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Abstract: As water and electrical networks cannot be entirely independent, a more integrated ap-
proach, the water–energy nexus (WEN), is developed. A WEN is the basis of a smart city where water
and electrical networks are interconnected and integrated by implementing efficient management
strategies. Accordingly, this study develops a dynamic co-optimization model for designing and
operating an integrated power and water system. The proposed co-optimization model minimizes
the total annual and operational costs of a micro-WEN system while capturing its optimum design
values and operating conditions and meeting the demands of the electrical and water networks.
Furthermore, this work presents a plan for transitioning from thermal desalination to reverse osmosis
(RO) desalination in the United Arab Emirates (UAE). The key objective is to decouple electricity and
water production, effectively tackling the issue of operating the UAE’s power plants at low efficiency
during the winter while ensuring an adequate water supply to meet the growing demand. The results
show that the co-optimization model provides a significant reduction in the total operational cost with
the integration of photovoltaic energy and shifting to RO. Most importantly, the micro-WEN system
is optimized over multiple timescales to reduce the computation effort and memory requirements.

Keywords: non-linear programming; optimization; multi-effect distillation; combined-cycle power
plants; reverse osmosis; water–energy nexus

1. Introduction

The term water–energy nexus (WEN) describes the interdependence of water and
energy systems. Considering a smaller scale, the micro water–energy nexus integrates
the electrical network and the water network to act as a single entity in a microgrid. This
interdependence has become increasingly important as the world faces challenges such as
population growth, urbanization, and climate change, which pressure water and energy
systems. As the world’s population is projected to increase by 2 billion people by 2050,
leading to an increased demand for water and electricity, approximately 40% of the world’s
population is anticipated to suffer from the issue of water scarcity [1]. Consequently,
water and power operations and systems must be planned simultaneously, considering
the water–energy nexus in decision-making and developing integrated water and energy
management strategies to address these challenges. This entails investigating ways to
optimize the use of water in energy production, enhancing the energy efficiency of water
infrastructure, and creating integrated water and energy management techniques that can
help ensure a sustainable and resilient water–energy system [1–4].

The integration of thermal desalination of seawater in combined-cycle power genera-
tion plants (CCPPs) has been indicated as a promised enhancement in power generation
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and water desalination. However, in order to minimize the operational cost of the WEN
system and optimize the utilization of energy resources fed to the power plant, advanced
resource management must be developed.

The UAE has limited natural water resources and uses desalination as the dominant
technology to make seawater potable. Thermal desalination and reverse osmosis (RO) are
the two leading desalination technologies [5–7]. Thermal desalination has two primary
types, namely, multi-effect distillation (MED) and multi-stage flash (MSF) distillation,
which are conventionally a part of a combined-cycle or a cogeneration power plant [8].
Cogeneration is a system that utilizes one primary energy source to produce two or more
useful forms of energy at once. For example, in a combined-cycle gas turbine (CCGT), a gas
turbine converts mechanical energy into electricity and exhausts waste heat, which a steam
turbine uses to generate additional electricity [9–12]. The steam turbine produces electric
energy and supplies a tremendous amount of low-pressure steam [13]. As thermal energy is
an essential energy input to produce freshwater, the MED and MSF desalination processes
and electricity generation are integrated on the same site with the aim of satisfying demand
from water and electric energy, respectively.

Thus, the thermal desalination of seawater supplies the majority of residential and
industrial water needs in the UAE. Consequently, electricity generation is associated with
water production from the combined-cycle cogeneration thermal plants. Currently, during
winter, when the electric demand is severely reduced, the UAE has to operate its power
plants at low efficiency to be able to meet the water demand that stays almost the same
throughout the year, as shown in Figure 1. The major target currently is to decouple
electricity and water production by phasing out the cogeneration plants and shifting from
thermal desalination to RO.
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Figure 1. UAE’s electricity and water consumption per day in a year.

Several water–energy nexus concepts have been investigated in the literature to model
the integration and co-optimization of electrical and water networks. The authors of [14]
use Bender’s decomposition method to model a robust two-stage operation that manages
the water–energy nexus system at the distribution level to reduce the operational cost.
However, the work assumes that the electrical, gas, and water networks are owned by
a single entity. An optimization model is designed for integrated water and electricity
systems for a remote island that does not have access to the utility networks to fulfill the
electricity and water demands with three different desalination technologies, including
MED, MSF, and RO [15].

In [16], a new optimization model is proposed to minimize the operational costs of
an integrated water–energy nexus system where wind turbines generate power and RO
desalinates water. This work simplifies the mixed-integer non-linear programming (MNLP)
model and utilizes General Algebraic Mathematical Software (GAMS 42) to attain results
with greater accuracy. Considering the uncertainty arising from wind generation outputs,
the work in [17] proposes a robust operation model for a multi-energy WEN in which the
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energy system involves natural gas transmission, district heating, a power transmission
network, and a water distribution network (WDN).

