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Abstract: In the context of the energy transition, the integration of land use considerations into
energy planning can provide significant improvements. In energy system optimization models
(ESOMs), land use aspects can be integrated at the cost of a finer spatial resolution and a more
detailed characterization of land, tailored to regional constraints and specificities. Additionally, an
assessment of trade-offs with alternative land uses is necessary. Nevertheless, they are commonly
neglected. This study addresses the challenge of incorporating land use aspects into ESOMs, with
a focus on the unique context of Pantelleria Island. It aims to bridge the gap in methodologies for
renewable energy potential assessment and model integration, considering the critical role of land
pricing and availability. It combines geospatial data aggregation with model adaptation to include
detailed land use aspects. The findings highlight the substantial impact of land costs on renewable
energy planning, with land pricing significantly altering model outcomes. This research offers key
insights for sustainable energy planning and underscores the importance of considering land use in
energy transition strategies.

Keywords: energy system optimization models; land use; spatially explicit energy planning

1. Introduction

The sharp rise in temperatures from pre-industrial levels caused by climate change is
leading to a paradigm shift in the use of energy throughout all sectors of the economy [1].
The typical mitigation strategy applied by most international authorities is represented by
the reduction of the greenhouse gas emission footprint for all energy-intensive sectors [2].
To do that, the decarbonization practice in any sector requires the replacement of its primary
inputs with carbon-free alternatives, changing both production processes and involved
technologies [3]. Among all the others, the power sector is to be the major decarbonization
player in the next decades [4]. Indeed, to further decarbonize the electricity sector and reach
a net zero energy system by 2050, a mix of increasingly affordable and mature variable
renewable energy source (VRES) technologies, mainly solar photovoltaic (PV) and wind
turbine (WT), will need to be deployed [5]. These are characterized by intensive land use,
especially photovoltaic, wind [6], and biofuel [7]. Now that the shift towards renewable
energy sources is expected to increase, worldwide competition for land and its energy
policy implications have not adequately been addressed [8].

In this context, the importance of informed energy models plays a crucial role. Sev-
eral tools are available to evaluate the possible energy system evolution considering the
expected energy transition with different sectorial coverage, time horizon and time steps,
spatial scales, and modelling methods [9]. For instance, energy system optimization models
(ESOMs) are characterized by a detailed technoeconomic description of the main technolo-
gies (or processes) belonging to the most energy-intensive sectors of the system. For this
reason, they are typically used to suggest possible optimal future evolution of the energy
and technology mix over the long run, according to alternative socioeconomic and policy
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scenarios [10]. They are optimization models evaluating the minimum-cost configuration
of the system [11], according to the studied scenario and the technology modules included
in the model. Because of such features, ESOMs have been widely used to assess the effects
of decarbonization strategies or innovative technologies on several sectors of the economy,
focusing on several sectors (i.e., transport [12], industry [13], hydrogen [14]) and regions
(e.g., Belgium [15], US [16], EU [17], world [18,19]). In the transition from a fossil-based to a
renewable-based energy system there are, however, new challenges that traditional ESOMs
are not yet able to address [20].

Methodologically, many complexities exist concerning the use of space for power plant
installation. Starting from the data gathering, the evaluation of accessible land resources is
often overestimated during the initial assessment phase. The energy potential of a specific
site is subject to a multitude of constraints, encompassing administrative, technical, and
economic factors, which collectively impinge upon the availability of land resources within
a given region [21]. This necessitates a rigorous process for the identification of appropriate
sites, commonly referred to as “land eligibility” (LE). A major challenge in this process is
the issue of comparability across different assessment tools, surrounded by the absence
of standardized data sources [22]. Finally, the optimal land allocation strategy remains
unaddressed in ESOMs. Notably, the siting of a plant should encompass a comprehensive
evaluation of all the potential multi-sectoral use of a given site. This evaluation extends
beyond mere energy production to include other significant uses such as agriculture and
afforestation [23]. This critical dimension, situated within the broader land–energy nexus,
calls for a thorough appraisal of land value alongside the identification of sector-specific
trade-offs [24]. Presently, this aspect is not integrated into dedicated ESOMs [25] but rather
belongs to other methodologies such as integrated assessment models (IAMs) [26] and the
analytical hierarchy process (AHP) [27].

Geographically, there is an emerging need for ESOMs to provide regional-specific in-
sights. Empirical evidence underscores that a granular approach in modelling significantly
enhances the value of ESOMs, especially in regions characterized by diverse renewable
energy potentials [20]. This advantage is further amplified in contexts necessitating a
substantial proportion of VRESs [20]. Moreover, increasing the spatial resolution of en-
ergy modelling may impact different ESOM variables, such as total system cost [28] and
demand-side aspects [27]. Therefore, the scope of an ESOM should extend beyond the
mere quantification of needed capacities; they should also provide strategic guidance on
optimal installation locations, thus fully exploiting a region’s technoeconomic potential.
Consequently, the optimal siting of energy plants according to regional potential and
characteristics emerges as a pivotal element of the broader economic optimization process
within the ESOM. In this context, the objective and novelty of this paper are related to the
incorporation of such features into ESOMs to improve the decision-making process [29].

This study addresses the goals by answering these three key questions:

(1) Is it possible/easy to integrate spatially explicit considerations in ESOMs, and how
much do the available open source packages help in this practice?

(2) Does explicitly spatial energy planning provide added value when performed at a
small spatial scale?

(3) How is it possible to quantify the added value introduced by an explicitly spatial
planning approach?

Our analysis aims to test and quantify how many and which characteristics of land
and land use can improve planning solutions within an ESOM, regarding a test case
corresponding to a small spatial scale. This study particularly focuses on small remote
islands, which are often not connected to national power grids, as they offer an appropriate
case study for the above issues, considering their significant landscape heritage and limited
land availability [30].
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2. Literature Review

The interplay between spatial attributes and energy planning has been a focal point
in the recent literature [31]. This debate has highlighted the limitations of current renew-
able energy (RE) deployment strategies and the adequacy of existing modelling tools in
addressing these challenges. Although renewable electricity technologies are technically
feasible and economically viable, their integration into energy systems is hampered by is-
sues related to spatial low energy density and significant land use. The capability of current
ESOMs to address these multifaceted challenges has come under scrutiny. Central to this
debate is the ability of these models to integrate detailed spatial and regional energy yield
characteristics. This approach goes beyond simply addressing land resource depletion;
it involves optimizing regional spatial features. Key considerations in this optimization
include factors such as local electricity infrastructure. Additionally, the integration of land
as a finite natural resource in ESOMs is inadequately addressed. Furthermore, the economic
and emission trade-offs associated with land use for energy installations comparing alter-
native applications represent a critical area of investigation. The objective of this section is
to provide an overview of the literature gap, thus justifying the goal and contribution of
this paper.

2.1. Benefits and Challenges of Spatially Explicit ESOMs

Enhancing spatial resolution in energy modelling is crucial for a deeper understanding
of technology costs, timing, and generation mix [27]. Indeed, this approach encompasses
factors affecting demand, supply-side elements, and technological characterization of ES-
OMs [27]. In this context, geographical information systems (GISs) emerge as a tool that
yields promising results in calculating weather potentials, notably for wind (including
both offshore and onshore) and solar energy at very high resolution [32]. For example, a
study [33] demonstrated that up to 47% of the yearly averaged wind power could be used as
baseload power, thanks to a local GIS-based analysis. These approaches are advantageous
not only for determining the optimal locations of VRES plants based on meteorological con-
ditions [34] but also for characterizing entire regions or technologies from a technoeconomic
point of view, serving as an input for ESOM. To clarify the importance of this practice, a
study using a mixed-integer linear programming (MILP) model for heat decarbonization
identified spatial resolution as a key variable in influencing scenario results, alongside
demand, costs, and efficiency [33], by performing a global sensitivity analysis. Concerning
the benefit (or adverse side effect) of varying spatial resolution, Stolten et al. [28] have
already demonstrated the goodness of this practice. In their work, they used region cluster-
ing based on energy potential characteristics and found that increasing spatial resolution
improves model accuracy. However, they also noted a saturation effect of this benefit at
higher resolutions and emphasized the importance of considering both time and spatial res-
olution to increase accuracy. A remarkable limitation of the study is the spatial scope given
the focus on the whole European area. Indeed, as confirmed by Frysztacki et al. [35,36],
modelling a fully renewable European electricity system, even at a resolution of one node
per country is insufficient to retrieve reliable capacity expansion suggestions. Other at-
tempts at a lower spatial scale have been conducted. Downscaling to the national model, a
comprehensive review on the topic of spatial resolution in ESOMs is performed in [20] by
analyzing 36 multi-sectoral ESOMs from 22 countries, with varying levels of spatial and
temporal resolution. The analysis demonstrates to what extent higher spatial resolution
impacts the outcomes of energy system analysis. They observed that fine-grained spatial
resolution in ESOMs provides significant added value for regions with heterogeneous
renewable potential or higher variability in energy services. As spatially resolved models
can significantly alter the scenario outcomes, particularly in scenarios with high shares of
variable renewable energy sources, disaggregating renewable resources tends to reduce
costs. At smaller spatial scales, however, a lack of relevant works is highlighted.
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2.2. Land Availability and Potential Assessment

Incorporating land use and spatial explicitness into ESOMs at the local scale necessitates
a comprehensive assessment phase. This assessment phase involves first a detailed analysis
of land eligibility (LE) for VRES installations and then the VRES potential estimation [28].

