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Abstract: A new type of interior combined pole permanent magnet drive motor is proposed in this
paper, which aims to improve the power and comfort of electric vehicles. In view of the complex
magnetic circuit structure and rich harmonic magnetic field of the motor, the initial magnetic pole
parameters of the rotor are determined by the equivalent magnetic circuit method. Then, aiming
at the complex magnetic circuit and rich harmonic magnetic field, a multi-objective optimization
method based on the Taguchi method and response surface method is proposed to reduce the cogging
torque, high harmonic content in air gap magnetic flux density and increase the output torque. Based
on the finite element analysis of the electromagnetic performance of the new type interior combined
magnetic pole permanent magnet drive motor before and after optimization, it can be seen that the
improved rotor structure can effectively reduce the torque ripple and increase the torque density.
Finally, a prototype was developed and experiments were conducted, and experimental results
verified the correctness of the proposed multi-objective optimization algorithm.

Keywords: electric vehicle; interior combined magnetic pole; drive motor; Taguchi method; response
surface method

1. Introduction

The development of traditional internal combustion engine vehicles has caused two
major problems: energy depletion and environmental pollution. Electric vehicles have
become a hot research and development topic for governments and scholars around the
world due to their advantages of low pollution and zero emissions. However, as one of the
key parts of electric vehicles, the output characteristics of the drive motor directly determine
the overall performance of electric vehicles [1–3]. With the increasing pursuit of driving
comfort and power, the development of electric drive systems with high performance, high
efficiency and high torque density has become an important way to improve the power
performance and driving range of electric vehicles [4,5]. At present, the permanent magnet
drive motor used in electric vehicles is mostly an interior single magnetic pole structure, and
the distribution of magnetic field lines is not uniform, resulting in the obvious depression
of the back electromotive force waveform, high harmonic content and large motor loss [6,7].
In recent years, how to improve the torque density of the permanent magnet drive motor
and reduce torque ripple has attracted the attention of scholars at home and abroad [8,9].

Generally, the methods to improve torque density and reduce torque ripple can be
divided into motor topology innovation and optimization of motor structure parameters.
From the perspective of structural innovation. Reference [10] adopts fractional slot winding
to effectively reduce higher harmonics and weaken the cogging torque, thus restraining
the torque ripple of the permanent magnet motor. Reference [11], through the design of an
asymmetrical rotor pole, the pulsation of permanent magnet torque, found that reluctance
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torque and cogging torque can be suppressed simultaneously, but the manufacturing pro-
cess is complicated, and the torque density of the motor will be reduced. Studies [12,13]
propose a stator sectionalized interior tangential magnetic field permanent magnet drive
motor, which shortens the armature winding end length and improves the torque density,
but the sinusoidal trend of the output waveform of the back electromotive force is poor,
resulting in large torque fluctuation. Study [14] proposed a tangential magnetic field hybrid
pole permanent magnet motor for electric vehicles, which uses the reasonable design of
ferrite and NdFeb to reduce the development cost and cogging torque, but at the same
time reduces the magnetic flux density of the air gap and output torque. In addition to
the improvement of the motor structure, the design parameters of the motor can also be
determined by an optimization algorithm, so as to improve the motor’s electromagnetic
performance. The traditional optimization methods mostly use a single objective for opti-
mization, which not only requires tedious calculation steps and a long development time
but also the mutual influence between design parameters is generally ignored, making it
difficult to obtain the optimal parameters [15–17]. Study [18] takes high torque density
as a single optimization objective for the flux-switched permanent magnet motor, selects
parameters such as pole arc coefficient and magnetization thickness of permanent magnets
for analysis, and uses finite element analysis to repeatedly adjust structural parameters
based on single parameter scanning method to design the motor. The performance capabil-
ity of this method in multi-parameter interaction, multi-indicator optimization, and global
optimization is relatively not particularly outstanding. In study [19], when combining
the genetic algorithm and simulated annealing algorithm theory, the flux linkage of the
double-stator permanent magnet motor is optimized and analyzed. Although this method
can accurately obtain the optimal structural dimension parameters, its optimization process
is slow, time-consuming and low efficiency. Study [20] introduced an objective function
to modify the multi-objective optimization design method and the maximum value is
obtained using the orthogonal test method. Latin-Hypercube, a genetic algorithm, and the
simulated annealing algorithm NSGA-II, have good global search ability, but could not
fully realize the adaptive genetic optimization [21,22].