Also, in [18], Moazeni and Khazaei develop a co-optimization MNLP model by com-
bining the wastewater treatment plant’s demand response and the residential loads in the
smart grid’s economic dispatch. The proposed model minimizes the amount of energy
consumed by the wastewater treatment plant and the cost of the generated power of the
smart grid, resulting in high-quality treated wastewater. In [19], the authors introduce the
integration of water desalination within security-constrained unit commitment (SCUC),
which significantly minimizes the system’s operational cost, especially with the enormous
desalination size. As the water–energy nexus concept is mainly applied at the supply side,
in [20], the work considers the interconnections between water and energy demands in a
reservoir to propose new supply-side management of optimal and smart hydro reservoirs
and uses advanced neural networks to predict two different scenarios that simulate the
annual operation and remote monitoring situations.

Several WEN approaches are investigated on the demand side. For instance, Fooladi-
vanda et al. [21] emphasize the importance of pump scheduling and energy and water flow
optimization. They propose a mixed-integer second-order cone programming (MI-SOCP)
relaxation to handle the non-convex terms produced by the hydraulic characteristics of the
pumps and pipes. Similarly, Mkireb et al. use mixed-integer linear programming to model
variable-speed pumps to enhance the demand response and manage the uncertainties
of the water demand [22]. However, it is noted that the authors of [23,24] discuss the
water distribution system scheduling and operation without considering the coordination
with the electrical systems. Atia and Fthenakis introduce active-salinity-control RO to
enhance the integration of renewable energy and desalination loads, but they ignore the
uncertainties of the demand response [16].

To minimize the total operational cost and to serve the extra wind power systems,
using MI-SOCP, the authors in [25] develop a model that integrates electrical, heating,
and water systems. Likewise, a model that optimally schedules water tanks and pumps
was developed in [26] to collect renewable energy from the electrical grid. The model
proposed in [27] optimizes the participation of RO desalination in the energy demand
response and regulation markets, yet it ignores the constraints of the electrical system. A
method that modifies the electric grid economic dispatch is proposed in [28] to include
a water system by focusing mainly on the cogeneration of electricity and water from
fossil fuel plants; however, this work ignores the network structure and other cooperation
aspects. The models proposed in [25–27] investigate the potential demand response of
the water network as an electric demand, yet the water production is not linked to the
electrical system.

Furthermore, the work in [29] uses a robust optimization technique (ROT) to model
the uncertainties in the water and electrical demands of a WEN system that mainly consists
of combined water power (CWP) and single water and power energy resources. In [30],
the multi-period optimization formulation includes optimal WEN in an integrated power
generation and desalination systems’ design and operational strategies while considering
seasonal variations in water and electrical demands and fuel availability and prices. De-
ploying renewable energy technologies, the authors of [31] incorporated solar collectors and
batteries into the same WEN’s model introduced in [30] with the aim of reducing the carbon
footprint. A novel optimization model is introduced for a water–energy nexus-based CHP
operation to investigate the relationship between system operation optimization and water
conservation [32]. Similarly, a scheduling model is proposed for the optimal operation of
a combined power and desalination (CPD) system, considering MSF, RO, thermal power
plants, and water storage simultaneously [33].

Based on the aforementioned discussion, it is clear that the developed WEN models
lack the details needed for the design and operational variables of the integrated system.
Moreover, the majority of the literature focuses heavily on the electric aspect of the system
and includes minor details about the water network and the desalination processes. On
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the contrary, the literature that deeply tackles various desalination processes does not
link water production to the electric system. Most importantly, it is clearly noted that
the existing literature ignores the network structure and other integration aspects of the
cogeneration of electricity and water from thermal power plants. Also, they did not respect
the flow limitations and the effort variables, such as pressure and voltage at network
nodes. This work builds explicitly upon previous related works to address these aspects
and considerations.

To fill the research gap in the literature, a more detailed co-optimization mathematical
model for a generation-level micro-WEN system is developed, considering more variables
and more complex interactions between system components. Accordingly, the proposed
co-optimization model quantifies the mass and energy streams of the cogeneration plant,
considering several plant variations. The proposed system focuses on attaining optimum
design values and operating conditions for the micro-WEN system while minimizing the
total annual and operational costs, respectively, and satisfying the electrical and water
demands. Several case studies are performed to validate and evaluate the effectiveness of
co-operating and co-optimizing the two systems simultaneously.

The major contributions of this paper can be summarized as follows:

• Proposing a new dynamic co-optimization framework for the design and operation of
a micro-WEN system that meets the demands of the electrical and water networks at a
minimum cost.