The LE analysis focuses on identifying land that is unsuitable for renewable energy
projects due to various limitations. Technical constraints encompass existing renewable
energy facilities and areas with limited natural wind or solar resources [21]. Regulatory
and environmental restrictions, considering local community concerns regarding land
usage, can also curtail the available land for renewable energy projects [21]. It is crucial
to consider all these limitations when evaluating the trade-offs and challenges related
to land availability for renewable energy projects. A pertinent example at the European
level underscores this point: to meet the targets for wind and photovoltaic solar capacity,
substantial land area is required. For instance, in France, Germany, and Italy, which are
expected to host approximately 50% of the EU’s renewable energy installations, achieving
the 2040 renewable capacity goals would require an additional 23,000 to 35,000 square
kilometers of land. This area is roughly equivalent to the size of Belgium [37]. This
underscores the need for comprehensive land eligibility assessments to realistically achieve
renewable energy targets. Examples of LE analyses in the literature are common, as
analyzed in the review of Ryberg et al. [21], covering more than 50 works. However,
Ryberg concludes that, despite this attention from the community, inconsistencies between
studies have prevented a collective understanding of how different criteria influence
land availability. In response to that, a major attempt to unify the way LE is evaluated
is performed in the GLAES tool (Geospatial Land Availability for Energy Systems) [21].
However, there is a significant gap in the current research: the application and validation
of the GLAES framework on a smaller scale has not been explored. Validating GLAES at a
small scale is crucial to confirm its reliability and flexibility in different, often more complex
local environments.

For the VRES potential assessment, several raw data sources are available and have
been listed in a rigorous analysis in [38]. In this study, a repository of all the well-established
sources classified by temporal and spatial resolution is proposed, encompassing all the
existing renewable energy sources. In addition, Maclaurin et al. [30] developed The Re-
newable Energy Potential (reV) model, a platform for the detailed assessment of renewable
energy resources and their geospatial intersection with grid infrastructure and land use
characteristics. Moreover, a major recent attempt exists to incorporate all these VRES
potential estimations in a unique versatile tool [39]. Such a framework, called “at-lite”,
retrieves global historical weather data, and converts it into power generation potentials
and time series for VRES technologies like wind and solar power. These efforts, despite
their robustness, often lack the necessary precision at a granular spatial scale. This limita-
tion is significant when considering the intricacies of local environments and the specific
demands of smaller regions. Consequently, there is a pressing need for the integration of
LE and VRES assessments at a more detailed local level.

2.3. The Problem of Optimal Siting

Up to this point, the purpose of the increased spatial resolution and better land char-
acterization is to provide better planning solutions, generally reflected in minor system
costs. But there is another area where land-specific consideration may help. Notably,
together with the cost, the problem of optimal siting of renewable energy must also be ad-
dressed [40], to make, for instance, ESOMs capable of providing site-specific insights about
plant siting. There is a wide range of research papers that have attempted to extract the
optimum location of renewable energy facilities. In [41], a multi-attribute decision-making
(MADM) approach and evaluation for ideal site selection for wind power plants was de-
veloped. MADM is a process for evaluating and comparing options based on multiple
criteria or attributes [42]. In another study [43], the authors developed a novel framework
for determining the optimal location for constructing PV farms, focusing on environmental
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sustainability. They employed an AHP that, like MADM, in energy decision-making aids
in prioritizing various energy solutions based on multiple criteria like cost, efficiency, and
environmental impact [44]. The discussed methodology excels in identifying optimal loca-
tions for renewable energy facilities by leveraging site-specific characteristics like regional
potential. However, those analyses often lack integration with broader energy systems,
biasing the optimal land management choice. Indeed, the superior suitability of a site for
VRES installation does not necessarily imply that deploying VRES is the optimal use for
that site. Alternative land uses, such as afforestation or land-use change, may offer greater
effectiveness in systemic decarbonization perspective. Therefore, incorporating these op-
timal siting methodologies in ESOMs becomes relevant also for a more comprehensive
approach to energy planning, ensuring that site selection not only focuses on local potential
but also aligns with wider system efficiency and sustainability goals.

2.4. Land–Energy Nexus

A final point emerging from the literature is related to the sectorial trade-offs between
the energy and the land use-related sectors [24]. As decarbonization policies are developed,
conflicts between sectors are leading to competing demands for land [45]. Renewable
energy projects, as well as afforestation for carbon sequestration, often compete with agri-
cultural land uses, thus emphasizing the need for integrated planning that considers both
energy requirements and sustainable land management [46]. This nexus has an impact
both on the economic and the emission side [47] of the energy planning process. A global
study using an IAM highlighted the economic aspect of land use in energy planning,
revealing that solar energy yields are higher over croplands, potentially leading to land
use competition [47]. However, the study also presents agrivoltaics as a solution to this
challenge. Agrivoltaics, combining agriculture and solar energy on the same land, can
alleviate the competition for land by enabling simultaneous agricultural production and
energy generation [47]. From an emission perspective, a study [8] reveals that land cover
changes, both direct and indirect, can cause a net release of carbon ranging from 0 to 50 g
CO2/kWh, depending on various factors like region, solar technology efficiency, and land
management practices in solar parks. Since the significance in capturing those aspects is
demonstrated by the above-mentioned literature, comprehensive ESOMs should include
them. Nevertheless, an extensive review states that more work is needed to effectively
consider policy trade-offs between the land and energy sector in models, especially from an
economic and carbon balance point of view [48]. In particular, ESOMs currently lack repre-
sentation of land and its related properties, such as crop yields and carbon sequestration
potentials, essential for the abovementioned trade-off estimations [49]. Their integration
is crucial for comprehensive land-centric perspectives on carbon capture and mitigation
strategies [49].

3. Materials and Method

This section outlines the methodology and materials used to address the research
questions presented in the introduction. It describes the steps in logical order, culmi-
nating in the research objectives, with the workflow summarized in Figure 1. It begins
by defining the case study and introducing the energy model used to address the case,
namely TEMOA (Tool for Energy Model Optimization and Analysis, Section 3.1). Next, the
geospatial information systems (GISs) and sources used in the analysis are briefly described
(Sections 3.2 and 3.3). As highlighted above, the coupling of land use data in energy models
is divided into two main steps: the data gathering of renewable resource potential and land
availability (assessment phase, Sections 3.4 and 3.5), and the incorporation of such infor-
mation into the selected modelling instance (integration phase, Sections 3.6 and 3.7). The
data gathering phase is structured into three distinct sections: VRES potential assessment,
evaluation of land costs, and land eligibility analysis. Subsequently, the collated database
undergoes a process of spatial and technological aggregation, ensuring the data are sum-
marized in a format compatible with our model. The resulting of this is a technology-
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and land-related dataset; both are used as an input for the ESOMs. The way those refined
data are integrated inside TEMOA, as well as their interaction with model constraint and
objective function (TEMOA block of Figure 1), is explained.
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3.1. Modelling Framework

In this paper, the TEMOA [50] ESOM was selected, motivated by several key points:

• Open source: TEMOA is open source, providing the transparency and customization
needed for research. TEMOA’s code is written in Python and optimized in Pyomo, a
Python library for optimization, so it has no accessibility constraints.

• Similarity to other models: The TEMOA model formulation is like the model genera-
tors MARKAL/TIMES [11,51], MESSAGE [52,53], and OSeMOSYS [54]. Such tools,
already commonly used in energy planning (e.g., MESSAGE in Syria [53], OSeMOSYS
in Colombia [55], TEMOA-US [16]. Moreover, TEMOA is a validated tool whose con-
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vergence with the well-established TIMES framework has already been demonstrated
in an Italian modelling instance [56].

The central component of the TEMOA framework is a technology-explicit description
of the energy system model [57]. The energy system is described algebraically as a net-
work of linked processes that convert energy feedstocks (e.g., coal, oil, biomass, uranium,
sunlight) into end-use demands (e.g., lighting, transportation, water heating) through a
series of one or more intermediate energy forms (e.g., electricity, gasoline, ethanol). The
system consists of three demand-side sectors (buildings, transportation, and industry) and
supply-side sectors (the upstream and the energy sectors) [57]. While the demand sectors
consume energy to meet the final demand for energy services, the supply sectors produce
the energy products consumed by the demand side (i.e., fossil fuels, primary renewable
potential, electricity, and heat) [57].

