
field of the working fluid inside the ECHHR, as shown in Figures 8 and 9. It can be seen
from Figure 8 that because the rotor does positive work on the working fluid and the stator
does negative work on the working fluid, the working fluid velocity in the rotor passage is
higher than that in the stator passage, and the working fluid velocity gradually increases
along the inner circle and the outer circle of the rotor and stator circulation. As shown
in Figure 9, a local high-pressure zone is generated at the root of the stator and the rotor
blades and at the end close to the circular center of the rotor blades. Along the rotating
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direction of the rotor blade, the pressure on the upstream surface of the stator blade is
significantly higher than that on the downstream surface.
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Figure 9. Cloud chart of flow field pressure: (a) Rotor blade. (b) Stator blade.

To obtain the braking characteristics of the hydraulic braking part, the fluid filling
rate in the retarder chamber is set to 25%, 50%, 75%, and 100%, respectively, for simulation
calculation, and the rotor speed is set to 0~2000 r/min. As the actual hydraulic braking part
of the retarder has two hydraulic retarders, the obtained simulation results of unilateral
hydraulic braking are superposed to obtain the speed–torque curves under different fluid
filling rates, as shown in Figure 10.

In Figure 10, at the same speed, the hydraulic braking torque of the ECHHR increases
with the increase of the filling rate. When the rotating speed is lower than 750 r/min,
the braking torque value under different fluid filling rates is relatively close. With the
continuous increase of rotating speed, the braking torque difference under different fluid
filling rates gradually increases. At 2000 r/min, the ECHHR can provide a maximum
hydraulic braking torque of 7810 Nm. The braking torque with different fluid filling rates
has a quadratic relationship with the rotating speed, which meets the empirical formula of
hydraulic braking torque.
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4.3. Hydroelectric Composite Torque

In order to analyze the hydroelectric composite braking capability of the ECHHR, the
above eddy current braking and hydraulic braking characteristic simulation results are
superposed to obtain the relationship curve between hydroelectric composite torque and
speed, as shown in Figure 11. It can be seen from Figure 11 that when the excitation current
is 90 A, and the liquid filling rate is 50%, the eddy current braking torque of the ECHHR
is large at low speed, while the hydraulic braking torque is large at high speed. The two
have good complementarity in braking torque. Therefore, compared with the separate HR
and ECR, the hydroelectric composite braking torque generated by the ECHHR is more
reasonable in the full speed range.
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5. Test Bench
5.1. Bench Test System and ECHHR Prototype

To test the basic characteristics of the hydraulic braking and eddy current braking
of the ECHHR and verify the correctness of the finite element analysis, a test bench was
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established, as shown in Figure 12. The test bench is mainly composed of the drive motor,
the torque meter, the transmission shaft, the liquid circulation system, the adjustable
excitation power supply, the data analysis system, and the ECHHR prototype, as shown
in Figure 13. The speed range of the drive motor is 0–2000 r/min, the maximum torque
is 2400 N·m, and the maximum power is 350 kw. The torque meter is connected to the
data analysis system via the wire harness, which can monitor and collect the retarder’s
braking torque, speed, and other data in real time. Because of the special closed inner cavity
structure of the ECHHR, opening the electromagnetic brake part alone will cause the stator
inner wall to reach a very high temperature quickly, and the closed structure will cause the
heat to not be lost, which will damage the retarder body. Therefore, the hydraulic brake
part of the ECHHR must be opened when the electromagnetic brake is opened. To simplify
torque control, the ECHHR adopts two-gear torque control; one gear torque controls the
hydraulic brake, and the other gear torque controls the hydraulic and electromagnetic
brake simultaneously. To realize the above control scheme, the eddy current braking torque
of the ECHHR is controlled by an external regulating power supply connected to the
terminal post.
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5.2. Hydraulic Braking Torque Performance

Due to the fact that the torque of hydraulic braking is only divided into one gear
control, the solenoid valve set at the outlet only has the function of opening and closing,
and the outlet pressure is mainly achieved by adjusting the opening of the valve. Therefore,
no control group of outlet pressure is set in this test scheme. On the other hand, a high-
power centrifugal pump was used to simulate the vehicle-based mechanical pump, with
a maximum working flow rate of 5.5 L/s. However, the working flow of the centrifugal