• Decoupling electricity and water production and shifting to a more sustainable water
desalination technique.

• Optimizing the micro-WEN system over multiple timescales to provide solutions with
a significantly smaller memory size and less computational time.

2. Problem Description

The schematic diagram of the proposed micro-WEN system is shown in Figure 2.
On the electricity side of the micro-WEN system, a generation network is established
and seamlessly integrated with renewable energy sources. This integration enables the
system to harness the power of various renewable resources, such as solar or wind, to
generate electricity. The availability of renewable energy plays a crucial role in enhancing
the system’s sustainability by alleviating the reliance on fossil fuels for desalination and
reducing carbon emissions and environmental impact.
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Figure 2. Physical structure of the proposed micro-WEN system.

At the core of the micro-WEN system lies a CCPP, which serves as a key power
generation unit. The CCPP efficiently converts fuel into electricity using both a gas turbine
and a steam turbine, maximizing energy output from the available resources. Moreover,



Sustainability 2024, 16, 3783 5 of 22

the waste heat produced during electricity generation is not wasted but instead redirected
to the thermal desalination side of the system.

The water side of the micro-WEN system comprises a thermal desalination system, the
MED, that utilizes the waste steam generated by the CCPP. In the MED process, seawater
is heated in multiple evaporator stages, each operating at progressively lower pressure.
The resulting vapor is condensed to produce freshwater, while the remaining brine is
discharged. Additionally, to further enhance freshwater production and system flexibility,
an RO desalination plant is also integrated into the water side of the micro-WEN system.
The RO process involves pressurizing the feedwater against a semi-permeable membrane,
separating salts and impurities from the freshwater production based on specific water
source characteristics and demand patterns.

To facilitate the overall operation of the micro-WEN system, a reservoir is incorpo-
rated into the water side. Following the desalination processes, the produced freshwater
is then stored in a strategically positioned reservoir. This reservoir plays a pivotal role
in supplying a stable and continuous feed of freshwater to the water network, satisfying
the water demand of consumers, and ensuring consistent water availability even during
fluctuations in the desalination processes or water consumption patterns. While a typical
water network includes pipe networks, pumps, and tanks, these elements are not explicitly
considered in this work. The primary focus of the micro-WEN system is to examine the
interaction and integration of the electricity generation and water desalination compo-
nents, emphasizing the seamless collaboration between renewable energy utilization and
sustainable freshwater production.

3. Problem Formulation
3.1. Mathematical Model of Electrical Network

In this work, a model of a power generation system is introduced. This model consid-
ers several system constraints, as follows:

• Power flow constraints: These constraints relate the active and reactive power flows
in the lines to the voltages and the line impedance, as given in Equations (1) and (2).
The limits of the power flow in the lines are given in Equations (3) and (4).

Pij,t =
1

Zi,j

(
V2

i,tcos
(
θij
)
− Vi,tVj,tcos

(
δi,t − δj,t + θij

))
(1)

Qij,t =
1

Zi,j

(
V2

i,tsin
(
θij
)
− Vi,tVj,tsin

(
δi,t − δj,t + θij

))
−

bV2
i,t

2
(2)

−Pmax
ij ≤ Pij,t ≤ Pmax

ij (3)

−Qmax
ij ≤ Qij,t ≤ Qmax

ij (4)

• Power balance constraints: Constraint (5) illustrates the active power balance at each
bus, in which the right side is the total active power flow from bus i, and the left side
reflects the active power generated by generator g to bus i minus the active power
demand at bus i. For several case studies, the power generation system is assumed to
be integrated with a high penetration of PV resources. In this study, a probabilistic
approach is adopted from [34] to model the PV system and load demand. This model
utilizes historical hourly data to stimulate stochastic variations in PV output and load
demand, influenced by solar irradiance and customer patterns. Also, for the transition
from thermal desalination to reverse osmosis, Equation (5) accounts for the active
power consumption of the water pumps in the RO system. Similarly, the reactive
power balance at each bus is described by Equation (6).

PPV
i,t + P

g
i,t − PL

i,t − PRO
i,t = ∑

jϵΩi

Pij,t (5)



Sustainability 2024, 16, 3783 6 of 22

QPV
i,t + Q

g
i,t − QL

i,t − QRO
i,t = ∑

jϵΩi

Qij,t (6)

• System constraints: Several variables must be constrained within a reasonable range
to ensure the stable and secure operation of the power generation system. Firstly, the
voltage’s magnitude and angle of each bus are constrained within a suitable voltage
level, as shown in Equations (7) and (8), while Equations (9) and (10) fix the voltage’s
magnitude and angle of the slack bus. Also, Equations (11) and (12) set the maximum
and minimum limits of power and reactive generation of generator g connected to
bus i