TEMOA tackles an optimization problem comparable to standard TIMES models [58].
This problem involves minimizing the objective function, which represents the total cost of
the energy system (denoted as Ctot). The total cost, calculated in Equation (1), depends on
the discount factor (DiscountFactor, representing the discounted value to the beginning
of the time horizon of a unitary payment) and the cost values of individual technologies
chosen in the optimal technology mix. Three key parameters in technology modeling play a
crucial role in computing the objective function: investment cost (CostInvestr,t,v [M€/cap.]),
fixed operation and maintenance (O&M) cost (CostFixedr,p,t,v [M€/cap.]), and variable
O&M cost (CostVariabler,p,t,v [M€/cap.]). While investment cost and fixed O&M cost are
linked to a technology’s installed capacity, the variable O&M cost is tied to the total flow of
output commodities. The LAr,t,v is factor used to annualize a technology’s investment cost,
determined by the process-specific loan length and discount rate.

Ctot = Cloans+ C f ixed + Cvariable

= ∑
r,t,v

(
CostInvestr,t,v · LAr,t,v · DiscountFactor · Capr,t,v

)
+ ∑

r,p,t,v

(
CostFixedr,p,t,v · DiscountFactor · Capr,t,v

)
+ ∑

r,p,t,v

(
CostVariabler,p,t,v · DiscountFactor · ∑

s,d,i,o
FOr,p,s,d,i,t,v,o

) (1)

3.2. Case Study: The Pantelleria Island

Selecting a case study in energy modelling is a crucial step in conducting an accurate
and meaningful analysis. In this regard, the following criteria were considered for the
selection of the case study:

• Consistency with research objectives: As stated in Section 1, the focus of the analysis
is to test the effectiveness of a spatially explicit model on a small scale. This defines
the size of the area to be studied. In addition, it was specified that the suitability phase
of the land can be an important factor in reducing soil availability. Therefore, the
selection of a critical context from this point of view is necessary.

• Territorial and technological diversity: According to Stolten et al. [28], the benefit of
spatially explicit planning is higher if the territory under analysis presents geograph-
ical differences from the point of view of the distribution of energy resources and
possible land uses. For this reason, the choice of a small area with characteristics of
diversity is a fundamental element.

• Data availability: The analysis is more significant if the data (both for the phase of the
suitability of the land and for the estimation of the energy potential) are present and at
high resolution.

• Availability of modelling instances: The presence of existing and validated models on
the chosen platform represents a strong added value in terms of the reproducibility of
the study.
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Considering the selection criteria listed above, the Island of Pantelleria was selected
as a case study, thanks to its properties of territorial diversity [59]; the numerous data
sources at the regional [60], Italian [61], and European levels; [CLC]; the existence of other
studies with the same focus [62,63]; and the presence of an established model instance
(TEMOA-Pantelleria) [64]. Below, the main features of the island of Pantelleria and the
TEMOA-Pantelleria model used for the analysis are described.

In Figure 2, the island of Pantelleria’s energy density for both wind and PV is shown.
The island is centrally positioned within the Strait of Sicily. Specifically, Pantelleria is situ-
ated at 36.785◦ latitude and 11.992◦ longitude, a geographical coordinate that underscores
its pivotal location within the Strait of Sicily. This geographical circumstance yields meteoro-
logical conditions rendering Pantelleria an exceptionally auspicious site for the harnessing
of variable renewable energy sources (VRESs). Pantelleria presents a consistently elevated
level of solar radiation throughout the year, amounting to approximately 1500 kWh/m2.
This abundance of solar irradiance is instrumental in the island’s clean energy transition
agenda, affording substantial potential for solar energy generation. Additionally, the island
experiences a substantial and dependable prevalence of wind, predominantly originating
from the northwest, with wind speeds averaging around 7 m per second at an elevation of
25 m above sea level. All these climatic factors, in conjunction with the strategic location,
position Pantelleria at the forefront of sustainable energy exploration and underscore its
critical role in advancing clean energy initiatives [59], making it a compelling case study in
the pursuit of land and energy sustainability.
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The Pantelleria energy system is subdivided into five sectors (three demand-side
sectors and two supply-side sectors) [65]. The demand-side sectors are buildings (including
the agriculture, commercial, and residential sectors), transport, and commercial. The
supply-side sectors are the power sector and the upstream sector. Each sector includes a set
of technologies, characterized by several techno-economic parameters, used to produce all
the commodities necessary to ensure the production of the required final energy service
demands. The upstream sector includes fossil fuel import and internal production of
biomass, as well as a fictitious commodity representing renewable energy. The output
commodities of the upstream sector (along with fuel imports) are inputs for the power
sector and the demand-side sectors.

To perform future projections in the different sectors, the model relies on a database of
existing and innovative technologies (both at commercial and research and development
stages), while future service demands in each sector of the economy (e.g., driven distance
by car or truck, residential/commercial space heating, industrial production of steel or
paper, etc.) are projected according to a set of drivers and demand elasticities and must
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be satisfied by the model at each time step. Future projections are articulated over several
time steps, some of which are used for the model calibration and some others (set at the
years 2025, 2030, 2040, and 2050) for the scenario analysis.

While the annual value of each final service demand of the model is known at the base
year and projected along the time with exogenous drivers and elasticities, the intra-annual
distribution of the demand is also important to consider seasonal and daily variations in
environmental conditions that affect the energy demands. The division of the milestone
year into more refined time slices is performed in TEMOA-Pantelleria with 4 seasons
(spring, summer, fall and winter) and 3 times of day (day, night, and peak), leading to
12 time slices per year.

3.3. Geospatial Data and Tools for Land Eligibility and Energy Potential Analysis

In this paper, two macro-categories of data are used, namely, simple spatial data
and spatiotemporal time series. Spatial data are represented as a list of numbers using a
particular coordinate system. For example, the objects of an electronic map are represented
using spatial data (roads, buildings, windspeed by location), represented as points and
shapes with a specified position. In this analysis, spatial data are both the constraints used
to perform the land eligibility analysis and, in general, all the spatial properties that are
fixed during time (e.g., cost of land rent). The superimposition of the different thematic
layers (e.g., administrative, or physical constraints) allows for the draw of the final land
eligibility map. These kinds of data are fixed among all the scenario periods; therefore, they
are applied once and do not change over time. On the contrary, spatiotemporal time series,
related to the resource potential for both photovoltaic and wind, is time dependent. A
georeferenced time series keeps the whole history of the evolving object over a period [66].
Typical examples include the monitoring of crop health over years [67] and meteorological
time-series [68].

For the manipulation of both types of data, the use of geographic information sys-
tem(s) (GIS) is mandatory. A GIS is a specialized tool designed for the organization and
management of diverse datasets associated with geographic or spatial coordinates, utilizing
a specific map projection system [23]. In our research, we employ the QGIS 3.10 software
package [24] for handling, analyzing, and visualizing spatial information. GIS technology
plays a pivotal role in spatial energy planning, as it enables the amalgamation of data about
renewable energy resources, regulatory guidelines, and natural constraints.

3.4. Land Eligibility Analysis

The existing literature extensively discusses eligibility criteria, and although specific
aspects may vary, there is a consensus on its broad scope. Thanks to a review of the
main analysis of this topic (as summarized in Table 1), it becomes evident that several
consistent exclusion components are commonly considered. These include economic
factors, administrative and technical considerations, and social aspects. Thus, it is expected
that a study aligned with the existing body of knowledge should incorporate these elements
as essential components when assessing the eligibility of land for renewable installations.

Table 1. Review of mainland eligibility analysis found in the literature.

Administrative Technical Economic Social Year Source

v v 2014 [69]
v v v v 2018 [21]
v v v 2020 [31]
v v v v 2020 [70]
v v v v 2021 [39]
v v 2022 [62]
v v v v 2022 [71]
v v v v 2023 [72]
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It is evident from Table 1 that all the pertinent research concurs on the existence of two
primary clusters, about administrative and technical constraints. Administrative limitations
typically encompass regions where the establishment of new facilities is prohibited for
various reasons, including natural protected areas [73], proximity to historical sites [74], and
residential agglomerations [75]. On the other hand, technical constraints are predominantly
linked to challenges in constructing or operating new facilities due to factors such as terrain
and soil conditions [76] or adverse weather patterns (e.g., low wind speeds, shadowing
effects from hills and mountains). Additionally, these factors may also exert an influence on
economic constraints, as there are overlaps between technical and economic characteristics,
including criteria such as wind speed thresholds and slope thresholds. As underscored
by McKenna et al. [71], there is a pressing need within the literature for the validation
of studies related to land eligibility. Furthermore, there appears to be a notable absence
of social and political considerations in the existing analyses. Consequently, the adopted
criteria and their associated clusters are reported in Table 2.

Table 2. Constraints for the land eligibility analysis. The exclusion rule for distance is derived from
Italian regulation summarized in the Pantelleria Energy Plan [77].

