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Abstract: β-thalassemia, a congenital genetic hematological disorder characterized by the decrease
or absence of β-globin chains, leads to a decrease in levels of Hemoglobin A. The affected individuals
can be categorized into two cohorts based on transfusion dependency: transfusion-dependent
thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). Remarkably, despite the
primary pathology lying in β-globin chain depletion, β-thalassemia also exhibits an intriguing
association with iron overload. Iron metabolism, a tightly regulated physiological process, reveals a
complex interplay in these patients. Over time, both cohorts of β-thalassemic individuals develop
iron overload, albeit through distinct mechanisms. Addressing the diverse complications that arise
due to iron overload in β-thalassemic patients, the utilization of iron chelators has gained a lot
of significance. With varying efficacies, routes of administration, and modes of action, different
iron chelators offer unique benefits to patients. In the Indian context, three commercialized iron
chelators have emerged, showcasing a high adherence rate to iron chelator-based treatment regimens
among β-thalassemic individuals. In this review, we explore the intriguing connection between
β-thalassemia and iron overload, shedding light on the intricate mechanisms at play. We delve into
the intricacies of iron metabolism, unveiling the distinct pathways leading to iron accumulation in
these patients. Additionally, the therapeutic efficacy of different iron chelators in managing iron
overload complications is mentioned briefly, along with the guidelines for their usage in India.
Through this comprehensive analysis, we aim to deepen our understanding of β-thalassemia and
iron overload, paving the way for optimized treatment strategies. Ultimately, our findings provide
valuable insights into improving the care and outcomes of individuals affected by β-thalassemia.
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1. Introduction

Thalassemia syndromes are reported as a cluster of multi-genetic inherited hematologi-
cal diseases that develop due to impaired formation of one or more chains of hemoglobin [1].
Globally, around 56,000 infants are born with severe thalassemia (alpha or beta) annu-
ally, with more than half of them reported to require regular blood transfusions [2]. β-
thalassemia is represented by decreased (β+) or absent (β0) synthesis of β-globin chains
of the most prevalent form of adult hemoglobin, Hemoglobin A (α2β2), due to one or
more mutations in the intronic, exonic, and/or promoter region of β-globin (HBB) genes,
which are present on chromosome 11 [3,4]. According to the previous data available,
β-thalassemia has been described to primarily occur as an autosomal recessive disorder.
β-thalassemic individuals can be divided into three cohorts: β-thalassemia major (TM),
β-thalassemia intermedia (TI), and β-thalassemia minor (carrier) [5]. It was estimated
that around 10,000–12,000 TM infants are born yearly in India, and around 42 million

Thalass. Rep. 2023, 13, 179–194. https://doi.org/10.3390/thalassrep13030017 https://www.mdpi.com/journal/thalassrep

https://doi.org/10.3390/thalassrep13030017
https://doi.org/10.3390/thalassrep13030017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/thalassrep
https://www.mdpi.com
https://orcid.org/0000-0001-9031-1547
https://orcid.org/0000-0003-3676-6000
https://doi.org/10.3390/thalassrep13030017
https://www.mdpi.com/journal/thalassrep
https://www.mdpi.com/article/10.3390/thalassrep13030017?type=check_update&version=1


Thalass. Rep. 2023, 13 180

β-thalassemia carriers are present in India. The annual prevalence rate of β-thalassemia
was determined to be around 3–4% [6,7]. Due to the quantitative reduction in β-globin,
particularly in individuals with TM and TI, excess accumulation of α-globin chains in
erythroid precursors has been reported. This causes globin chain imbalance, resulting
in a state called ‘ineffective erythropoiesis’. Under such circumstances, in an effort to
enhance erythrocyte production (red blood cells), the developing nucleated erythroid cells
undergo premature apoptosis as a means to restore equilibrium. This ultimately leads to
chronic hemolytic anemia, which requires regular blood transfusions and other therapeutic
approaches, like iron chelation therapies, fetal hemoglobin upregulation, etc., to alleviate
disease symptoms, as well as other clinical approaches, like hematopoietic stem cell trans-
plantation, etc., to resolve the disease pathology [8–10]. For the classification of thalassemic
disorders, dependence on blood transfusion has also been considered as a parameter;
hence, it is considered that there are two types of thalassemia: TDT (transfusion-dependent
thalassemia) and NTDT (non-transfusion-dependent thalassemia) [11]. TDT patients must
obtain lifelong, recurrent blood transfusions, whereas NTDT patients require occasional or
infrequent blood transfusions.