In summary, multi-objective optimization algorithms have been widely applied in the
design of traditional single-pole permanent magnet motors. Although typical prediction
models have good nonlinear approximation ability and strong generalization ability, such
models have lower prediction accuracy and larger prediction errors when trained without
intelligent optimization algorithms. Some algorithms have strong global search capabilities,
but their convergence speed is slow and optimization efficiency is low. Therefore, there
is currently no mature method for the multi-objective optimization of the interior com-
bined magnetic pole of permanent magnet motors. In this paper, a new type of permanent
magnet drive motor for electric vehicles with a dual radial and tangential interior combi-
nation magnetic pole structure (IDRTPMDM) is proposed. Since the combined magnetic
pole is composed of multiple magnetic poles, its structure is relatively complex, which
increases the number of variables to be considered in the optimization analysis process,
the cross-influence on the optimization goal further increases the difficulty of motor opti-
mization and design. On the other hand, the design and analysis of the motor is a complex
multi-dimensional overall optimization process, involving electromagnetic torque, torque
fluctuation, air gap magnetic density and other optimization objectives. It is very tedious
to obtain the best performance of the motor by using the traditional optimization design
method [23–25]. Therefore, in order to improve the output torque and reduce the torque
ripple as optimization objectives, a new multi-objective optimization method is proposed
to give full play to the advantages of different optimization methods, decompose the com-
bined magnetic pole design, and the optimal value of the motor can be obtained accurately.
The electromagnetic performance of the motor before and after optimization is simulated
by the finite element method, the prototype is made, the experimental platform is built,
and the experimental test is carried out. Both theoretical analysis and experimental results
show that the optimization design method can meet the high-performance optimization



World Electr. Veh. J. 2024, 15, 142 3 of 18

design requirements of this type of interior combined magnetic pole permanent magnet
drive motor.

2. Motor Structure and Working Principle

The structure of IDRTPMDM is shown in Figure 1. Each magnetic pole on the rotor
structure is composed of tangential magnetic field rectangular permanent magnet (TRPM),
radial magnetic field rectangular permanent magnet (RRPM) and semi-circular radial mag-
netic field permanent magnet (SRPM). The magnet flux concentration effect is generated
between adjacent TRPM to increase the output torque. The RRPM and the SRPM are set on
the d-axis to form a series magnetic circuit, which increases improved saliency ratio and
maximum speed of the constant power range of the motor. In addition, there is an anchor
magnetic barrier between the RRPM and the TRPM, which effectively reduces the magnetic
leakage coefficient and improves the utilization rate of permanent magnet material. In
this paper, SRPM is innovationally embedded between adjacent TRPM, which makes full
use of the limited space of the rotor core to increase the flux of air gap, improve magnetic
circuit guidance and high-efficiency interval distribution, and reduce the torque ripple. To
make up for the depression of the back electromotive force waveform, reduce high-order
harmonic content, and reduce torque ripple. In addition, considering the limit of peak
speed and switching frequency, a rotor with eight magnetic poles is adopted, and the stator
adopts a 24-slot integer slot winding form. The structure diagram of IDRTPMDM is shown
in Figure 1. The corresponding main technical indicators of the permanent magnet drive
motor are shown in Table 1.
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Figure 1. The structure diagram of IDRTPMDM. 1. Stator core; 2. Armature winding; 3. SRPM;
4. RRPMt; 5. Rotor core; 6. TRPM.

Table 1. Main performance parameters of IDRTPMDM.

Parameter Value Parameter Value

Rated power (kW) 3 Rated voltage (V) 60
Rated speed (r/min) 3000 Number of slots/poles 24/8

Outer diameter of stator (mm) 145 Inner diameter of stator (mm) 106
Outer diameter of rotor (mm) 105 Axial length (mm) 60

3. Analysis of Magnetic Pole Parameters Based on EMC Method

The model of IDRTPMDM is established by using the equivalent magnetic circuit
method (EMC), which consists of two parallel magnetic flux paths, one is the closed
magnetic path formed by TRPM through the rotor core, air gap, stator teeth, stator yoke
and stator teeth, and the other is the closed magnetic path formed by two RRPMs in series
with each other. As shown in Figure 2, the magnetic flux path diagram of the permanent
magnet drive motor with embedded radial and tangential parallel magnetic circuit and its
EMC model is shown in Figure 3.
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Figure 2. The magnetic flux path diagram of IDRTPMDM. 1. Main flux path of TRPM; 2. Magnetic
circuit formed by two RRPMs and TRPM; 3. Leakage flux of TRPM; 4. Leakage flux of SRPM;
5. leakage flux of RRPM.
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Figure 3. EMC model diagram of IDRTPMDM.