Area Constraint Exclusion Rule Source

Environmental/technical Wind speed Below 4.5 m/s RSE [61]
Irradiance Below 3.0 kWh/m2 day UMEP ERA 5 [78]

Slope ≥15% TinItaly [79]
Permanent crops Inside CLC [76]

Water bodies Inside -
Rocks Inside -
Coast Inside -

Administrative/habitat Natural habitats Inside Natura 2000 [80]
Bird areas Inside -
Biospheres Inside WDPA [74]

Protected landscape 1000 m -
Reserves Inside -

Parks Inside -
Monuments 1000 m -

Hydrological risk Inside -

Anthropic Road distance 100 m OpenStreetMap [75]
Urban settlement 200 m -

Industrial sites 200 m -
Airport 1500 m (wind only) -

Recreational areas 200 m -

According to the constraints in Table 2, land availability is constrained by environ-
mental/technical criteria, thereby rendering the construction phase of the plant unfeasible
due to adverse soil conditions and distance from the grid. Similarly, operational conve-
nience for the plant is compromised due to low resource availability. Data about resource
availability are distinctly derived for wind and photovoltaic sources and are more com-
prehensively discussed in the resource assessment phase. Information concerning crop
types and soil conditions is obtained from the Corine Land Cover source [76], a widely
recognized reference in the literature, corroborated by GLAES [21]. Data not accessible
through extensive, open-access databases are sourced from localized Italian studies. The
sole exception pertains to the grid distance, which is unavailable in both large databases
and local studies.

Administrative and habitat constraints, predominantly driven by natural preservation
objectives, are derived from Natura 2000 [80] and the World Database of Protected Areas
(WDPA) [74]. Natura 2000 serves as the principal instrument of European Union policy
for biodiversity conservation, while WDPA stands as the most exhaustive global database
encompassing marine and terrestrial protected areas.
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Lastly, for anthropic limitations, data are extracted from OpenStreetMap (OSM) [75],
an open-access global database characterized by public participation during data collection.
In Figure 3 the different limitation categories, for both wind and photovoltaic technologies,
are reported. For the solar resource, its land availability is mainly eroded by anthropic
and environmental limitations (~15% and ~31% of unavailable land, respectively), while
there is no specific constraint due to natural habitat and historical heritage. Considering
the overlapping of categories, the final available area results in ~35%. Differently, for wind,
the main limitations are habitat (~51% of land made unavailable due to Natura 2000 [80])
and again, the anthropic one. This results in an overall ~10% of available land.
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3.5. Potential Assessment

The way solar and wind resources are assessed should be in line with the most recent
and well-established existing literature. As highlighted by McKenna et al. [71] in the
abovementioned review, the technical potential assessment requires a standardization
of the analysis and the tools. This is justified by the need for reproducibility and data
availability. To accomplish these requirements, solar and wind technical potentials are
estimated using the calculation methodology of Elkameen et al. [81]. Technical potential
is estimated starting from solar irradiance and wind speed data and, after some passages,
obtaining the capacity factor for the different sites. The detailed steps are described in the
specific photovoltaic and wind assessment sections, respectively.

The starting point for this paper is the choice of the data sources for the potential
assessment. This practice must be in line with the needs of the analysis (e.g., extension of
the area under study, temporal horizon, model resolution) [28]. Therefore, after having
fixed the methodological steps, a detailed analysis of all the possible data sources for both
wind and photovoltaic was conducted.
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Solar radiation and wind speed can be estimated in two different ways [71], through
a database already providing the energy potential at a certain resolution, or through a
detailed model considering slope, aspects, shadowing effects, and roughness of the terrain
to calculate the potential. Concerning the former, the analysis is conducted both considering
large global databases and national-specific ones.

The results are summarized in Table 3, presenting a classification of the main database
for solar and wind technical potential assessment. Sources are characterized according to
data typology, cover, and resolution. For these last two items, data are also differentiated
by temporal and spatial attributes. Sources belong to the following classes:

• Observation: The observational approach entails the acquisition of empirical data
from weather stations and measurement devices, providing invaluable insights into
contemporary weather patterns, wind speed observations [82], and solar radiation
measurements [83].

• Reanalysis: The reanalysis methodology integrates numerical weather prediction mod-
els with observed datasets, yielding comprehensive datasets encompassing various
meteorological parameters [71]. Examples include ERA5 [84] and MERRA2 [85], which
serve as reputable sources for historical climate data assessment in wind resource
studies, while similar data sources exist for solar energy assessments [86].

• Climate models: Climate models from initiatives like the Climate Model Intercompari-
son Project (CMIP) and CORDEX simulate future climate conditions, facilitating the
assessment of wind and solar resource variability in response to long-term climate
changes [87,88]. These models are instrumental in understanding the potential impacts
of climate change on renewable energy resources.

• Atlas: Wind and solar atlases, exemplified by the New European Wind Atlas (NEWA)
and the Global Wind Atlas (GWA), offer high-resolution spatial information regarding
energy potentials in specified regions [89,90]. These atlases play a crucial role in
renewable energy planning and development by providing detailed assessments of
wind and solar resources.

Table 3. Data sources for general and technology-specific resource assessment. Characterization by
spatial and temporal coverage and resolution.

Technology Data
Typology Database Names

Coverage Resolution
Spatial Temporal Spatial Temporal

General Observation HadISD [83], Tall Tower
Database [82] Global Historical, 20–50 years Site-specific 5 min–1 h

Reanalysis MERRA-2 [85], ERA5 [84] Global Historical, 40–70 years 30–60 km 1–6 h
Climate
models

CMIP5 [87],
EUROCORDEX [88] Global Historical and future,

80–250 years 10–300 km Hourly–monthly

Solar Atlas GSA [91], SolarGIS [92] Global Historical 90 m 0.5–1 h
Reanalysis HelioClim-3 [86] Global Historical and real-time 3 km 15 min–1 h

Wind Reanalysis NEWA [89], DOWA [93],
RSE [61]

Regional
(EU) Historical, 11–30 years 1.5–3 km 0.5–1 h

Atlas GWA [90] Global Historical average 50–200 m N/A

Reanalysis WINDographer [94],
Mesonet [95] USA Historical 3 km Hourly

Most of the databases are made available at a global level, even if one exception is
found for the New European Wind Atlas (NEWA), which has a European focus. In terms of
temporal coverage, atlases are the most limited since they only provide historical average
or single-year data. For both observation and reanalysis, the timeframe is wider (from
10 to 70 past years). Finally, climate models are the only ones capable of providing future
projections, even if there are non-negligible errors in model forecasts [71]. The limitation
inherent to databases, whether they are global or local in scope, is their inherent inability to
accommodate site-specific factors that exert a discernible influence on energy potential. In
regions characterized by intricate topographical features, such as fluctuations in elevation,
surface orientation (including slope and aspect), and the presence of shadows, pronounced
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local gradients in energy distribution become manifest [96,97]. Consequently, it becomes
imperative to employ models capable of incorporating local considerations into energy
estimations. In this context, the availability of hourly time series at a microscale resolution
(~1.5 km) made available by RSE represents a pivotal step, and this has motivated the
selection of it as a source for wind potential of this analysis. It is worth noting, however,
that the sources of solar data under examination do not inherently furnish specific mi-
croscale considerations. Consequently, the utilization of comprehensive models becomes
indispensable for accounting for these intricacies. The existing literature offers a variety of
potential approaches. Notably, the “r.sun” algorithm, a development within the GRASS-
GIS framework [98], stands out as a robust contender, as it calculates solar radiation at
an hourly resolution when supplied with a digital elevation model (DEM) corresponding
to the target region. Additionally, ArcGIS [99] provides a solar radiation toolbox [100],
which operates similarly to r.sun and has undergone calibration and validation through
international research endeavors [101]. The advantage of r.sun is the number of users
it has already reached, and so, the number of calibrations and validations this tool has
undergone [102]. Therefore, for solar potential assessment, r.sun was selected, applying the
methodology described in the work of Gasparovic et al. [103].

3.5.1. Photovoltaic Potential Assessment

To assess the yearly potential conversion capacity of a photovoltaic (PV) power facility,
denoted as AEPPV , within a specific grid cell, denoted as “i” we employed Equation (1) [81].
This calculation hinges on both the available solar resources and the specifications of
the solar modules in use. Additionally, we determined the capacity factor, CFPV , for PV
systems within the grid cell “i” using Equation (2) [81]. This factor signifies the actual
electrical output that a PV power plant could generate at its designated location over a
given time frame when compared to its theoretical maximum potential output, assuming
uninterrupted operation. This capacity factor calculation considers technology-specific
parameters and the accessibility of location-specific resources, thus enabling performance
comparisons across different sites before the installation of PV systems.

AEPPV,i = GHIi × ηPV × PR × APV,i (2)

CFPV,i =
AEPPV,i

PPV,rated × T
(3)

In Equations (2) and (3),

• GHIi represents the average global horizontal irradiation (kWh/m2/time).
• APV,i indicates the area within grid cell “i” suitable for PV implementation (km2).
• ηPV represents the efficiency of the PV module in converting sunlight to electricity,

with an assumed value of 21% [81].
• PR denotes the performance ratio for the solar module, set at 0.85 [81]. This ratio

accounts for the disparity between performance under standard test conditions and
the actual system output, factoring in losses due to conduction and thermal effects.