Iron is a biometal that is reported as a crucial micronutrient for the survival, growth,
and sustenance of all organisms, involved in various significant biological processes like
cellular proliferation, certain redox reactions, cell cycle progression, DNA synthesis, fer-
roptosis, etc. [12,13] It is a cofactor of multiple enzymes because of its capacity to form
complexes with organic ligands [14]. An average human is known to maintain a reserve
of 3–5 g of iron under physiological conditions (around 55 mg/kg in males and around
44 mg/kg in females), differentially dispersed across various cell types [15]. Around 80%
of the iron pool in the human body is related to the hemoglobin present in red blood
cells, whereas the rest is contained in macrophages and liver hepatocytes [16]. The fine
balance of the iron level in the human body, as maintained by iron metabolism, is critical
for homeostasis. Any disequilibrium on either side, leading to deficiency or overload, has
been linked with cellular damage and damage to various organs in the body. Remarkably,
iron overload is frequently reported as a major consequence of β-thalassemia (both TDT
and NTDT). Transfusion-dependent β-thalassemic (TDT) individuals who receive regular
blood transfusions are predisposed to secondary iron overload in diverse organs, like the
liver, heart, etc., and have a greater propensity towards the development of iron toxic-
ity [17]. In NTDT, ineffective erythropoiesis primarily leads to iron overload in patients.
Ineffective erythropoiesis in β-thalassemia induces an elevated production of erythroid
progenitor cells, and this consequently requires increased intestinal iron absorption, which
ultimately gets deposited in different organs of the body, instead of aiding in the formation
of more erythrocytes [10,18,19]. Furthermore, ineffective erythropoiesis results in increased
serum erythropoietin levels, and this is coupled with a decline in serum hepcidin levels
(detailed mechanism provided in Section 3.1. TDT vs. NTDT), which ultimately results in
enhanced iron uptake and, eventually, iron overload in different organs, as well [20,21].
The absence of an effective mechanism for the elimination of excess iron from the human
body, especially in such conditions, leads to a plethora of comorbidities, associated with
TDT and NTDT as repercussions of iron overload [22].

This review explores the various mechanisms of iron overloading in β-thalassemic
individuals and discusses the molecular pathways involved in such iron overload condi-
tions. Subsequently, we take a critical look at commercially available iron chelators and
the contemporary scenario of their usage in the Indian subcontinent. It is expected that
this knowledge will help us gain insights into how the paradigm of management of iron
overload conditions in β-thalassemia is evolving in developing countries.

2. Physiological Iron Metabolism and Its Regulation
2.1. Absorption and Cellular Uptake

Dietary iron is considered to be of two types: heme iron (acquired from the hemoglobin,
hemoproteins, and myoglobin of meat) or non-heme iron (acquired from iron-fortified
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foods). Heme iron is reported to be more easily absorbable compared to non-heme iron [23].
During its intestinal uptake, iron is converted from its ferric state (Fe3+) to its ferrous
state (Fe2+) by the ferric reductase duodenal cytochrome B (DYCTB) [24] at the apical
side of the enterocytes facing the intestinal lumen. The proton-coupled divalent metal
transporter 1 (DMT1), an iron exporter, conducts the absorption of Fe2+ from the gut lumen
into the enterocyte cytoplasm [25]. The transport of absorbed iron from the enterocytes
to the systemic circulation is performed by the only identified mammalian iron exporter,
Ferroportin1 (FPN1), expressed on the basolateral side of the enterocytes [26]. When FPN1
facilitates the transport of Fe2+ to the extracellular side of the basolateral membrane, Fe2+

is oxidized to Fe3+ by hephaestin and ceruloplasmin (ferroxidases) for effective binding
of Fe3+ with circulatory transferrin (Tf) [27,28]. Most Tf molecules are produced by the
liver [29].

The assimilation of transferrin-bound iron (TBI) into the cell is facilitated by the
transferrin receptor-1 (TfR-1) present on the cell membrane of any normal cell, except on
highly differentiated cells [30]. That is followed by the clathrin-mediated endocytosis of
the TBI-TfR1 complex [31]. After the release of Fe3+ in the endosome, six transmembrane
epithelial antigens of prostrate 2 (STEAP2) reduces it to Fe2+, and this Fe2+ is transferred
to the cytoplasm of the cell by Dmt1 [25]. Transferrin receptor 2 (TfR2) is the homologous
protein of TfR1, and it is expressed ubiquitously on hepatocytes [32].