In Figure 2, label 1 is the main flux path of TRPM, label 2 is a closed magnetic circuit
formed by two RRPMs and TRPM, label 3 is the leakage flux of TRPM, label 4 is the leakage
flux of SRPM, and label 5 is the leakage flux of RRPM.

As shown in Figure 3, FcT is the magnetomotive force provided by TRPM; Fmj is
magnetomotive force provided by RRPM; Fd is the d-axis component of armature reaction;
Fmc is the magnetomotive force provided by SRPM; GmT is the equivalent permeability of
TRPM; Gmj is the equivalent permeability of RRPM; Gmc is the equivalent permeability of
SRPM; Gr1 is the equivalent permeability of rotor core between SRPM and RRPM. Gr1 is
the equivalent permeability between the rotor core and the air gap between the rotor and
stator. Gr is the equivalent permeability of rotor core between two RRPMs; Gg is the air gap
equivalent permeability of permanent magnet drive motor; Gt is the permeability of stator
tooth; Gy is the permeability of stator yoke; Gcl is the leakage permeability of SRPM; GTl is
the leakage permeability of TRPM; Gjl is the leakage permeability of RRPM; ΦmT provides
the magnetic flux for TRPM; Φmj provides the magnetic flux for RRPM; ΦTl is the leakage
flux of TRPM; Φjl is the leakage flux of RRPM. ΦU is the no-load effective magnetic flux
passing through the air gap.

According to the equivalent magnetic circuit model of IDRTPMDM, the following
equations can be obtained from Kirchhoff’s law and Ohm’s law of magnetic circuit:
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Formula, Gmj = µ1
Smj
bmQ

; GmT = µ1
SmT
bmT

; Gmc = µ1
Smc
bmc

= µ1
2R2La

(R1−R2)
. Where R2 is

the outer diameter of the SRPM; R1 is the inner diameter of the SRPM. The initial size
parameters of the rotor poles are determined through the EMC model.

4. Structure Optimization
4.1. Optimization of Rectangular Magnetic Pole Parameters Based on Taguchi Method

For the interior combined magnetic pole permanent magnet drive motor, the size
parameters and implantation depth of the permanent magnet have a great influence on
the output characteristics of the motor [24]. Therefore, in this paper the peak value of
cogging torque (Tcog), peak value of air gap magnetic flux density (GBg) and distortion
rate of no-load back electromotive force waveform (Kr) are taken as indicators, and the
thickness of TRPM (hmT), the magnetic direction width of TRPM (bmT), the thickness of
RRPM (hmQ), and the magnetic direction width of RRPM (bmQ) are taken as indicators.
The implantation depth of RRPM (b) is optimized for the parameter. Four factor levels are
selected for each parameter. The rectangular magnetic pole optimization parameters and
factor level task table are shown in Table 2.

Table 2. Task table of magnetic pole optimization parameters and factor level of rotor.

Parameter bmT/mm hmT/mm bmQ/mm hmQ/mm b/mm

Level 1 20 2 5 1 25
Level 2 21 3 6 2 20
Level 3 22 4 7 3 15
Level 4 23 5 8 4 10

The formula for calculating the waveform distortion of the no-load back electromotive
force of a new type of permanent magnet drive motor, such as Formula (2)

Kr =

√
U2

2 + U2
3 + U2

4 · · · · · ·U2
N

U1
× 100% (2)

where, UN—the amplitude of the Nth harmonic in the back electromotive force.
According to factors and level numbers, the experimental matrix with the expression

L16(45) is established. If the optimization method with a single variable and single indicator
is adopted, 45 = 1024 experiments are required, which requires a lot of working time. By
using Taguchi’s rule, the multi-objective optimization design of the rotor magnetic pole can
be completed only after 16 experiments. The orthogonal experimental matrix of parameter
influence factors is established, and the results are solved by the finite element method.
Orthogonal experimental matrix and calculation results are shown in Table 3.
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Table 3. Orthogonal experimental matrix and calculation results. (Reprinted from Ref. [26]).