0.9 ≤ Vi,t ≤ 1.1 (7)

−π

2
≤ δi,t ≤

π

2
(8)

Vslack,t = 1 (9)

δslack,t = 0 (10)

Pg,min
i ≤ Pg

i,t ≤ Pg,max
i (11)

Qg,min
i ≤ Qg

i,t ≤ Qg,max
i (12)

3.2. Mathematical Model of CCPP and MED

The schematic diagram of an integrated system consisting of a gas turbine, an air
preheater (APH), a single-pressure heat recovery steam generator (HRSG), a steam turbine,
and a MED is illustrated in Figure 3. In modeling a CCPP, some key assumptions are made
to simplify its mathematical model. Firstly, the fuel used in the CCPP is methane (CH4),
and all streams operate under steady-state conditions. Additionally, air and combustion
gases are treated as ideal gases with constant specific heat [35].
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The mass and energy balance equations from stream 1 and stream 6 for various
components of the CCPP, including the air compressor, combustion chamber, gas turbine,
and APH, are described in [35,36]. The air compressor (AC) is modeled using the energy



Sustainability 2024, 16, 3783 7 of 22

equations given in Equations (13) and (14), where Ya, the specific heat ratio of air, is 1.4 and
Cp,a, the specific heat at constant pressure of air, is 1.004 kJ/(kgK).

T2 = T1

(
1 +

1
ηAC

[(
P2

P1

) Ya−1
Ya

− 1

])
(13)

WAC = ma Cp,a(T2 − T1) (14)

The mass and energy balance equations for the combustion chamber (CC) are demon-
strated in Equations (15)–(17), where LHV, the lower heating value of methane, is 50, 000 kJ/kg.
The mass flow rate of the air, ma, is further expanded in Equations (18) and (19) to illustrate
the combustion reaction with the molecular weights of fuel (M f ) and air (Ma).

mg = ma + m f (15)

mah3 + m f LHV = mgh4 + m f LHV(1 − ηCC) (16)

P4 = P3(1 −△PCC) (17)

ma = ma,rx + ma,ex (18)

m f

M f
= 0.5

XO2

Ma
ma,rx (19)

The mass and energy balances for the APH are identified in Equations (20)–(22), where
Cp,g, the specific heat at a constant pressure of a gas, is 1.17 kJ/(kgK). Equation (22)
balances the amount of energy transferred from the air to the gases in the gas turbine.

ma Cp,a(T3 − T2) = mg Cp,g(T5 − T6) (20)

P3 = P2(1 −△Pa,APH) (21)

P4 = P3
(
1 −△Pg,APH

)
(22)

Equations (23) and (24) model the gas turbine, which generates a net power, Wnet,
by subtracting the power used to operate the AC, as shown in Equation (25). Yg, with a
value of 1.33, represents the specific heat ratio of gas. It is used to calculate the adiabatic
temperature drop that would occur if the expansion in the gas turbine were isentropic.

T5 = T4

1 − ηGT

1 −
(

P4

P5

) 1−Yg
Yg

 (23)

WGT = mg Cp,g(T4 − T5) (24)

Wnet = WGT − WAC (25)

Figure 4 represents the detailed schematic diagram of the HRSG and its connection
with the steam turbine and the MED. The energy and mass balances for the economizer,
evaporator, and superheater are given in Equations (26)–(28), respectively. Precisely, the
model involves the constraints demonstrated in Equations (29)–(31) to develop the temper-
ature profiles within the HRSG.

mg Cpg (T14 − T7) = ms (h9 − h8) (26)

mgCp,g(T13 − T14) = ms(h10 − h9) (27)

mgCp,g(T6 − T13) = ms(h11 − h10) (28)

T9 > T8 (29)

T10 = T9 (30)
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T11 > T10 (31)
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The modeling of the steam turbine mainly includes the thermodynamic properties of
streams 11 and 12. Accordingly, Equation (32) indicates the power of the steam turbine [35].
Essentially, the constraint shown in Equation (33) ensures that the pressure of the steam
entering the steam turbine is greater than the pressure of the steam exiting it.

WST = ms (h11 − h12 )ηst (32)

P11 > P12 (33)

To model the MED system, we consider several key assumptions to derive its sim-
plified mathematical model. The MED configuration considered here is a forward feed
for simplification, although it is worth noting that the parallel/cross feed is the most
energy-efficient feed configuration [37]. For this study, the MED system consists of six
evaporators and a main condenser. The non-equilibrium allowance (NEA) is neglected, and
the heat transfer area is constant in all effects, as presented in Equation (34). Moreover, the
temperature of the seawater is at the saturation temperature of the first effect. At different
temperatures and concentrations, the seawater-specific heat does not change [38,39].