Species of Non-transferrin bound iron (NTBI) are also observed in the plasma, and it
is considered that the major forms of NTBI include Fe3+ bound to citrate or acetate, and its
transport is facilitated by zinc transporter Zrt-Irt-like protein 14 (Zip 14), L-type and T-type
calcium channels, etc. [33–35] NTBI is considered to have the most significant contribution
to iron loading in the liver hepatocytes when Tf is saturated [36].

2.2. Storage

For the storage of iron in the cells, the major protein responsible is ferritin (Ft), which
is reported to be a spherical protein nanocage of 24 subunits, consisting of heavy (Ft-H)
and light (Ft-L) polypeptide chains [37]. Inside the ferritin sphere, up to 4500 atoms
of iron (Fe3+) can be stored via incorporation into a crystalline solid, called ferrihydrite
[FeO(OH)8[FeO(H2PO4)], which restricts reactive oxygen species (ROS) formation [38,39].
Ft is contained in the cell cytosol, mitochondria, and nucleus, as well as in serum. It is
observed that mitochondrial Ft (mFt) has the capability to store iron more proficiently
than cytosolic Ft [40]. Ferritinophagy is the process which regulates the dissociation of
iron from Ft, and it is observed that nuclear receptor co-activator 4 (NCOA4) acts as the
cargo receptor by associating with the Ft-L transferring the Ft complex for degradation to
the lysosome, thus making the iron stored in that Ft molecule available for biosynthetic
reactions [41,42].

The hepatocytes, which comprise around 80% of the liver mass, act as the major
location for the storage of absorbed iron, due to their ability to produce a large number of
Ft molecules [29].

The remainder of cellular iron storage occurs within heme-containing proteins like
cytochromes and Fe-S cluster-containing proteins like succinate dehydrogenase, as well
as non-heme/non-Fe-S iron-containing proteins like iron- and 2-oxoglutarate-dependent
dioxygenases [43–45].

Figure 1 elucidates the cellular uptake of iron by the enterocytes and the subsequent
transfer of transferrin-bound iron to different cells.
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Figure 1. The absorption and cellular uptake of iron in enterocytes and the transport of transferrin-
bound iron to other cells for utilization. (DYCTB—Duodenal Cytochrome B, DMT1—Divalent Metal 
Transporter 1, Ft—ferritin, FPN1—Ferroportin1, Tf—Transferrin, TfR1—Transferrin Receptor 1). 

2.3. Consumption and Recycling 
The mammalian body has a high iron requirement, with the majority of it being used 

for hemoglobin synthesis by the erythroblasts [46]. The mitochondrion has the most sig-
nificant role in maintaining cellular iron homeostasis. Iron released from the endosomes 
is directed to mitochondria in one of the two following ways: (1) Iron can be transferred 
to mitochondria from the endosomes by a cytosolic iron chaperone protein, poly (rC) 
binding protein 1 (PCBP1) [47]. (2) Iron can also be delivered, without any intermediate, 
into the mitochondria from the endosomes via a ‘kiss-and-run’ mechanism, as detected in 
erythroid cells, since they have greater demands of iron for hemoglobin synthesis [48]. 
The transport of iron between the inner membranes of mitochondria is facilitated by mi-
toferrins 1 and 2 [49]. Inside the mitochondria, iron is utilized for the production of heme 
and the Fe-S clusters, which, in turn, facilitate the biosynthesis of several proteins associ-
ated with electron transfer by incorporating into them [50,51]. 

Senescent erythrocytes show decreased membrane flexibility, the presence of mem-
brane phosphatidylserine, alterations on the erythrocyte solute carrier family 4 (anion ex-
changer) member 1 (SLC4A1), decreased sialic acid, and the cluster of differentiation 47 
(CD47) antigen [52–54]. Hepatic and splenic macrophages scavenge and phagocytose 
these senescent erythrocytes to free iron from hemoglobin for utilization in another he-
moglobin cycle [55]. 