Order
Experimental Matrix Kr Tcog G

hmT/mm bmT/mm hmQ/mm bmQ/mm b/mm % N·m T

1 1 1 1 1 1 47.1 0.58 0.51
2 1 2 2 2 2 40.2 0.81 0.63
3 1 3 3 3 3 36.2 1.04 0.74
4 1 4 4 4 4 31.4 1.32 0.83
5 2 1 2 3 4 45.3 0.75 0.58
6 2 2 1 4 3 41.8 0.85 0.62
7 2 3 4 1 2 35.8 1.12 0.80
8 2 4 3 2 1 31.4 1.29 0.82
9 3 1 3 4 2 43.1 1.04 0.69

10 3 2 4 3 1 39.3 1.37 0.79
11 3 3 1 2 4 36.2 1.17 0.75
12 3 4 2 1 3 30.5 1.16 0.81
13 4 1 4 2 3 42.6 1.22 0.74
14 4 2 3 1 4 40.4 1.46 0.80
15 4 3 2 4 1 35.8 1.17 0.76
16 4 4 1 3 2 31.4 1.33 0.84

Use Formula (3) to calculate the finite element simulation analysis results in Table 3:

M(S) =
1
n

n

∑
i

Si =
1
16

16

∑
i=1

S(i) (3)

In the formula, n is the test’s number; i is a constant, i = 1, 2, 3... n; Si is the average
target performance value for the ith test.

The average value of the specific target performance is calculated for the factor level
of each parameter, such as Formula (4)

Mxi =
1
4
[Mx(j) + Mx(k) + Mx(l) + Mx(n)] (4)

where Mxi is the average value of the performance index under the ith influence factor of
parameter x; Mx is the performance index of parameter x under a certain experiment; J, k, l,
n are experimental numbers.

In order to express the data more intuitively, the change of each optimization parameter
with the performance parameter is represented by a bar graph [26], as shown in Figures 4–6.
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From the above three graphs, it can be seen that these three horizontal combinations
are designed for the optimization of individual performance indicators. If the impact of
the three performance indicators on the motor is comprehensively considered, variance
analysis is required to further analyze the impact of the change of parameters on different
indicators, the proportion of the impact of the change of each parameter on its indicators is
determined, so as to obtain the optimization results. The variance is calculated as follows:

S(s) =
1
z

z

∑
i=1

[Mxi − M(s)]
2 (5)

where, s is the influencing factor, such as b1, h1, b2, h2, b; S(s) is variance of a performance
indicator under parameter s; Z is number of levels of each parameter; M(s) is the average
value of a certain performance indicator. The calculation results of S(s) are shown in Table 4.

Table 4. Variance value and proportion of each parameter performance index at four levels. (Reprinted
from Ref. [26]).

Parameter
Skr ST SG

Variance Proportion% Variance Proportion% Variance Proportion%

hmT 0.396 0.85 0.0210 23.28 0.0016 16.50
bmT 24.760 53.65 0.0180 19.96 0.0053 54.64
hmQ 20.743 45.00 0.0490 54.32 0.0020 20.62
bmQ 0.116 0.35 0.0003 0.33 0.00005 0.51

b 0.072 0.15 0.0019 2.11 0.00075 7.73
Total value 46.087 100 0.0902 100 0.00970 100

From Table 4, it can be seen that the variance value can intuitively reflect the proportion
of the impact of changes in various optimization parameters on performance indicators.
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The parameter with the highest proportion of influence on the peak value of magnetic flux
of the air gap is bmT. The width of TRPM hmT has a greater influence on the cogging torque
for IDRTPMDM. The performance index that has the greatest influence on the thickness of
magnetization direction bmQ and implantation depth b of RRPM is the peak value of air
gap magnetic flux density. Based on the above analysis, the selection of factor levels should
be optimized based on the minimum distortion rate, maximum peak air gap magnetic
flux density, and minimum peak cogging torque of the no-load back electromotive force
waveform. In summary, the optimal design variable combination is finally determined as
hmT (1) bmT (4) hmQ (1) bmQ (3) b (2).