World Electr. Veh. J. 2023, 14, 319 11 of 16

pump is related to the load water resistance; the greater the load, the greater the pump
water pressure, but the flow will be sharply reduced. Hence, the centrifugal pump cannot
accurately control the flow. Therefore, under other unchanged conditions, this experiment
controls the inlet pressure of the ECHHR by adding a pressure regulating valve at the outlet
of the water pump and collects experimental data by comparing the simulation calculation
results. In the experiment, it is assumed that the inlet pressure remains basically constant.

It can be seen from Formula (1) that the braking torque of the HR has a quadratic
relationship with the speed. The braking torque shown in Figure 14 increases in a quadratic
relationship with the increase of rotor speed at different pressures in the initial stage, but as
the speed increases, the braking torque deviates from the quadratic trajectory curve and
tends to flatten out. When the inlet pressure is 0.1 Mpa, the quadratic curve relationship
is broken off when the inlet pressure is below 1000 r/min, while the escape node appears
near 1250 r/min and 1500 r/min when the inlet pressure is 0.2 Mpa. Under the working
condition of 1500 r/min commonly used in vehicles, the torque of the ECHHR can reach
1390 N·m at 0.2 Mpa inlet pressure. However, although the rise of the hydraulic braking
torque tends to be gradual, the braking power can still increase linearly due to the increase
in rotational speed.
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Figure 14. Brake torque curves of different inlet pressure.

5.3. Eddy Current Braking Torque Performance

Considering that eddy current braking cannot be carried out alone, the working fluid
is also fed into the hydraulic braking working chamber of ECHHR via a centrifugal pump
while applying direct current to the excitation coil of ECHHR during the test. Thus, the
composite braking characteristics are tested. Finally, the eddy current braking torque can
be obtained by deducting the torque of the hydraulic braking part. As shown in Figure 15,
as the speed increases, the eddy current braking torque first rapidly increases and then
stabilizes. It can be seen that when the speed is from 0 to 500 r/min, the eddy current
braking torque increases linearly with the increase in speed. When the speed is 500 r/m,
the eddy current braking torque reaches 950 N·m. But when the speed exceeds 500 r/min,
as the speed increases, the sigmoid function (a/a + e−2) of the eddy current braking torque
monotonically decreases. From the above analysis, it can be concluded that the eddy
current braking torque is high at low speeds.
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5.4. Composite Braking Torque Performance

As shown in Figure 16, the composite braking torque of ECHHR increases approxi-
mately linearly with increasing speed in the whole speed range (0–2000 r/min). When the
speed is 1000 r/min, the composite braking torque reaches 2100 N·m. Due to the low-speed
high-braking power of eddy current braking and the high-speed high-braking power of
hydraulic braking, the composite braking power is relatively higher in the full-speed range
compared to individual hydraulic braking and eddy current braking.
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5.5. Comparative Analysis of Hydraulic Braking Theory and Experimental Results

Due to the limitations of the filling control principle and open testing environment, it
is not possible to form a high-pressure, fully filled state in the retarder during the test. To
compare the experimental and theoretical calculation results, it is assumed that the liquid
filling rate in the ECHHR remains basically constant during the experimental process. The
simulation results of the gas–liquid two-phase mixed flow model (mixture) are compared
with them. Limited by the principle of liquid filling control and the open test environment,
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the high-pressure full liquid filling state cannot be formed in the retarder during the test. To
compare the test and theoretical calculation results, it is assumed that the liquid filling rate
of the ECHHR is basically constant during the test. The simulation results of the gas–liquid
two-phase mixed flow model (mixture) are compared with them, as shown in Figure 17.
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As shown in Figure 17, when the inlet pressure is 0.2 Mpa, the variation trend of the
braking torque is basically consistent with the simulation result of 30% liquid filling rate
and is quadratic to the speed. Its hydraulic braking characteristics are basically consistent
with the working characteristics of the traditional HR, which proves the rationality of the
design of the ECHHR. In the low-speed section (below 500 r/min) and high-speed section
(above 1750 r/min), the relative error rate is large, and the maximum is 32% and 22%,
respectively. However, in the middle section, the simulation results are closer to the test
results; the maximum relative error rate is only 8%.