• T signifies the total number of hours in a year, equivalent to 8760.
• PPV,rated represents the power density or of the solar PV system. For this study, we

employed a value of 32 MW/km2 for a fixed-tilt utility-scale solar system using
mono-crystalline silicon cells, which is the most common in the actual market [104].

The GHI is derived from r.sun starting from a digital elevation model (DEM) with a
10 m resolution. Subsequently, the original irradiance has been corrected for atmospheric
attenuation based on the clear sky coefficient (kcs) as in Equation (4) [81].

GHI′ = GHI × kcs (4)

TEMOA time slices are categorized into seasons, each comprising days, nights, and
peak periods. As there is no sunlight during the night, the capacity factor (CF) is uniformly
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assumed to be zero for all seasons. Consequently, our focus narrows down to determining
the seasonal CF values for two distinct periods: day and peak. This entails computing
eight capacity values. For each of these, we applied Equations (2) and (3), substituting the
term “GHI” with the solar radiation received during the validity period of the capacity
factor and the term “T” with the hours specific to that period. Aggregated solar radiation
for the specific “T” period is obtained starting from the hourly irradiance (W/m2) and
integrating all along the period T. Moreover, r.sun requires specifying a reference year on
which the calculation is performed. Since the aim is to compare different lands under the
same atmospheric conditions, the yearly variability of solar irradiance is neglected, and
2020 values are assumed constant.

Another remarkable hypothesis is related to the division between day and peak
production. As specified above, within a season, a day might have various times of interest.
For instance, the peak electrical load might occur at midday in the summer, and a secondary
peak might happen in the evening. This division should be accounted for when evaluating
the photovoltaic potential since the mismatch between producibility potential and demand
is one of the main problems with VRESs [105]. Seasonal daily and peak capacity factors
under the assumption described are reported in Figure 4.
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The presented box plots reveal that spring and summer exhibit higher median capacity
factors compared to autumn and winter, indicative of a stronger solar potential during
these warmer seasons (36% and 52% concerning 31% and 17%). These periods also display
broader capacity factor ranges, likely influenced by intermittent cloud cover or variations
in solar incidence angles. Notably, summer stands out with occasional exceptionally
high-capacity factors, attributed to optimal sun angles and longer daylight hours. In
contrast, the winter season demonstrates a compact interquartile range (IQR) and lower
median, reflective of shorter days and lower sun angles. Lower-end outliers in winter may
indicate days with minimal solar irradiance due to adverse weather conditions. The “Peak”
period capacity factors also follow a seasonal trend, with spring and summer consistently
outperforming autumn and winter. However, “Peak” distributions are narrower across
all seasons compared to “Day” distributions, highlighting the reduced susceptibility of
peak sunlight hours to diurnal and weather-induced fluctuations. Overall, these insights
emphasize the critical importance of understanding the temporal variability in PV capacity
factors for optimizing solar energy system planning and performance.

3.5.2. Wind Potential Assessment

The RSE AEOLIAN platform provides wind speed data at heights of 50, 75, 100, 125,
and 150 m above sea level (a.s.l.) [61]. These values correspond to the most representative
hub heights for both currently installed onshore wind turbines and future potential instal-
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lations both on land and at sea. As was carried out for solar potential calculation, the goal
is to obtain capacity factor values for each time slice of the model. This primarily involves
translating hourly wind speed data into site-specific energy production.

The site-specific energy production calculation is achieved by combining the historical
time series (or probability density function) of wind speeds at the hub height of the wind
turbine with the power curve of the specific wind turbine of interest, also expressed as a
function of wind speed at the hub’s height. Theoretically, to calculate site-specific energy
production, one should use many power curves and compute a representative average.
However, due to difficulties in obtaining a representative set for data availability issues, the
site-specific energy production analysis was conducted using a single wind turbine model
for each hub height. We considered the three lower hub heights: 50, 75, and 100 m a.s.l.,
along with three commercially available wind turbine models accessible online. Table 4
provides the main characteristics of the three wind turbines used for the calculation at the
considered hub heights:

Table 4. Main characteristics of the wind turbine models used for the producibility calculation. For
each turbine, data were obtained from the online wind turbine model repository [106].

Reference Height [m] WTG Model Nominal Power [MW] Rotor Diameter [m] Hub Height [m]

50 m Riva Calzoni 500.54 0.5 54 50
75 m Leitwind LTW90-950 0.95 90 80
100 m Vestas V117 3450 3.45 117 91
125 m NREL_6MW_RTW 6 128 119

Table 4 presents key specifications of WTG models at varying hub heights, ranging
from 50 to 125 m. Notably, it reveals the increasing nominal power and rotor diameter as the
hub height elevates, which is essential information for optimizing wind energy production
at different altitudes. It also must be noticed that wind references and hub heights differ.
Therefore, there is an error introduced by the wind speed at the data level with respect to
the real height at which the wind turbine is installed. Nevertheless, considering the power
law at which wind speed variation is subjected [107], it has been checked (not shown) that
the producibility errors are always below 5%.

The turbine’s power generation EWT,i [MWh] in the time slice “i” was estimated by
combining the Rayleigh wind speed distribution, the WT’s power curve collected from
the manufacturer, and the number of hours in operation during a time slice in line with
TEMOA-Pantelleria time slices, as in Equation (5).

Et,i = µ ∗ T ∗ LWT ∗
∫ V=Vcut−out

V=Vcut − in
P(V)dV (5)

where P(V) is the power curve of the selected wind turbine as a function of wind speed at
a given hub height, T is the number of hours in a time slice, Pnomimal,t is the rated power of
the selected turbine (MW), Vcut−in is the cut-in wind speed of the turbine (4 m/s), Vcut−out is
the cut-in wind speed of the turbine (25 m/s), and LWT is the percent of the electricity
losses in wind generation system (0.85). In addition, µ is the turbine availability factor
(0.97). After knowing the time slice production, the capacity factor for time slice “i” for
turbine “t” was calculated as in Equation (6):

CFt,i =
EWT,i

Pnomimal,t × T
(6)

The results of this process are shown in Figure 5.
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In Figure 5, two different kinds of patterns are observable. The analysis reveals distinct
seasonal and daily patterns in wind turbine capacity factors. Across all turbine heights,
winter consistently displays approximately 20–25% higher capacity factors compared to
summer, notably pronounced during nighttime slices. In comparison to summer, autumn
showcases marginally elevated capacity factors, approximately 10–15% higher, especially
evident during day and night periods. The impact of turbine height is observable with a
consistent increase in capacity factors across all seasons, with higher heights indicating
approximately 15–20% better performance. Moreover, the variability within each season
and time slice remains relatively consistent, with night periods displaying notably wider
ranges than a day. Outliers, though sporadic, suggest instances of extreme deviations in
capacity factors.

3.5.3. Cost Assessment

The potential assessment phase determines the operational yield of the plant. Nev-
ertheless, when seeking to differentiate various land types for capacity expansion plans,
technical potential is not the only influencing parameter. According to the International
Renewable Energy Agency (IRENA) 2021 report [108], the levelized costs of electricity
(LCOE) of the renewable installations is mainly determined by capacity factors, invest-
ment costs, operations and maintenance (O&M), and auxiliary costs. Since the purpose of
spatially explicit energy planning is to consider geographic aspects capable of influencing
ESOM outcomes [29], it is necessary to identify which of the abovementioned voices are
spatial-dependent.
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For capacity factors, this aspect has already been addressed. Coming to costs, when
faced with the decision between lands of equal potential, the cost of the land (by rent or
acquisition) and the expenses associated with its connection to grid infrastructure become
pivotal factors [108].

To consider the trade-off with other sectors, the cost of land is assumed to be equal to
the agricultural land price. Agricultural land rents refer to the price of renting one hectare
of agricultural land without buildings or plantations for one year. These data are derived
from a Eurostat analysis [109] dated 2021 with a spatial scope of the whole European
territory and a spatial resolution of country regions. Land price has been neglected for
nonagricultural/dismissed land. The cost attribution follows the rule in Equation (7).

i f CLCclass =

{
Agricultural land , 0.0216 < LP < 0.1714 M€

km2

Else, LP = 0
(7)

where CLCclass is the Corine land cover class of each particle and LP refers to land price. A
significant variation of the LP is observed between the maximum and the minimum value,
the former being around 10 times the latter. This is justified by the great diversity in the
Italian territory. While the focus of this analysis is limited to Pantelleria Island, situated
in Sicily, the Italian maximum and minimum land price values have been chosen in both
the above discussion and for future utilization (as outlined in Section 3). Indeed, we have
opted to utilize this range of land price values to conduct a sensitivity analysis within
the model, with the final aim of testing the extent to which these components influence
the outcomes of the model. Additionally, when transitioning land use from agriculture
to energy, trade-offs in soil carbon balance must be considered. Properly accounting for
these features can significantly impact overall cost assessments [110]. However, due to
current limitations in ESOMs, the inclusion of these aspects is deferred until mature models
capable of addressing land properties are available.