An−1 = An (34)

As shown in Figure 4, the steam coming out of the steam turbine acts as a heat source
for the first effect of the MED. The overall mass and energy balances of the distillation
effects and the main condenser, as provided in [40], are incorporated into the mathematical
model of the MED. Equations (35) and (36) ensure the overall material and salt balances for
the distillation effects.

mMED
f eed = mdis + B(6) (35)

X f mfeed = B(6)Xlast (36)

Equations (37)–(39) establish the mass and energy balances in the distillation effects.

mMED
f eed = V(1) + B

(1)
(37)

VSLs = V1Lv(1) (38)

V(n)Lv(n) = VnLv(1) (39)
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Accordingly, Equations (40) and (41) are used to calculate the heat transfer area in the
first effect and the subsequent effects. The latent heat of motive steam, Ls, and vapor, Lv(n),
are calculated using the correlation given in [40].

V(1)Lv(1) = A(1)·U
(

Ts − TMED(1)

)
(40)

V(n)Lv(n) = A(n)·U
(

TMED(n−l) − TMED(n)

)
(41)

As mentioned earlier, Equations (42) and (43) imply that the brine acts as the feed for
the next effect and calculates the brine flow rate, leaving the previous effect.

B(n−1) = V(n) + B(n) (42)

B(n−1)X(n−1) = B(n)X(n) (43)

Energy balances for the main condenser are defined in Equations (44)–(46), which
include the log mean temperature difference as reported in [40].

Acond·Ucond·Tcond = V(6) LV(6) (44)

msea·Cp

(
Tc f eed − Tf eed

)
= V(6)LV(6) (45)

msea = mc + mMED
f eed (46)

Most importantly, the MED model incorporates the constraint given in Equation (47),
which ensures that the temperature profile in effect (n − 1) is lower than that in effect (n).
Lastly, Equation (48) expresses the total MED heat transfer area.

TMED(n−1) > TMED(n) (47)

HTAMED = Acond +
n

∑
1

A(n) (48)

3.3. Mathematical Model of RO Desalination

In this work, the RO is a single-stage desalination system consisting of six parallel
vessels, each comprising six membranes. Mainly, the RO system consists of a high-pressure
pumping unit that consumes a significant amount of electricity. A simple mathematical
model describing the RO desalination process is derived from references [31,41]. Equation
(49) provides an estimate of the specific power consumption of the high-pressure pumping
unit, with the seawater’s density, ρ, assumed to be 1060 kg

m3 .

WRO =
nRO Ph, f mRO

f eed

ηRO ρs (49)

3.4. Mathematical Model of Reservoir

In this work, a lumped approach is employed to consider the distillate production from
the MED system as uniform at all times, facilitating the development of a simplified and
fast model. Equation (50) ensures that the water demand at the current hour is fulfilled by
the distillate, which is added to the difference between the reservoir capacity at the previous
and current hours. As illustrated in Equation (50), a factor of 3.6 is added to convert the
distillate flow rate from kg/s to m3/h. Equation (51) applies the exact correlation, but with
the initial capacity of the reservoir at the first hour. Most importantly, to demonstrate a
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complete cycle, the reservoir’s capacity at the end of the current day should be nearly equal
to its capacity at the beginning of the next day, i.e., Wres(24) = Wres(1).

3.6 mdis + Wres(t−1) = Wres(t) + Wdemand(t) (50)

3.6 mdis + Wres(24) = Wres(1) + Wdemand(1) (51)

3.5. Integration of Power and Water Systems

In the proposed micro-WEN system, the co-optimization of electrical power and water
networks occurs in two stages. The first stage involves the integration of the CCPP and the
MED systems, while the second stage includes the integration of the CCPP, the MED, and
the power generation network.

As elaborated in previous sections, the steam exiting the steam turbine serves as the
heat source for the first effect of the MED. This relationship is incorporated as a constraint
in the integrated micro-WEN model, as expressed in Equations (52)–(55).

ms = Vs (52)

T12 = Ts (53)

T12 = T8 (54)

60 ≤ Ts ≤ 110 (55)

To integrate the CCPP with the IEEE 24-bus system, the total generated power from
the gas and steam turbines is injected into the buses where the cogeneration units are
installed. Given that the CCPP model operates on a daily scale while the electrical network
is time-based, the output power of the CCPP at bus i is represented as the daily average
generated power, as given in Equation (56).

∑24
t=1 Pg

i,t = Wnet + WST (56)

3.6. Economic Models

To assess the cost of the proposed micro-WEN system, the economic model of the
CCPP is obtained from previous studies [35,42,43]. It is vital to account for the annual fuel
cost used in the CCPP, the capital investment, and the maintenance costs. Equation (57)
estimates the total annual cost of the CCPP, which comprises the total fuel cost, where c f
represents the fuel cost per energy unit, with a value of 0.004 USD/MJ and the purchase
costs ( Z ) of AC, APH, CC, GT, HRSG, APH, and ST. In Equation (57), NCCPP corresponds
to the total number of operating hours per year, which is 8000 h. Additionally, CRF
represents the yearly capital recovery factor at a rate of 18.2%, and the maintenance factor
(MF) is set to 1.06.