4.2. Optimization of Semi-Circular Magnetic Pole Parameters Based on Response
Surface Methodology

The IDRTPMDM proposed in this paper adopts a single-layer winding distribution
wiring mode, stator structure and rotor pole parameters. On this basis, in order to fully
utilize the limited rotor space, increase the number of layers of permanent magnets, improve
the salient pole rate of the permanent magnet drive motor, and reduce magnetic leakage,
the semi-circular radial permanent magnet is embedded in the d axis magnetic circuit
of the rotor magnetic pole. In the design of traditional permanent magnet drive motors,
the thickness in the magnetization direction of permanent magnets is generally designed
to be thicker to avoid irreversible demagnetization of permanent magnets. However, if
the thickness in the magnetization direction is too thick, the d-axis reluctance will be
increased and the d-axis inductance will be reduced, which is not good for broadening
the efficient range of permanent magnet drive motors. When the motor is loaded, the
stator winding needs to pass a large armature current to increase the output torque, but
the larger armature current will increase the probability of irreversible demagnetization of
the permanent magnet. In conclusion, in order to enhance the magnet flux concentration
effect, demagnetization resistance and output torque performance of the air gap magnetic
field, it is important to optimize the size of the semi-circular radial permanent magnet.
Since the parameters of the magnetic poles of TRPM and RRPM have been determined, the
inner and outer radius of the semi-circular radial permanent magnet and the implantation
depth in the rotor core is restricted by the magnetic pole size of the rotor. Therefore, the
constraint relationship can be designed and optimized for the dimensional parameters of
the semi-circular radial permanent magnet, as shown in Figure 7.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 9 of 19 
 

 

Figure 7. Dimension constraints of semi-circular radial magnetic field permanent magnet. 1. Dis-

tance between TRPM and SRPM (dt); 2. Thickness of SRPM (t); 3. Outer radius of SRPM(R1); 4. 

Inter radius of the SRPM(R2); 5. The implantation depth of SRPM 

From Figure 7, the center of SRPM is O, and the distance d from the center O to the 

outer diameter of the rotor is the implantation depth of the SRPM. In order to keep rotor 

structural integrity when the motor is running at high speed, the implantation depth of 

the permanent magnet should not be less than 2 mm, and outer radius of SRPM is R1 and 

the inner radius of SRPM is R2. The difference between the two is equal to the thickness t 

in the magnetization direction of SRPM, which faces the air gap. In order to prevent irre-

versible demagnetization, the thickness in the magnetization direction should be greater 

than 2 mm. In order to avoid magnetic circuit saturation in the circular arc and prevent 

the magnetic flux from being generated to the air gap, the internal radius of SRPM R2 

should not be less than 2 mm, and the distance between TRPM and RRPM is dt. In order 

to meet the mechanical strength of the rotor punching and avoid the excessive saturation 

of the magnetic circuit, dt should be greater than or equal to 3 mm, and the radial distance 

between SRPM and the rectangular permanent magnet should be greater than 5 mm. Be-

cause each pole radian of the motor is 30°, minus 5.5° of the pole radian corresponding to 

5 mm, according to the geometric relationship in the figure, its dimension constraint equa-

tion can be established. 

1 2

2 1

2 1 1

1

1

2 3

2

2

2

5 20

3

2( ) ( 2)sin / 2

t

t

t r

R R t

R R

R R d R

d

d r

d

d r D 

 − = 
  

 +   +



 + + 





+ = −  

(6) 

According to the geometric dimension relationship between the combined magnetic 

poles of the rotor, the range of values for the three position size parameters of SRPM can 

be determined as shown in Formula (7). 

15mm 8mm

2mm 3mm

2mm 7mm

R

t

d

 


 
    

(7) 

In order to further reveal the mechanism by which the magnetic pole parameters of 

SRPM affect motor performance, the function of SRPM in this paper is to improve the air 

Figure 7. Dimension constraints of semi-circular radial magnetic field permanent magnet. 1. Distance
between TRPM and SRPM (dt); 2. Thickness of SRPM (t); 3. Outer radius of SRPM (R1); 4. Inter
radius of the SRPM (R2); 5. The implantation depth of SRPM.