Finally, for the cost of connection, some concerns come with its accounting. First,
according to the Italian Energy Transmission Authority (TERNA) [111], the specific point
of connection (that determines the distance) is not known a priori, and strongly depends
on design-specific considerations. According to plant size and desired output voltage, the
connection can be performed at grid level or the primary cabin [111]. This introduces the
first uncertainty in this cost estimation. Then, ESOMs generally do provide aggregated
capacity for all the plants belonging to the same category [112]; therefore, it is not known
how the aggregated capacity is discretized, with uncertainties also in the size term. Lastly,
the detailed IRENA cost analysis of wind power technology [113] does not specify the
distance from the grid as a pivotal factor in determining the connection cost.

Given the design-specific nature of grid connection costs and the challenges in esti-
mating them accurately, we have chosen not to include them as a factor in our analysis.

3.6. Data Aggregation

At this stage of the analysis, the data about wind potential, solar potential, and costs,
presented as geodata (shapefiles), that need manipulation to become compatible with the
data structure of ESOMs [50] are the following: The solar domain, (Dsolar), is represented
as a set (S) where each cell (s ∈ S) is characterized by different PV capacity factor time
slices

(
CFPVs,ts

)
. Formally, this domain is expressed as in Equation (8):

Dsolar =
{

CFPVs,ts

∣∣s ∈ S
}

(8)

The same is valid for the data related to wind CF time slices as in Equation (9):

Dwind =
{

CF WINDw,ts

∣∣ w ∈ W
}

(9)
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and land prices as in Equation (10):

Dland = {LPl |l ∈ L} (10)

Notably, one significant challenge in data preparation arises from the divergence in spa-
tial resolutions among the various datasets. A critical issue that emerges when attempting
to overlay the different domains involved in the analysis is the lack of correct intersection
of internal boundaries between them. This issue, also named the partition problem [114],
is created by mismatched spatial resolutions and boundaries of the domains. Our ap-
proach lies in the synthesis of these domains into an intersection domain, (Dintersection) as
from Equation (11).This domain is an amalgamation of the overlapping elements from
(Dsolar), (Dwind), (Dland), and is denoted as a set (I). Each element (i ∈ I) in (Dintersection)
encapsulates the attributes from the intersecting cells of the individual domains:

Dintersection =
{(

CFPVi , CFWINDi , LPi
)∣∣i ∈ I

}
(11)

The aggregation of data into (Dintersection), as explicated in Equation (12), is a pivotal
step. For each cell (i ∈ I), the attributes

(
CFPVi

)
,
(
CFWINDi

)
, (LPi) are computed by an ag-

gregation function that operates on the data from the overlapping cells in (S), (W), and (L):

CFPVi = Function(CFPVs | s overlaps with i)CFWINDi
= Function(CFWINDw | w overlaps with i)LPi
= Function(LPl | l overlaps with i)

(12)

At this point of the analysis, data are still a unique domain with different particles,
each of them characterized by many geospatial attributes. Notably, the TEMOA model
requires a data format that is not geospatially explicit. As with any other traditional energy
system optimization model, TEMOA presents an aggregated description of the system,
where the spatial features of technology (e.g., CFs and costs associated with the land particle
on which they are installed) are not present. Indeed, CFs are defined in the model as in
Equation (15):

CF(r,p,t,v) with r ∈ R, p ∈ P, t ∈ T and v ∈ V (13)

where r ∈ R refers to model regions, p ∈ P to periods, t ∈ T to technologies, and
v ∈ V to vintage. The same indexes are valid for costs. Therefore, it is necessary to have
spatial attributes (location-dependent cost and capacity factor) referred to an index “land”.
Integrating individualized PV and wind technologies for each land parcel, differentiated
by unique cost and capacity factors, would theoretically work. Yet, this precision comes
at the cost of an enormous dataset, rendering the model computationally intractable due
to the vast number of parameters involved. To address this, an aggregation/clustering
algorithm is employed to partition the domain into clusters with homogenized attributes.
Within this framework, an established methodology, as presented by Stolten et al. [28],
offers a structured workflow for transitioning from multiple variable renewable energy
source (VRES) data to a limited number of aggregated technologies, each associated with a
respective land cluster, representing the total available land area suitable for the installation
of the corresponding technology. This framework, adapted to our work, is shown in
Figure 1.

In the technological aggregation phase, photovoltaic and wind technologies are cate-
gorized based on their capacity factors (CFs) and cost characteristics. This categorization
results in aggregated technology clusters, such as Agg_PV_X and Agg_WIND_Y, each
with its distinct capacity factor and associated cost. Spatial aggregation, on the other hand,
condenses geographical information into discrete land clusters. Each cluster, represented
by a land type such as Land X or Land Y, is defined by its area and the cost of land use.
These spatial clusters form the basis for the physical constraints within the model, dictating
the potential for technology deployment across different geographical areas. Finally, in
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the model adaptation phase, the original TEMOA code is modified to account for land
availability and for linking specific technologies at their belonging cluster.

The clustering of the geospatial cells among the selected attributes is performed with
multiple algorithms to determine which one performs better. The three tested algorithms
are HDBSCAN [115], Kmeans [116], and DBSCAN [117]. HDBSCAN, a hierarchical density-
based algorithm, is adept at identifying clusters of varied density without the need for
pre-specifying the number of clusters. Its approach is particularly suitable for geospatial
data, which often exhibit heterogeneous density distributions due to the irregular spatial
distribution of renewable energy resources. In contrast, Kmeans—simple and efficient—is a
centroid-based algorithm, meaning that objects in the data are clustered by being assigned
to the nearest centroid. However, a major pitfall of Kmeans is its lack of detecting outliers,
or noisy data points, which leads to them being classified incorrectly. DBSCAN stands
as a middle ground between the rigidity of Kmeans and the flexibility of HDBSCAN. By
designating core points within high-density regions and expanding clusters from these
cores, DBSCAN excels in discovering clusters with arbitrary shapes, an attribute of high
value when dealing with spatially complex landscapes.

For the clustering algorithms requiring the computation of the distance matrix, a
spatial sampling procedure is performed [118], clustering only the smallest subset of data.
Then, the nearest neighbor [119] method is used to predict the cluster affiliation for the non-
sampled particles. The performance of these algorithms is tested both by their clustering
acumen and by their computational demands, as reported in Table 5. The silhouette
score [120]—ranging from −1 to 1—has been used as a quantitative measure of cluster
cohesion and separation. A high silhouette score indicates a clustering configuration where
inter-cluster distances are maximized and intra-cluster distances are minimized, reflecting
distinct and well-separated clusters that are integral for spatial analysis. Complementarily,
computational time and memory usage are critical metrics for assessing the scalability
of these methods. They provide insight into the algorithms’ operational efficiency and
practicality for large-scale applications, where rapid processing and memory management
are essential. The results of the clustering procedure for the three different algorithms are
reported in Figure 6.

Table 5. Performance of the three different clustering algorithms.

Method Silhouette Score Time (Seconds) Memory (MB)

HDBSCAN 0.527 1729 2246
K-means 0.827 0.369 0.224
DBSCAN 0.807 2940 0.810
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As appreciable in Table 5, Kmeans and DBSCAN outperform HDBSCAN in terms of
silhouette score and memory usage, with Kmeans standing out as the best one in all the
three metrics under analysis. The outstanding performance of Kmeans can be justified by
the absence of outliers. Indeed, for both cost and renewable energy potential, the minimum
value is zero where no installation is possible, and maximum values are constrained in a
very similar range for all the data (there is no drastic resource variability along Pantelleria
Island). Therefore, also considering the possibility of selecting clusters a priori, Kmeans is
selected for this analysis. Moreover, the underlying hypothesis of Kmeans, that data must
be globular and isotropic, is verified considering the high value of the silhouette score.

Considering Figure 6 is shows how HDBSCAN and DBSCAN are more flexible in
terms of cluster shapes, which is evident from the varied shapes and sizes of clusters.
Kmeans, on the other hand, assumes the clusters are spherical, leading to more uniform
and rounded clusters. In terms of noise, HDBSCAN and DBSCAN can identify outliers
inserting them in the (−1) cluster, even if very few elements are present in this category
(checked, not shown). The final number of clusters is another pivotal parameter in this
analysis. In Kmeans, it is imposed at 5, while the other methods reach 11 (HDBSCAN)
and 17 (DBSCAN) clusters. In this case, especially for DBSCAN, the clusters are very
fragmented and some of them appear to contain few elements.

In conclusion, since the aim is to identify macro-areas characterized by similar energy
properties and to have a method as scalable as possible, Kmeans still guarantees the
best outcome.