Figure 1. The absorption and cellular uptake of iron in enterocytes and the transport of transferrin-
bound iron to other cells for utilization. (DYCTB—Duodenal Cytochrome B, DMT1—Divalent Metal
Transporter 1, Ft—ferritin, FPN1—Ferroportin1, Tf—Transferrin, TfR1—Transferrin Receptor 1).

2.3. Consumption and Recycling

The mammalian body has a high iron requirement, with the majority of it being
used for hemoglobin synthesis by the erythroblasts [46]. The mitochondrion has the most
significant role in maintaining cellular iron homeostasis. Iron released from the endosomes
is directed to mitochondria in one of the two following ways: (1) Iron can be transferred to
mitochondria from the endosomes by a cytosolic iron chaperone protein, poly (rC) binding
protein 1 (PCBP1) [47]. (2) Iron can also be delivered, without any intermediate, into the
mitochondria from the endosomes via a ‘kiss-and-run’ mechanism, as detected in erythroid
cells, since they have greater demands of iron for hemoglobin synthesis [48]. The transport
of iron between the inner membranes of mitochondria is facilitated by mitoferrins 1 and
2 [49]. Inside the mitochondria, iron is utilized for the production of heme and the Fe-
S clusters, which, in turn, facilitate the biosynthesis of several proteins associated with
electron transfer by incorporating into them [50,51].

Senescent erythrocytes show decreased membrane flexibility, the presence of mem-
brane phosphatidylserine, alterations on the erythrocyte solute carrier family 4 (anion
exchanger) member 1 (SLC4A1), decreased sialic acid, and the cluster of differentiation
47 (CD47) antigen [52–54]. Hepatic and splenic macrophages scavenge and phagocy-
tose these senescent erythrocytes to free iron from hemoglobin for utilization in another
hemoglobin cycle [55].
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2.4. Regulation of Iron Metabolism

The systemic regulation of the intricate metabolism of iron occurs in the mammalian
body via the Hepcidin–Ferroportin axis. Hepcidin is a 25 amino-acid peptide hormone that
is primarily expressed by the hepatocytes. Reports suggest that the binding of hepcidin to
FPN1 on any FPN1-expressing cell types leads to rapid ubiquitination, internalization, and
lysosomal degradation of FPN1, causing a disruption in the iron export from the cells and
the retention of iron in them [56]. Hepcidin is expressed as a product of the HAMP gene,
which is positioned on Chromosome 19 [57]. Erythropoiesis, anemia, hypoxia, and iron
deficiency lead to decreased hepcidin production [58,59]. However, infection, inflammation,
and iron overload result in increased hepcidin production [60–62]. A membrane protein,
Hemojuvelin (Hjv), is reported to vitally regulate the expression of the HAMP gene in the
liver, which acts via the Bone Morphogenetic Protein (BMP) signaling pathway [63]. A
regulatory serine protease, called Matriptase-2 (encoded by the TMPRSS6 gene), which is
primarily produced by the liver, is known to cleave Hjv, and this is eventually found to
impede the production and functioning of hepcidin [64].

On the cellular level, the expressions of different iron metabolism proteins, like the
subunits of Ft, TfR1, and FPN1, are post-transcriptionally regulated by the association
of the iron regulatory proteins (IRPs) to different highly conserved iron-responsive ele-
ments (IREs), located at the untranslated regions (UTRs) of their corresponding mRNA
transcripts [65,66]. IREs can be located at either the 5′-UTR (FPN1, Ft-H and Ft-L) or the
3′-UTR (TfR1 and DMT1) [65,67–69]. IRP1 and IRP2 are RNA-binding proteins that possess
the ability to sense cytosolic iron concentration and bind to their corresponding mRNA
targets to modify their expression [70]. When an IRP associates with the IREs present at
the 5′-UTR, the translation of the mRNA transcript is hindered and the mRNA transcript
is degraded. However, when the IRP associates with the IREs present at the 3′-UTR, the
mRNA transcript is stabilized and is actively translated [71].

In iron-deficient cells, IRPs bind to IREs present at the 3′-UTR of TfR1 and DMT1
mRNA transcripts, leading to the stabilization of their transcripts and subsequent transla-
tion, leading to an increase in iron import. The IRPs also bind to IREs present at the 5′-UTR
of FPN1, Ft-H, and Ft-L mRNA transcripts to facilitate the degradation of their mRNA
transcripts, hence facilitating the decrease in iron storage and export [72].