TACCCPP = 3600 NCCPP c f m f LHV + CRF MF (ZAC + ZCC + ZGT + ZHRSG + ZAPH + ZST) (57)

Details on modeling the MED’s economic performance are obtained from the recent
literature [39,40]. The total annual cost of the MED system takes into account both the total
annual capital and operating costs, as demonstrated in Equation (58). The total annual
investment cost ( TACMED) comprises equipment and civil work capital costs, while the
annual operating cost evaluates the costs of electric power, steam, labor, maintenance,
and insurance.

TACMED = CRF TCCMED + AOCMED (58)
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3.7. Proposed Approach: Optimal Design of a Micro-WEN System

The proposed micro-WEN system is co-optimized as an integrated physical system
to minimize its total annual cost and meet daily electricity and water demands. The
optimization model is defined below.

min TAC WEN = TACCCPP + TACMED

Subject to

Mathematical models o f electrical network, CCPP, MED, and reservoir
Integration o f power and water systems

Economic models


3.8. Proposed Approach: Optimal Operation of a Micro-WEN System with RO

The proposed micro-WEN system that incorporates RO desalination instead of MED is
co-optimized to minimize its total operational cost, as presented below. The 24 h electricity
price at the power transmission bus is represented by pe.

min OC WEN = ∑
i, t

bg Pg
i,t Sbase + ∑

t
peWRO

Subject to

Mathematical models o f electrical network, RO, and reservoir
Integration o f PV system and electrical network


4. Results and Discussions

This section discusses the simulation results of the proposed approach, which was
tested using the IEEE 24-bus generation system, as shown in Figure 5. The system includes
24 nodes, 24 thermal units, and 38 transmission lines. The capacity of the IEEE 24-bus
system is 2890 MW, with a maximum demand of 2850 MW, as shown in Figure 6, illustrating
the generated power at each bus.
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Two possible approaches are introduced to optimize the design and operation of the
proposed micro-WEN system based on the previously discussed mathematical models.
First, for optimal design, we minimize the total annual cost of the developed micro-WEN
system by co-optimizing the design of the CCPP and MED systems while meeting the daily
electrical and water demands. Secondly, shifting to RO, the proposed micro-WEN system
is co-optimized to achieve the minimum total operational cost, both with and without
a PV system, for optimal system operation. The NLP optimization models and solving
approaches are implemented in the GAMS modeling environment and solved using the
CONOPT solver.

4.1. Performance Evaluation of Proposed Approach

Before optimization, model variables in the following model are initialized to values
in recent related works to acquire feasible initial solutions that satisfy mass and energy
balances in each component of the MED system and the CCPP. In the development of the
simulation model, no objective function is initially considered. Instead, the feasible solution
obtained for the model is used as an initialization point for minimizing the total annual
cost of the micro-WEN system. The model variables for the CCPP and MED systems are
bounded by lower and upper bounds from the recent related literature, as listed in Table 1.

Table 1. Lower and upper bounds of operating conditions of the micro-WEN system.

Operating Conditions Lower Bounds Upper Bounds

MED

Tc f eed 30 ◦C 80 ◦C
TMED(n) 36 ◦C 130 ◦C

Lv(n) 2000 kJ/kg 3000 kJ/kg
Ts 80 ◦C 150 ◦C

CCPP

Wnet 30 MW -
WST 11 MW -
Tk 298.15 K 1500 K
ma 94 kg/s -

Applying the co-optimization approach, Table 2 summarizes the optimal design values
of the MED system and the CCPP that meet typical daily electrical and water load demands.
The optimal operating conditions of all flows, such as mass flow rates, temperature, and
pressure, are summarized in Table 3. Most importantly, the results in Tables 2 and 3 strongly
align with findings in the existing literature and previous works, confirming the feasibility
of the proposed approach.
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Table 2. Optimum values of design variables of the micro-WEN system.

Design Variables Value

MED
nMED 6

HTAMED 5985 m2

CCPP
ηGT 54.9%
ηST 96.5%
W 150 MW

Table 3. Optimum values of operating conditions of the micro-WEN system.