From Figure 7, the center of SRPM is O, and the distance d from the center O to
the outer diameter of the rotor is the implantation depth of the SRPM. In order to keep
rotor structural integrity when the motor is running at high speed, the implantation depth
of the permanent magnet should not be less than 2 mm, and outer radius of SRPM is
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R1 and the inner radius of SRPM is R2. The difference between the two is equal to the
thickness t in the magnetization direction of SRPM, which faces the air gap. In order to
prevent irreversible demagnetization, the thickness in the magnetization direction should
be greater than 2 mm. In order to avoid magnetic circuit saturation in the circular arc
and prevent the magnetic flux from being generated to the air gap, the internal radius of
SRPM R2 should not be less than 2 mm, and the distance between TRPM and RRPM is dt.
In order to meet the mechanical strength of the rotor punching and avoid the excessive
saturation of the magnetic circuit, dt should be greater than or equal to 3 mm, and the
radial distance between SRPM and the rectangular permanent magnet should be greater
than 5 mm. Because each pole radian of the motor is 30◦, minus 5.5◦ of the pole radian
corresponding to 5 mm, according to the geometric relationship in the figure, its dimension
constraint equation can be established.

2 ≤ R1 − R2 = t ≤ 3
2 ≤ R2 < R1
R2 + 2 ≤ R1 ≤ dt + R1
d ≥ 2
d + r1 + 5 ≤ 20
dt ≥ 3
2(dt + r1) = (Dr − 2) sin θ/2

(6)

According to the geometric dimension relationship between the combined magnetic
poles of the rotor, the range of values for the three position size parameters of SRPM can be
determined as shown in Formula (7).

5 mm ≤ R1 ≤ 8 mm
2 mm ≤ t ≤ 3 mm
2 mm ≤ d ≤ 7 mm

(7)

In order to further reveal the mechanism by which the magnetic pole parameters of
SRPM affect motor performance, the function of SRPM in this paper is to improve the
air gap magnetic density and make up for the depression in the back electromotive force
waveform. The internal radius of the SRPM is set as R1, the thickness of SRPM t and
the implantation depth d as experimental factors, and the peak value of air gap magnetic
density is set as Y1. The waveform distortion of the air gap magnetic density Y2 as a
response value; the calculation formula for Y2 is shown in Formula (8).

Y2 =

√
B2

δ2 + B2
δ3 + B2

δ4 · · · · · ·+ B2
δn

Bδ1
× 100% (8)

According to the CCD (Central composite design) test scheme of the response surface
method, the relationship equation between the response value and the independent variable
is established by using the least square method and the regression model variance analysis:

Y1 = 1.28 + 0.052R1 + 0.042t + 0.048d − 0.082R1t + 0.076R1d
+0.062td − 0.16R2

1 + 0.016t2 + 0.033d2 (9)

Y2 = 52.17 − 0.015R1 + 0.14t + 1.54d − 0.2R1t + 0.36R1d
+0.019td + 0.26R2

1 + 0.29t2 − 1.7d2 (10)

According to the above Formulas (9) and (10), the magnitude of regression coefficients
of each factor in the model can be calculated, and the order of primary and secondary
influencing factors affecting Y1 is as follows: R1, t, d, and the order of primary and secondary
influencing factors affecting Y2 is as follows: d, t, R1.

The suitability of the model is confirmed by using the normal graph of the residual,
as shown in Figure 8. The residuals subtract the values suitable for the regression model
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from the actual measured values. The smaller the residuals, the more accurately the
regression model can describe the actual observed results. The data distribution is close to
the diagonal, indicating that the distribution of residuals is close to the normal distribution
Y1. By analyzing the residual diagram, it can be concluded that the majority of true values
fall on the predicted values, and only a few portion of the true values are distributed around
the predicted values, showing that the model fits the actual results well.
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The response surface between the outer radius, magnetization direction thickness
and implantation depth of the SRPM and peak value of air gap magnetic flux density
(Y1) is established in Figure 9. From the figure, the interaction between the three is very
obvious. When t = 2 mm and R1 changes from 5 mm to 8 mm, the Y1 first increases and
then decreases, as shown in Figure 9a. If the horizontal coordinate of R1 is fixed at a certain
value, Y1 tends to decrease with the increase in t. According to the contour density and
partial regression equation, when the influence of R1 on the Y1 is greater than that of d, the
value of Y1 first increases and then decreases, as shown in Figure 9b. If fixed, the horizontal
abscissa of d at a certain value in Figure 9c, the value of t increases, and the value of Y1 first
decreases and then increases. According to contour distribution and analysis of the partial
regression equation, the influence of t on Y1 is greater than d.
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between R1 and d; (c) Interaction between t and d.