In iron-adequate cells, the IRPs do not bind to the IREs present at the 5′-UTRs of
the FPN1, Ft-H, and Ft-L mRNA transcripts; hence, they are continuously translated. In
contrast to this, the mRNA transcripts with IREs in the 3′-UTR (TfR1 and DMT1) are
degraded, thus leading to decreased iron import and increased iron storage and export [71].

3. Iron Overload in Beta-Thalassemia

As previously mentioned, iron overload is seen as an inevitability in both TDT and
NTDT β-thalassemic patients. The non-transferrin-bound plasma iron (labile iron) pool
thus formed leads to the generation of ROS, which causes lipid peroxidation and leads
to dysfunction in various organs, like the liver, heart, and endocrine glands [73]. Hence,
β-thalassemic patients are under increased oxidative stress. The surplus iron also accu-
mulates in the different end-organs and, in turn, leads to their subsequent dysfunction,
which ultimately leads to increased morbidity [73]. However, there lies a difference in the
pattern of iron loading and overloading in different organs with respect to transfusion
dependency. Furthermore, studies have demonstrated that β-thalassemic individuals (car-
riers and patients) who have histidine to aspartic acid substitution at codon 63 (H63D)
of the Hemochromatosis gene HFE have a greater propensity towards iron overload-
ing, suggesting the modulating ramifications of H63D mutation of the HFE gene on iron
metabolism [74,75].

3.1. TDT vs. NTDT

Around 200–250 mg of elemental iron is present in each unit of transfused packed red
blood cells, while the human body is only capable of losing around 1–2 mg of iron every
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day [76]. In TDT patients, around 0.3–0.6 mg/kg of transfusional iron is incorporated into
the body daily, considering a monthly transfusion rate of 2 to 4 units of packed red blood
cells [77].

The reticuloendothelial macrophages phagocytose the senescent transfused red blood
cells; hence, iron is liberated into plasma for binding to Tf [78]. Even after the saturation
threshold of the Tf molecules is reached, NTBI is transported into the cardiomyocytes,
hepatocytes, and endocrine glands via the calcium channels [35]. In the cardiomyocytes,
it was reported that the uptake of Fe3+ ions was mediated via lipocalin-2 and its receptor,
instead of via calcium channels [79,80]. This excess iron leads to irreversible damage in
the different organs and hampers the functionality of those organs. Cardiac dysfunction,
owing to iron overload in the myocardium, is one of the main comorbidities related to
β-thalassemia, and it leads to nearly 71% of mortality associated with the disease [81]. In
TDT patients, cardiac siderosis, which leads to arrhythmias and heart failure, along with
hepatic and endocrine dysfunction, has been reported [82].

In NTDT patients, ineffective erythropoiesis triggers increased iron absorption from
the intestines [83,84]. Furthermore, ineffective erythropoiesis also leads to conditions
of anemia and hypoxia; thus, as previously mentioned, the hepcidin levels decline to
facilitate the compensatory iron acquisition for erythropoiesis [85,86]. This results in the
upregulation of ferroportin, which causes iron release from the enterocytes, as well as
from the reticuloendothelial system into systemic circulation [59,87,88]. The increased iron
burden leads to the deposition of iron into a variety of organs (similar to the case of TDT, but
at a much slower rate), leading to oxidative damage [89]. Previously, growth differentiation
factor-15 (GDF-15) and twisted gastrulation 1 (TWSG1) were implicated to have important
roles in hepcidin suppression in NTDT patients. However, upregulation of these proteins
was not observed in β-thalassemic mice, casting doubt over their importance [90]. It
has been observed that Erythroferrone, a protein expressed by bone marrow and splenic
erythroid precursors, has increased production owing to the erythropoietic stimulation for
compensation for ineffective erythropoiesis. Erythroferrone is reported to contribute to
iron overload, as it is seen to cause hepcidin downregulation [91].