Operating Conditions Value

MED
mMED

f eed 136.65 kg/s
Vs 63.193 kg/s

mdis 40.41 kg/s
Ts 110 ◦C

CCPP
ms 6.42 kg/s
m f 0.601 kg/s
ma 41.86 kg/s
T12 383.15 K
P11 1.101 bar
P12 0.101 bar

The optimal distribution between the capital investment and operating costs, lead-
ing to the minimal total annual cost of the micro-WEN system, is presented in Table 4,
with ‘M’ denoting millions. The simultaneous co-optimization of both power and water
aspects in the micro-WEN system offers a significant advantage. The observed reduc-
tion in computational time and cost, compared to independent optimization approaches
typically used in the literature, showcases the efficiency and practicality of the proposed
co-optimization approach.

Table 4. Capital investment and operating costs of the micro-WEN system.

System Capital Investment (USD/year) Operating Cost (USD/year)

MED 1.82 M 1.12 M
CCPP 0.86 M 3.5 M

Micro-WEN 5.91 M

To meet the demand in both the energy and water sectors, the cogeneration unit is
designed with capacities of 145 m3/h for water and 150 MW for electricity. Maintaining the
same design specifications and operating conditions of the micro-WEN system, different
case studies are investigated to estimate the number of cogeneration units needed to replace
the generating units in the IEEE 24-bus system. These studies consider different percentages
of the electricity consumed by the residential sector. According to [45], UAE residents
typically use approximately 0.55 m3 of water and 25 kWh of electricity per day.

In the UAE, the consumption of the residential sector in Abu Dhabi constitutes 26.8% of
the total consumption [46]. Considering 26.8%, 50%, and 100% of the residential electricity
consumption, Table 5 summarizes the number of households that the electrical system
can serve, their daily water consumption, and the corresponding number of cogeneration
units meeting the water consumption needs. As shown in Table 5, five cogeneration units
totaling 750 MW capacity are needed to meet the water demand of 30,984 households.
Consequently, as shown in Figure 7, the generating units at buses 15, 22, and 23, with
capacities of 82 MW, 300 MW, and 360 MW, respectively, are replaced by five cogeneration
units located at buses 5, 15, 19, 22, and 23.
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Table 5. Various percentages of electricity consumption by the residential sector.

Residential Sector Percentage No. of Households Daily Water Consumption (m3/day) No. of Cogeneration Units

26.8% 30,984 17,041.2 5
50% 57,806 31,793.3 17

100% 115,612 63,538.6 20
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Figure 7. Generated power at each bus with five cogeneration units.

An increase in the number of households leads to a proportional increase in the
required number of cogeneration units to meet the daily water demand. Thus, to meet the
water demand of 57,806 households at 31,793.3 m3/day, seventeen cogeneration units are
required. Consequently, as shown in Figure 8, seventeen cogeneration units are added,
replacing all generating units of the IEEE 24-bus system except for the generator at bus 23.
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Figure 8. Generated power at each bus with seventeen cogeneration units.

To satisfy the electrical and water demands of an area comprising only the residential
sector, twenty cogeneration units are installed, replacing all the generating units in the
electrical network. Their locations are indicated in Figure 9.
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Figure 9. Generated power at each bus with twenty cogeneration units.

4.2. Effect of PV Integration

This subsection discusses the integration of a renewable energy resource into the
generation network to assess its impact on meeting the electrical and water demands that
the cogeneration unit should fulfill. Therefore, a 50 MW PV system is incorporated into the
proposed micro-WEN system, located at bus 17.

To compare the 26.8% variation in the generated power at each bus before and after
integrating the PV system into the proposed micro-WEN system serving households,
Figures 10 and 11 represent the hourly generated power at each bus and the hourly output
power of the PV system, respectively.
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Figure 10. Hourly generated power at each bus with PV system.
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Figure 11. Hourly output power of PV system.

As presumed, with the addition of the PV system, it can be inferred that the generated
power at the buses hosting the cogeneration units decreases between 9:00 am and 5:00 pm
when the PV system supplies power to the electrical network. If a PV system of sufficient
size generates the same amount of electricity as a cogeneration unit, it can lead to the
shutdown of the cogeneration unit. In such a scenario, the freshwater produced by the
cogeneration units may not meet the water demand. To address this problem, we propose
decoupling electricity and water production by gradually phasing out the cogeneration
units and shifting to the reverse osmosis desalination technique.

4.3. Shifting to Reverse Osmosis (RO)

As previously discussed, if another source supplies the same amount of electricity that
the cogeneration unit generates, it can result in its shutdown. In that case, the freshwater
produced by the cogeneration units will not meet the water demand. Thus, this work
proposes to shift to more sustainable water desalination and decouple electricity and water
production. The best approach is to shift from thermal desalination, which consumes a
significant amount of electricity, to RO. Nevertheless, any renewable energy resource, such
as a PV system or a storage system like a battery, may provide this electricity to produce
water. As a result, water desalination will not rely on thermal energy from the CCPP.