The response surface of the outer radius of SRPM, magnetization direction thickness
and the implantation depth to the waveform distortion of the air gap magnetic density
(Y2) is established as shown in Figure 10. As shown in Figure 10a, when t = 2 mm and R1
changes from 5 mm to 8 mm, the value of Y2 decreases first and then increases. When R1 is
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a constant value, the value of Y2 increases with t. According to the contour density and
partial regression equation, the influence of t on the Y2 is greater than that of R1. When
d = 2 mm and X1 changes from 5 mm to 8 mm, the value of Y2 decreases first and then
increases, as shown in Figure 10b. The horizontal coordinate of R1 is fixed at a certain value
as the value of d increases, the waveform distortion rate of air gap magnetic flux density
first increases and then decreases, as shown in Figure 10c. According to the contour density
cloud map and partial regression equation, the influence of d on the Y2 is greater than that
of d. When d = 2 mm and t changes from 2 mm to 3 mm, the value of Y2 shows a trend
of decreasing first and then increasing. The horizontal coordinate of d is fixed at a certain
value, with the increase in t, the Y2 gradually increases. Based on the contour density cloud
map and partial regression equation, t has a greater influence on Y2 than d.
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Finally, the rotor pole parameters of the IDRTPMDM can be determined, as shown in
Table 5.

Table 5. Structural parameters of IDRTPMDM.

Parameter Before Optimization/mm After Optimization/mm

hmT 4 5
bmT 23 20
hmQ 3 2
bmQ 6 5

b 25 20
R1 7 6.2
t 2 2.4
d 3 2

5. Finite Element Verification

In order to verify the superiority of the optimized IDRTPMDM, the results of the
initial rotor pole calculated by the EMC method and the optimal design obtained by
Taguchi and the response surface method are compared. Based on the above optimization,
the stator structure, winding configurations, rotor outside diameter, silicon steel sheet
(DW310-50) and permanent magnet material (NeFeB 35) are the same before and after the
permanent magnet drive motor, the EMC calculation results and optimization results are
simulated and verified using finite element software (Ansys Maxwell 2021, Ansys Inc.,
Canonsburg, PA, USA). The simulation analysis results of magnetic field lines and flux
density of IDRTPMDM before and after optimization are shown in Figure 11. The upper
half of Figure 11a,b shows the simulation results of magnetic field lines, it can be seen that
the trend of magnetic field lines before optimization is not uniform with large magnetic
leakage. After optimization, the distribution of magnetic field lines is uniform, and the
magnetic leakage is reduced. In addition, the magnetic field line trend obtained from
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finite element simulation analysis is basically consistent with the EMC analysis results.
The lower half of Figure 11a,b shows the simulation results of magnetic flux density;
the distribution of magnetic flux density before the optimization is not uniform, and the
saturation phenomenon occurs in many places. Moreover, the magnetic flux density in
the stator part is significantly lower than that of the optimized motor, indicating that there
is less magnetic flux passing through the air gap and lower magnetic flux density in the
air gap.
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The no-load back electromotive force waveform of IDRTPMDM in one cycle before and
after optimization is shown in Figure 12. The no-load back electromotive force waveform
before optimization has obvious depression, and the optimized back electromotive force is
more similar to sine, indicating that the optimized rotor pole magnetic leakage is less, and
the magnetic accumulation effect is more obvious.
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By comparing the amplitude of harmonic frequency of the no-load back electromotive
force of the permanent magnet drive motor before and after optimization, the amplitude of
the fundamental wave before optimization is 36.77 V and the waveform distortion rate of
back electromotive force is 45%. After optimization, the fundamental amplitude is 38.63 V
and the waveform distortion rate of back electromotive force is 33%, as shown in Figure 13.
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The finite element simulation results of the cogging torque of IDRTPMDM are shown
in Figure 14. It can be seen that the peak value of cogging torque after optimization
decreases from 1.12 N·m to 0.55 N·m, reducing by about 51%, which verifies the correctness
of the optimization method.
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Figure 14. Cogging torque before and after optimization.