Figure 2 shows a concise description of the pathways for iron overload in TDT and
NTDT patients.
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Interestingly, it has been observed in NTDT that, although the patients showed severe
liver iron overload, they did not show cardiac iron overload. Hence, it has been concluded
that iron overload distinctly affects the hepatocytes, instead of the cardiomyocytes, in
NTDT patients [92]. TDT has been seen to be correlated with multiple complications
like chronic anemia, liver fibrosis, hypothyroidism, growth retardation, diabetes mellitus,
etc. It was revealed from the OPTIMAL CARE study that NTDT presents a distinct array
of comorbidities that are similar to those of TDT. NTDT-related comorbidities generally
include osteoporosis, hypogonadism, leg ulcers, etc., whereas TDT-associated complications
like heart failure, hypothyroidism, and diabetes mellitus occurred at a lower rate in NTDT
patients. Young TDT patients have been seen to develop clinical iron overload after
receiving around 10–20 blood transfusions, whereas NTDT patients mostly developed iron
overload slowly over the course of 10–15 years [93,94].

3.2. Differential Expression of Different Proteins in Iron Overload Conditions

The expression of the major apical iron transporter, DMT1, reportedly does not increase
in iron overload conditions, indicating that changes in DMT1 levels are not major causes
of iron overload [95]. Higher levels of the ferroxidase ceruloplasmin have also been
observed in β-thalassemic patients, which possibly facilitates increased loading of iron
onto transferrin and after high transferrin saturation, as well as onto albumin and citrate to
enhance the formation of ROS-generating labile plasma iron [96]. As previously mentioned,
there is an augmentation in FPN1 levels, due to the suppression of hepcidin, to enable
increased iron transport from the cells to the plasma. Furthermore, when the iron-binding
capacity of Tf is saturated and reaches its threshold due to increased iron load, NTBI
increases in the plasma of β-thalassemic patients [77]. As β-thalassemia is considered to
be associated with ineffective erythropoiesis, the presence of soluble Tfr1 is seen to be
increased in β-thalassemic patients, probably to facilitate the transport of iron required
for compensation [88]. The serum ferritin levels are greatly enhanced in β-thalassemic
patients [97].

3.3. Detection of Iron Overload

In TDT β-thalassemic patients, iron overload can be quantified using serum ferritin,
urinary iron elimination, hepatic iron content, and total iron-binding capacity of transfer-
rin (TIBC) levels [97]. Iron toxicity is considered when the serum ferritin levels exceed
2500 ng/mL, urinary iron excretion levels exceed 20 mg/day, hepatic iron content levels
exceed 440 mmol/g, and the transferrin saturation levels are greater than 75% [98]. A serum
ferritin level of 1000 ng/mL indicates the threshold for starting iron chelation therapies in
TDT patients [99]. In NTDT patients, a threshold value of 800 ng/mL is reported as the
serum ferritin threshold level representative of iron overload in NTDT patients [100].

For evaluation of the liver iron concentrations, R2 or T2* magnetic resonance imaging
(MRI) can be used. For TDT patients, if the concentration of iron in the liver surpasses
7 mg/g dry weight (dw) of liver iron concentration (LIC) values, then there is a higher
propensity for iron overload, whereas LIC values greater than 15 mg/g dw increases
chances of severe liver fibrosis and mortality. In NTDT patients, LIC values exceeding
5 mg/g dw is indicative of increased mortality [94,101,102].

T2* MRI is also the gold standard for detecting cardiac iron overload in milliseconds
in β-thalassemic patients. The T2* is observed to become shorter when iron deposition
in the myocardium increases [103]. Previous reports indicate that there is an intensifying
impairment in the Left Ventricular Ejection Fraction (LVEF) when theT2* values <20 ms,
and there is deterioration in the functioning of right and left ventricles when the T2* values
<14 ms in β-thalassemic patients [104,105]. Severe iron overload is associated with cardiac
T2* values <10 ms [106]. However, a negligible correlation has been established between
cardiac T2* and serum ferritin levels, indicating that tracking ferritin levels cannot serve as
a reliable indicator for assessing the cardiac condition associated with iron overload [104].
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4. Iron Chelators

Since all β-thalassemic patients, regardless of their transfusion dependency or non-
dependency, acquire iron overload, it is imperative to employ iron chelators to eliminate the
excess of toxic iron in them and, thus, alleviate the symptoms of iron overload. However,
when considering the utilization of iron chelators for a patient, a specific treatment regimen
is chosen that benefits the individual, taking into consideration the chelating medication’s
long-term efficacy, safety, and cost.

The three iron chelators commonly used are Deferoxamine, Deferiprone, and De-
ferasirox. The chemical structures of these three iron chelators are shown in Figure 3.
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Deferoxamine (DFO) is reported to bind to iron at a 1:1 molar ratio [107]. DFO is
observed to decrease serum ferritin levels and hepatic iron overload in β-thalassemic
patients [108]. However, since the plasma half-life of DFO is low, continual injections are
required for iron-overloaded patients, either subcutaneously or intravenously [109].