The refinement of geospatial data through clustering algorithms has yielded a compre-
hensive set of land and technological clusters, each distinctly characterized by both spatial
and technological attributes. We define the clustered domain, (Dclustered), as the outcome
of applying clustering algorithms to (Dintersection). This domain comprises a set of clusters
(C), where each cluster (c ∈ C) represents a group of cells with similar characteristics.
The attributes of each cluster are derived from the aggregated attributes of its constituent
cells. Specifically, the average photovoltaic capacity factor (CFPVc), average wind capac-
ity factor (CFWINDc), and average land price (LPc) are calculated for each cluster, using
Equations (14)–(16): [

CFPVc =
1
|c|∑i∈c

CFPVi

]
(14)

[
CFWINDc =

1
|c|∑i∈c

CFWINDi

]
(15)

[
LPc =

1
|c|∑i∈c

LPi

]
(16)

In these expressions, (|c|) denotes the number of cells in cluster (c). Furthermore,
the total land area of each cluster is determined by summing the areas of all cells within
the cluster.

3.7. Model Integration

After the data aggregation procedure, a reduced set of land and technological items
is made available for model integration. In this context, there are two optimization goals.
The first is to install the renewable energy technologies on the “best” cluster, where “best”
denotes the cluster identified by the ESOM following the least cost optimization.

The second objective is to have a renewable energy installation development compati-
ble with the land limitations of Pantelleria Island. Therefore, the ESOM must be capable
of using the inputs of the clustering phase (technological parameters for renewables, land
price, and area for land clusters) to determine the optimal deployment of technologies
across different land clusters. To achieve this goal, it is necessary to bring some modifica-
tions to the TEMOA code:
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(1) Insert in TEMOA a new set that describes the land resource. Traditional ESOM ele-
ments (mainly process and commodities) do not allow for proper land representation.
Indeed, it would be wrong to model the land consumed by plant installation as a
commodity or a technology, for two main reasons. First, a commodity is something
that is exchanged between processes as input or output. Here, the role of land is to
host its associated technology (at certain conditions of capacity factor and cost) for its
lifetime. Second, commodity consumption is related to the activity of a plant, passing
through its efficiency (e.g., natural gas consumption proportional to combined cycle
plant activity). In this case, land is consumed when new capacity is installed and
becomes available as soon as the installed technology on that land dies. As depicted
in Equations (17) and (18), the new TEMOA set is called Land Cluster, for which a
Land Areac value is associated, describing the available area for the land cluster “c”.

Set = Land Cluster (LC) (17)

Attribute = Land Clusterl (18)

(2) Insert in the model a new parameter and new constraint, linking the capacity in-
stallation to land consumption. Indeed, as shown in Equation (19), the land use
intensity (LUI) parameter acts as a critical bridge linking the land clusters “LCi” with
the applicable technologies “j”. It quantifies the amount of land required for the
installation of a unit of technology (e.g., a megawatt of wind or solar power). The LUI
parameter ensures that the model’s solutions are not just economically optimized but
also spatially feasible. If an LUI is not defined for a specific technology within a given
land cluster, it implies that the technology cannot be installed in that cluster, thereby
introducing a direct spatial constraint into the optimization process.

LandAreac ≥ ∑
r,t

LUIr,t,vc · Capr,t,v (19)

According to the TEMOA optimization module, thanks to Equation (19), the model
has several opportunities to consume land area to install photovoltaic or wind plants, but
the convenience is determined by the capacity factor of the process. The objective function
of Equation (1) already brings the model to select the technologies with the best capacity
factor, because this is directly reflected in the cost. Nevertheless, the land consumption and
its related cost is not accounted for. Therefore, the objective function is modified as follows
(Equation (20)):

Ctot = Cloans + C f ixed + Cvariable + Cland
= ∑

r,t,v
(CostInvestr,t,v · LAr,t,v · DiscountFactor · Capr,t,v)

+ ∑
r,p,t,v

(CostFixedr,p,t,v · DiscountFactor · Capr,t,v)

+ ∑
r,p,t,v

(CostVariabler,p,t,v · DiscountFactor

· ∑
s,d,i,o

FOr,p,s,d,i,t,v,o) + ∑
r,t,v

(LPr,c,v · LUIr,t,vc · Capr,t,v)

(20)

where the additional term ∑r,t,v

(
LPr,c,v · LUIr,t,vc · Capr,t,v

)
accounts for cost of land caused

by the installation of Capr,t,v by the technology t at vintage v, which causes consumption
proportional to the LUIr,t,c on the cluster c. This consumption, finally multiplied by the
land price LPr,c,v of the cluster, moves the total cost. In conclusion, the accounting of land
price is solved through an objective function modification as in Equation (20). The rational
use of land, considering limitation is reached by Equation (19), makes it now possible to
extract information about the better clusters for renewable installation, given that the plant
location is accounted for in the model.
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4. Results

This section presents a comparative analysis of energy scenarios derived from two
modelling approaches: one integrating the advanced land feature considerations previously
described, and a conventional one. The objective is to test the hypotheses stated before
about the advantages of spatially explicit energy planning.

Section 4.1 introduces the initial findings, highlighting the advanced technological
and spatial characterization introduced by the previous analysis. Activation of the land use
constraint and land price components, as discussed in Section 4.2, leads to different final
ESOM scenario configurations.

The Discussion section (Section 5) elucidates the role of spatially explicit planning in
optimizing the siting of energy facilities and efficient land use. These findings highlight the
importance of spatial consideration in improving the efficacy of energy planning.

4.1. Technological Clustering Results

The two configurations of the model here analyzed are the traditional one (no land
use module activation) and the new one (land use module activated). In both the model
configurations, the wind and photovoltaic capacity factors result from the technological
discretization previously explained (Figure 7, resulting from Section 3.5.1).
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In Figure 7, those clustered capacity factors are reported and compared with the
average ones to highlight the improvements brought by the cluster analysis carried out. In
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the land cluster description, the available area and the installable technologies on the cluster
are highlighted (Table 6). As mentioned above, the limitations introduced by Table 6 for the
installation of specific technologies on certain clusters and the land price accounting in the
objective function are present only in the TEMOA-Pantelleria land-explicit configuration.
Discretizing technologies based on their spatiotemporal attributes brings non-negligible
advantages in terms of technological options for the model, which may cause a lower
total cost of the system. Considering the relative difference between the old and the new
technologies, is possible to observe values around 10% (summer and spring wind peak).
Therefore, according to the sign of the difference, the model overestimate/underestimates
the installed capacity of the same amount. Strongly influencing the cost. This consideration
is further explained in the following graphs. Still related to the cost, it is possible to see the
impact of the spatial aggregation on the land side, when the rent cost is added, as shown in
Table 6.

Table 6. Cluster characterization.

Land Cluster Available Area [km2] Installable Technologies

LC_1 2850 PV2_N
LC_2 0.457 WIN1_N, PV_1
LC_3 4909 PV_1
LC_4 1947 PV_ 3, WIN2_N

Table 6 reports the resulting land clusters from the Kmeans algorithm (Figure 6b) and
their associated technologies, whose technical attributes are reported in. The only difference
between Figure 6b and Table 6 is that the fourth cluster has been deleted since it presents
zero potential for both photovoltaic and wind. Moreover, it is important to highlight the
fact that not all the technologies can be installed on all the clusters. The low amount of
land that can be allocated for wind turbines, the total reaching 1.54 km2, is also significant.
In this context, a further literature review highlighted that for social and administrative
reasons, the total area that can be exploited for wind resources is even lower.

4.2. Energy Scenario Analysis

Energy scenarios, referring to optimized technological mix in terms of activity and
capacity, then generating emissions and costs, are discussed here. Since the objective is
to test how the land use module changes model outcome, the results are proposed for
the two different model configurations. The land-explicit one is tested with a parametric
analysis of the land price, making this last vary between the minimum and the maximum
possible values. Due to the power sector-focused approach of this work, the main outcomes
presented are the electricity generation (capacity and activity, Figure 8), the relative energy
system cost differences, and the land consumption for the land-explicit modelling instance.
Starting from the power sector configuration, in Figure 8, the capacity (MW) and the
electricity generation (GWh) are presented. In all the configurations, differences in the
outcomes are appreciable both in terms of absolute and relative amounts. Indeed, the
scenarios differ for the total installed capacity and the generated electricity, but also in
the way these amounts are obtained. First, it can be easily noticed (and confirmed by
subsequent data analysis, not shown) that the traditional model and the low land price
configuration do not present any differences, as expected, while the high land price instance
has significative differences concerning the previous two. This is a symptom of a threshold
phenomenon that changes model outcomes under a certain land price value.
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Going into detail, the traditional TEMOA-Pantelleria and the low land price instances
present a higher installed capacity concerning the high land price configuration. In the
first two cases, the capacity of energy technologies starts at just under 2 MW in 2020 and
shows a more than threefold increase to approximately 7 MW by 2050. The technology
mix remains relatively stable, with wind technologies dominating the share, followed by
solar and biomass, the last mostly covering the base load needs. Considering the activity,
its level starts at around 15 GWh in 2020, increasing to nearly 23 GWh by 2050. This
increase is justified by the increased electrification (mainly in the transport sector) caused
by the decarbonization constraints to which the island is subjected. The proportions of
each technology within the activity profile change slightly over time, with “WIN1_N”
gaining a larger share, indicative of not only increased capacity but also high utilization
rates. The most valuable outcomes visible from Figure 8 are related to the differences in the
photovoltaic installations and the overall power production between the two previously
described configurations.