It is speculated that the following reasons may be the cause: in the low-speed section,
the actual flow field may form an incomplete turbulence state, and the realizable turbulence
model selected in this paper is more suitable to simulate the high-speed rotating turbulent
flow field, so the error in the low-speed section is formed.

5.6. No-Load Torque Characteristics

No-load torque refers to the additional braking torque brought to the vehicle transmis-
sion system by the presence of air and residual magnetism in the retarder chamber when
the retarder is in no-braking conditions [15]. The no-load torque will affect the starting per-
formance of the vehicle, increase the fuel consumption of the vehicle, and is an important
indicator of the performance of the retarder. In order to test the no-load performance of
ECHHR, the current was set to 0 A, and all the working fluid in the working chamber was
drained. The no-load torque of ECHHR at different speeds is shown in Figure 18. It can be
seen from Figure 18 that the no-load torque increases with the increase in speed.
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5.7. Comparative Analysis of Eddy Current Braking Theory and Experimental Results

As shown in Figure 19, the comparison between the test results and the simulation
results of eddy current braking is presented. It can be observed that the trend of change
between the two is basically the same, indicating that the eddy current braking performance
of the ECHHR is basically reliable and can achieve certain eddy current braking functions.
However, compared to the test results, the maximum relative error of simulation is 28%,
and the simulation results are much lower.
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6. Discussion

The experimental results have proven the feasibility and rationality of the design
scheme proposed in this paper, but they also indicate that there are certain shortcomings
in the theoretical analysis and there are certain deviations in the experimental results.
Compared with conventional hydraulic retarders, the hydraulic braking capacity of EHHR
is reduced, but it can be used as a supplement to electromagnetic braking at low speeds. At
high speeds, its braking torque and speed increase in a quadratic relationship, ensuring the
braking performance of the retarder at high speeds. Considering that hydraulic braking
only plays an auxiliary role at low speeds and mainly plays a main role at speeds above
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1000 r/min, referring to the trial design experience of a straight blade hydraulic retarder, the
braking performance at high speeds can be improved by reducing the size of the retarder’s
working fluid outlet or increasing outlet control in the future.

The steady-state and transient electromagnetic fields of the electromagnetic braking
part of ECHHR were simulated and analyzed, and the electromagnetic field distribution
and braking torque values under different conditions of the retarder were obtained. The
effectiveness of finite element analysis was verified via experiments. The research results
have shown that via integrated structural design, the eddy current braking characteristics
of the retarder have not been unreasonable or weakened. However, as this test only
verifies the feasibility of the scheme, it is relatively simple and does not monitor the
temperature and pressure in real time during the test. Therefore, the above test results
cannot be verified via magnetic fluid thermal coupling. However, the conclusion drawn
from coupling analysis infers the reason for the deviation, providing a theoretical basis for
subsequent improvement.

The efficient anti-lock braking system (ABS) can effectively ensure the safety and
stability of the vehicle braking [16]. Considering the practical application of ECHHR, the
control system of ECHHR should work in conjunction with ABS, but the response speed of
the hydraulic brake part of ECHHR is slow, mainly because it takes a long time to fill the
liquid and completely drain the liquid. Therefore, the current control mode is that as long
as the ABS starts to work, ECHHR does not brake. Hence, the next step is to focus on how
to improve ECHHER’s response speed.

7. Conclusions

A new ECHHR was proposed, and finite element analysis models of its eddy current
and hydraulic braking were established. The electromagnetic field distribution, flow
field velocity, and flow field pressure distribution of the ECHHR were analyzed. The
relationship curves between eddy current braking torque under different excitation currents
and hydraulic braking torque under different filling rates and velocities were obtained. The
superior braking performance of the ECHHR in the full speed range was verified via finite
element analysis and experiment methods.
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