Deferiprone (DFP) is reported to bind to iron at a 3:1 molar ratio. It is administered
orally and dosages of 75–120 mg/kg/day of DFP are usually sufficient to induce a negative
iron balance, inducing efficient control of cardiac as well as hepatic iron overload [110,111].
The DFP treatment regimen has a high percentage of adherence compared to that of DFO,
and DFP is seen to have a better efficacy profile compared to that of DFO, as well [112].

Deferasirox (DFX) is reported to bind to iron at a 2:1 molar ratio. DFX is now used by
millions of TDT patients with iron overload. DFX is administered orally, and it is seen to
only increase fecal iron excretion. It has been reported that DFX lowers liver iron content
and serum ferritin levels, along with increasing fecal iron excretion in iron-overloaded
patients at the prescribed dosage of 10–40 mg/kg/day [113,114].

Table 1 elucidates the different characteristics of these three iron chelators.
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Table 1. A list of different commercially available iron chelators used to treat iron overload.

Characteristics Deferoxamine Deferiprone Deferasirox

Structure Hexadentate Bidentate Tridentate

Route of
Administration

Subcutaneous or
Intravenous Injections Oral Oral

Mechanism of Action

Chelates NTBI,
Ft-bound iron;

promotes
ferritinophagy [115]

Chelates labile iron in
cytosol [115]

Chelates labile iron in
cytosol; increases

hepcidin levels [115]

Route of Excretion Biliary and
Urinary [116] Urinary [117] Fecal

Adverse Effects

Hearing disorders,
Growth Retardation,
Lung/Renal Toxicity,
Bone Abnormalities,

Visual disorders,
Pain at site of
injection [118].

Severe
Agranulocytosis,
Gastrointestinal

problems,
Arthiritis [118].

Rash,
Renal disorders,
Gastrointestinal
problems [118]

There are currently many other iron chelators that show great promise towards miti-
gating iron overload, like Deferitazole and SP-420 [119,120]. Amlodipine, a calcium channel
blocker, has been reported to be efficient in decreasing myocardial iron concentration and
significantly elevating cardiac T2*, which indicates its role for the treatment of cardiac
iron overload [121]. Furthermore, a recently discovered novel erythroid maturation agent,
luspatercept, has been reported to lower the serum ferritin levels in adult β-thalassemic
patients, as well as significantly reduce the number of blood transfusions (>33%) in TDT
patients (BELIEVE trial) [122]. The long-term analysis of luspatercept, along with confirm-
ing the previous reports, also reported a decrease in mean daily iron chelator use in TDT
patients. Furthermore, the trial has also reported a decrease in and stabilization of liver
iron concentration in TDT patients after 96 weeks of luspaterecept usage [123]. All these
results indicate the potency of luspatercept as an emerging efficient therapeutic agent for
the treatment of iron overload in TDT patients.

5. Guidelines for Usage of Iron Chelators in India

Blood transfusion is reported to be one of the prevalent clinical interventions in
modern medicine, alleviating the severe symptoms of patients with chronic anemias, such
as thalassemia, sickle cell disease, myelodysplastic syndromes, etc., where patients require
regular blood transfusions for survival or to improve their quality of life. Previous reports
suggested that each milliliter of red cells is packed with approximately 0.8 mg of iron, and
our physiological mechanisms limit us to effectively eliminate approximately 1–2 mg of
accumulated iron per day, and only through desquamated oral and intestinal epithelia [124].
Therefore, it is evident that patients who require multiple blood transfusions are often prone
to develop rapid iron overload in the body. Effective management of iron overload requires
efficient monitoring of bodily iron storage. The iron status of the body is readily evaluated
using different methods, as previously mentioned. Previous reports suggested that the
serum ferritin level can be regarded as a reliable, cost-efficient, and readily detectable
indicator of bodily iron storage. It has been extensively used to monitor the iron status of
the body in recent times. With the advent of modern medicine, iron chelation has become
an effective strategy to alleviate symptoms associated with iron overload in patients with
transfusion-dependent chronic anemias. According to the guidelines of the Ministry of
Health and Family Welfare, Government of India, once the serum ferritin levels exceed
1000 mg/L, after approximately 10–12 blood transfusions, the recommended dosages of
the three iron chelators as a part of the iron overload treatment regimens are as follows:
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• DFO: continuous subcutaneous injection over 8–12 h or more with the help of an
infusion pump, dispersed in water; dosage, 25–50 mg/kg/day;

• DFP: orally, in 2–3 divided dosages; dosage, 50–100 mg/kg/day;
• DFX: orally, dispersed in water or juice; dosage, 20–40 mg/kg/day;
• Combination therapy: when patients no longer respond to monotherapies, it is advis-

able to shift to combined regimens of DFX and DFO [125].