In both the zero (or low) and high land price configurations, there is a growth in
capacity over time, but the technology preferences differ. In the low/null land price case
(a)/(c), there is a major reliance on solar technology (PV_1, the highest performing one),
which suggests that larger, more land-intensive solar projects are feasible and economically
viable due to lower land costs. Conversely, with a higher land price (e), there is a marked
preference for wind systems, indicative of a strategy to maximize energy yield per unit
of land area. In particular, the total difference in 2050 is 1.2 MW of installed capacity and
around 2.2 GWh of electricity produced. This consumption gap is mainly driven by the
commercial and residential sectors.

It must be specified that, in all the cases, the limitation caused by the land use con-
straint of Equation (19) does not influence the model outcome. This happens because the
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necessary capacity for the Pantelleria power sector is not occupying any land cluster at
its maximum. Indeed, the model selects the highest performing technologies (WIN1_N,
PV1_N) considering the limitation of the cluster these are installed in. This consideration
is supported by Figure 9, which highlights the land cluster occupation and the land price
costs in the two-model configuration.
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In Figure 9a, the difference in land occupation by cluster in the two model configu-
rations is shown. In both cases, the land cluster “LC_3” is the most consumed due to the
installation of the solar technology “PV1_N”, reaching a maximum occupation of ~10% at
low price and ~6% at low price in 2040. Even if LC_3 is the one with the highest absolute
occupation, LC_2, due to its limited extension, is the one reaching the highest percentage of
occupation. Indeed, in 2040, due to the installation of WIN1_N, LC_2 is occupied at 26%
in both the configurations. These considerations are reflected in the cost, which notably
shows higher values for the high price configuration. In this configuration, land rent price
start from EUR 0.026 M in 2025, increasing and stabilizing around EUR 0.07 M from 2040 to
the last year. In the low-price instance, these costs are much lower, reaching a maximum of
EUR 0.014 M in 2040.

5. Discussion

The initial goal of this research was to quantify how much spatial information, as well
as the consideration of regional characteristics, can improve planning solutions when inte-
grated within an ESOM. This comprehensive review justifies three hypotheses regarding
the impact of spatially explicit ESOMs: the influence of spatial resolution, land availability,
and sectorial trade-offs. The objective was to obtain a modeling instance able to account
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for all these aspects, optimally allocating the new installation of renewable energy plants,
accounting for local conditions such as cost of occupying land and factors affecting its avail-
ability. This research effectively demonstrates the feasibility and benefits of incorporating
spatially explicit considerations into ESOMs using open source packages, highlighting the
practicality and value of this approach. This integration not only enhances the realism
and applicability of these models but also aligns with the pressing global shift toward
sustainable and renewable energy sources. Also, by comparing traditional and spatially
enhanced models, the study quantifies the added value brought by spatial planning and
the influence of the new variable introduced in the model. While this approach does not
represent a groundbreaking milestone in the field, it introduces an innovative methodology
accompanied by certain limitations. As such, a critical discussion of this work is imperative.

Concerning the assessment phase, referring to the practice of gathering data about
renewable energy potential of a region (both in terms of physical and administrative
availability), this can be further divided in two subtopics: data gathering and elaboration.
In terms of data gathering, the need for a unified tool to perform this kind of analysis is
evident. The currently available literature still relies on many incompatible packages for this
analysis, even if some exceptions are arising. For example, the GLAES framework for LE
analysis [21] has found recent application in different studies [70]. In terms of the renewable
energy potential assessment phase, there have been many valuable attempts ([28,39]), but
a uniformly adopted methodology across studies is missing. In general, an interface to
integrate spatial and temporal explicit data about VRESs is needed. Even if, as confirmed
by Aryanpur et al. [20], the optimal choice of resolution is still dependent on model scope,
the uncertainties inherent in the assessment phase predominantly stem from the analysis
of land eligibility, complicated by ambiguous energy legislation. Notably, our approach
did not consider buffer zones around any protected areas, a decision that potentially
leads to an overestimation of available land. Further analysis (not detailed here) reveals
that implementing buffer zones ranging from 25 to 200 m around these areas drastically
affects land availability. In some clusters, this results in the complete unavailability of
land, while in the most favorable scenarios, it causes a reduction of approximately 25%.
Specifically, in the context of wind technology, the application of buffer zones rendered
certain land clusters unsuitable, significantly altering the potential energy mix. This
outcome underscores the necessity for more transparent and comprehensible landscape
regulations. The challenge in setting fixed buffer values, as indicated by [77], further
complicates this issue, necessitating a nuanced approach to landscape management in the
context of renewable energy development.

Diving into the model’s integration, the first and primary challenge in implementing
land use in an ESOM is the proliferation of energy technologies. This challenge arises due
to the necessity of introducing, after the clustering, a multitude of technologies equivalent
to the number of clusters employed. While this approach may find some applicability
in constrained environments like the island of Pantelleria, its feasibility diminishes sig-
nificantly in more expansive scenarios, such as national or European contexts. In this
context, there is a need to find a trade-off between model accuracy and computational
effort. Stolten et al. [28] highlight how this practice is strongly dependent on both spatial
and temporal resolution and should be faced case by case. Despite the methodological
issues, there is general knowledge that can be extracted from these results. The results
indicate how the cost of land has a strong influence in limiting the land use intensive renew-
able energy sources, such as photovoltaic. The sensitivity analysis conducted according to
Eurostat [109] suggests that economic factors, such as land prices, significantly influence
technology selection and deployment strategies, leading to regional differentiation in the
energy mix. According to this point, another remarkable limitation of this study is not
considering the trade-offs and synergies concerning other land use-intensive sectors. For
example, agrivoltaic is an innovative solution and further research is required estimate the
actual benefits and their significance, especially about land type and soil conditions [38].



Sustainability 2024, 16, 1644 27 of 32

6. Conclusions

This study introduces a novel methodological framework for integrating spatial con-
siderations within ESOMs. Thanks to a detailed literature review, this research emphasizes
the importance of including land use aspects in energy planning, particularly in small,
diverse geographical areas. This justifies the choice of Pantelleria Island as a case study.
The review emphasizes the criticality of spatial resolution in ESOMs, the strategic allocation
of space for renewable energy installations concerning land availability and optimal siting,
and the sectorial trade-offs between energy production and land use. The methodology
introduces a new and versatile framework for incorporating the three identified aspects into
ESOMs. First, it involves collecting and converting a large amount of site-specific data into
a format that can be interpreted by the model. Second, it entails integrating this data into
an open source ESOM, TEMOA, introducing new parameters and modifying equations in
the model. The results highlight the benefits of such analysis in model configuration, partic-
ularly due to the technological diversity revealed; future research should explore the scale
up of this method on a broader spatial and technological scope. The findings underscore
the crucial role of detailed territorial descriptions in the modeling phase, considering tech-
nological discretization, land pricing, and area availability. A conducted sensitivity analysis
on land pricing reveals threshold phenomena within models that could significantly alter
scenario outcomes. This research underscores the need for considering trade-offs within
land use sectors, especially in relation to agriculture, carbon capture, and afforestation,
which should gain more space in future ESOMs. This study’s primary limitations stem
from the static nature of land prices over time and the inadequate modeling of land use
sectors, which affects many ESOMs. Future research should focus on these areas, offering
comprehensive sensitivity analyses on spatial resolution, land use constraints, and land
prices to determine which factor is most influential. Integrating land use change emissions
from renewables into ESOMs is also necessary. Overall, by introducing a new method that
simplifies the inclusion of land use and its effect on carbon levels in ESOMs, this paper
offers a valuable perspective on the role of land in achieving carbon neutrality.
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Abbreviations

Acronym Meaning
AEP annual energy production
AHP analytical hierarchy process
CF capacity factor
CLC Corine land cover
DBSCAN density-based spatial clustering of applications with noise
DEM digital elevation model
ESOMs energy system optimization models
GHI global horizontal irradiation
GISs geographical information systems
GWA Global Wind Atlas
HDBSCAN hierarchical density-based spatial clustering of applications with noise
IAMs integrated assessment models
IQR interquartile range
Kmeans K-means clustering algorithm
LCOE levelized cost of electricity
LE land eligibility
LUI land use intensity
MILP mixed integer linear programming
MADM multi-attribute decision making
O&M operations and maintenance
PV photovoltaic
PR performance ratio
TEMOA tool for energy model optimization and analysis
VRESs variable renewable energy sources
WDPA World Database of Protected Areas
WT wind turbines
WTG wind turbine generator
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