Figure 15 shows the surface graph of the no-load air gap flux density within a magnetic
pole range as a function of the rotor axis and circumferential direction. The optimized
no-load air gap magnetic flux density is closer to a sine wave, with a maximum air gap flux
density of 1.22 T, while the maximum air gap flux density before optimization is 0.82 T,
indicating that under the optimal parameter combination, the leakage magnetic flux rate of
the rotor pole is reduced; the utilization rate of the permanent magnet material is higher
and the air gap flux density of IDRTPMDM is significantly improved.

Figure 16a,b shows the efficiency map of IDRTPMDM under different output char-
acteristics before and after optimization. Through comparison, it can be found that the
optimized motor not only has high efficiency but also has a wider range of efficient working
areas (areas with efficiency greater than 85%). Obviously, the motor has a wider efficiency
range in Figure 16b, which can extend the range of electric vehicles.
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6. Experimental Testing of IDRTPMDM

In order to verify the correctness of the above theoretical calculation and simulation
analysis, this article has developed a prototype based on the optimized parameters of the
magnetic pole, such as Figure 17, and the test bench is shown in Figure 18.
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Then this article developed a testing plan for the motor output characteristics [27,28],
Figure 19 shows the three-phase no-load back electromotive force test waveform and finite
element analysis results at 3000 r/min. The effective value of the test waveform of the back
electromotive force is about 60 V, and close to the sine wave. Compared with Figure 12,
the simulation result of the back electromotive force is 59 V, this is because the motor loses
more energy during actual testing, such as the influence of assembly accuracy or motor
temperature. The experimental results of the relationship between back electromotive
force and speed change are shown in Figure 20. The finite element calculation results are
basically consistent with the experimental test results.
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Figure 19. The measured waveform of prototype.

In this paper, the motor dynamometer test bench (Figure 18b) is used to test the
Mechanical characteristic curve of the IDRTPMDM, as shown in Figure 21. The optimized
motor has a wide magnetic weakening range and a large output torque, which can ensure
an output power of 3 kW at 3000 r/min. The simulation results have a high fit with the
test results below 4000 r/min, but as the speed increases, the numerical difference between
the finite element simulation results and the measured results gradually increases. The
reason is that as speed increases, wind friction and mechanical losses increase, leading to
an increase in calculation errors. However, the consistency between the two is still high.
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The cogging torque of IDRTPMDM can be tested using the instrument shown in
Figure 18a, the result is shown in Figure 22. The maximum value measured in the ex-
periment is 0.58 N·m. The maximum obtained from the previous simulation analysis is
0.55 N·m, the difference between the two is caused by machining errors during the proto-
type manufacturing process, but within a reasonable range, this also verifies the correctness
and accuracy of the previous theoretical analysis.
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7. Conclusions

This paper proposes a new type of IDRTPMDM to improve the output performance
of electric vehicle drive systems. Based on the complex structure of the motor, an EMC
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model is established, and the result of EMC calculation as the initial parameter, then a
combination of the orthogonal experimental method and the response surface method is
proposed which can quickly, efficiently, and accurately obtain motor parameter values.
The results before and after optimization are verified by finite element simulation, the
waveform of the no-load BMF of the motor is more like the sine wave after optimization.
After Fourier decomposition, the fundamental wave amplitude increases from 36.77 V
before optimization to 38.63 V, and the distortion rate of no-load BMF decreases from
the original 45% to 33%. The no-load air gap magnetic density increased from 0.82 T
before optimization to 1.22 T after optimization. The cogging torque is reduced by about
51%, and the optimized motor has a wider efficiency interval, which is more in line with
the output characteristics of the drive motor for electric vehicles. Finally, a prototype is
made and experimentally tested; the results are basically consistent with the theoretical
analysis, indicating that the optimization method in this paper is correct, thus verifying the
effectiveness of the proposed multi-objective optimization algorithm. The paper provides a
new method for optimizing interior combined pole permanent magnet motors.
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