It is absolutely essential for iron-overloaded patients to adhere to iron chelation thera-
pies for decreased mortality, as well as decreased comorbidities. In 2017, Bhattacharyya
et al. reported that DFX is found to be an effective iron chelator that can reduce serum
ferritin levels efficiently in Indian HbE/β-thalassemia patients with minimal or no adverse
effects [126]. However, a recent study from India has reported that non-adherence to
iron chelation therapies was found in 10.7% of iron-overloaded patients. The levels of
serum ferritin were reported to be exacerbated significantly in non-adherent patients in
comparison to those of adherent patients, and higher rates of both cardiac and hepatic iron
overload were also observed in them. It was also observed that adherence to the treatment
regimen was highest with DFX, followed by DFP, and finally, DFO [127].

This is heartening to note, considering the fact DFX has been reported to have greater
effectiveness in the reduction in iron overload and chelator-related side effects in TDT
patients, when compared to DFP, as reported in a study conducted on children from West
Bengal (Eastern India) in 2021 [128]. Furthermore, in 2021, another Indian study reported
that combined oral chelation therapy conducted with DFO and DFX significantly reduces
serum ferritin levels in TDT children with severe iron overload [129] These findings indicate
that oral iron chelation therapy and, in particular, combined oral chelation therapy with
both DFP and DFX, may yield the optimal results for the treatment of iron overload in
β-thalassemic patients, although further studies in larger cohorts are warranted.

Chelator-related side effects are a common concern for patients and treating physicians.
In 2021, Chandra et al. evaluated the risk of development of neutropenia between two
thalassemic groups (patients on combined DFP and DFX, and patients with DFX alone). No
significant correlations (p = 0.87) were found [130]; however, in a previous study, assessing
the safety of the oral iron chelator DFP Naithani et al., in 2005, reported thrombocytopenia
as a major side effect in young (<6 years) thalassemia patients in India [131]. These data in-
dicated that, although iron chelators are essential for mitigating iron overload, the treatment
regimen should be carefully optimized and monitored, especially in younger patients.

Compliance with iron chelation therapy, in spite of its absolute necessity for optimal
results, is a major challenge globally. Interestingly, adherence rates to iron chelation
therapies in India has been found to be significantly higher than those of the adolescents
of other South Asian countries, like Malaysia (51.4%) [132]. Various reasons have been
elucidated for non-adherence to iron chelation therapies, including poor family support,
low family income, and side effects of the iron chelators [127].

All of these reports elucidated the present scenario of iron chelators used in treating
patients with iron overload in India. Iron chelation therapy is being looked at as one of
the feasible options to partially combat the complications associated with regular blood
transfusions in severe chronic cases of anemias in India. However, further studies are
required to determine the most effective and safe usage of these drugs in patients with
heterogeneous clinical symptoms associated with iron overload. Until such time, strict
monitoring is required to administer the optimal dosages of these iron chelators in different
clinical settings in India.

6. Conclusions

Iron overload is an indispensable comorbidity associated with β-thalassemia. Thus,
iron chelation therapy is an absolute necessity when it comes to the holistic treatment of
β-thalassemic patients. Despite the high adherence rate mentioned in the aforementioned
study, it is difficult to quantify the adherence to iron chelation therapies all over India.
More research is crucial to understand the entire picture of iron chelation regimens and
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the adherence to them across the whole demographic of India. The β-thalassemia trait is
unequally distributed across the Indian subcontinent, so it is necessary to provide adequate
treatment to all iron-overloaded patients or to those who have a higher propensity to
develop iron overload. Hence, affordable healthcare options are very necessary for the
effective clinical management of iron overload, as the medications are currently quite costly,
and might benefit a higher number of people affected with β-thalassemia all over India.
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