The optimization model defined in (60), incorporating a simple mathematical model
of the RO desalination process reported in [31,41], is employed to obtain the optimal design
values for an RO system that meets a typical daily water demand at a minimum cost.
The corresponding values are reported in Table 6. The reservoir has an initial capacity of
190.25 m3 and is supplied hourly with a constant permeate of 145.48 m3. Consequently, as
shown in Figure 12, the RO system satisfies the water demand regardless of whether it is
integrated with a PV system or cogeneration units.

Table 6. Optimal values of design variables of the RO system.

Design Variables Value

RO
nRO 36
ARO 197.88 m2
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Figure 12. Water demand vs. water in the reservoir.

This work considers seasonal variations as the electricity demand varies depending
on the season. It displays the year as four days, for a total of 96 h slots, where each day
represents a season and constitutes 24 h slots. The normalized electrical demand of each
season sample day is shown in Figure 13. Also, Figure 14 presents the hourly output
power of the PV system across different seasons—winter, spring, summer, and autumn.
It is evident that the output power of the PV system reflects the fluctuations in solar
irradiance. The water pump consumes 887.144 kWh of electricity and pumps feed at a rate
of 362.75 m3/h to meet the water demand. On that account, considering a unity power
factor, the reactive power is compensated in the water pumps of the RO system.
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The addition of the water pump at bus 7 initially boosts power generation, but the
subsequent inclusion of a PV system reduces it as the PV system contributes extra active
power to the electrical network, as shown in Figure 15.
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4.4. Optimal Operation of a Micro-WEN System with RO

As summarized in Table 7, the proposed co-optimization model in (60) yields the
optimal operating conditions for the RO system using the mathematical model of the RO
desalination process that is presented in [31,41].

Table 7. Optimal values of operating conditions for the RO system.

Operating Conditions Value

RO

mRO
f eed 2.8 kg/s

mb 1.68 kg/s
mp 1.12 kg/s
SR 99.6%

Table 8 highlights the minimum operating cost of the proposed micro-WEN system,
both without and with a PV system. Also, the total operating cost of the micro-WEN, with
the RO system replacing the cogeneration units to satisfy the water demand, is defined. As
a result, according to Table 8, co-optimizing the overall system with PV saves approximately
USD 0.01 M, and shifting from the cogeneration units to the RO system results in a 26.7%
reduction in the total operational cost of the proposed micro-WEN system.
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Table 8. Comparison of total operating cost of micro-WEN system.

Operating Conditions Total Operating Cost (USD/Day)

Without PV 0.82 M
With PV 0.81 M

Shifting to RO 0.61 M

5. Conclusions

Efficiently managing water–energy nexus systems is essential to meet the growing
demand for water and electricity. The integration of seawater thermal desalination into a
combined-cycle power generation plant offers a promising solution for both power genera-
tion and water desalination. To achieve optimal performance, it is crucial to implement
innovative and robust resource management strategies aimed at reducing the total opera-
tional cost of micro-WEN systems while maximizing the utilization of the available energy
resources. In this paper, we propose an NLP mathematical model for micro-WEN systems
at the generation level, incorporating a co-optimization framework for their design and
operation. This approach aims to fulfill the requirements of both the electrical and water
networks at the lowest possible cost. Our research specifically addresses the challenge
faced by power plants in the United Arab Emirates, which operate at reduced efficiency
during the winter season in order to meet water demand. This challenge is addressed by
transitioning from thermal desalination to reverse osmosis desalination and decoupling the
production of energy and water. The results demonstrate a significant reduction in overall
operational costs of 26.7% through the transition to RO desalination. By optimizing the
micro-WEN system at various timescales, including hourly and daily intervals, we offer
solutions that not only require less memory but also reduce computational time.

While the current study focuses on optimizing the integration of water and energy
systems through dynamic co-optimization approaches, the integration of photovoltaic
energy storage technologies presents a promising enhancement to the sustainability and
efficiency of micro-WEN systems. Energy storage can provide crucial support in balancing
the fluctuations in solar energy generation, thus ensuring a more reliable and steady energy
supply to the integrated systems. Future research could explore how different energy stor-
age technologies can be effectively incorporated into the water–energy nexus to enhance
operational flexibility and energy security. Moreover, future studies are recommended
to develop a scaling approach for integrated water–energy systems, incorporating projec-
tions for the expansion of installed renewable energy capacities. This development should
include the formulation of a trend function characterized by an annual growth rate of
installed power. Such a methodology would facilitate strategic planning and optimization
of system expansions over time, aligning with global trends in renewable energy develop-
ment. Additionally, it would support strategic planning and policy formulation aimed at
sustainable energy and water management.
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Nomenclature

g index of generators Tfeed intake seawater temperature, ◦C
i, j index of buses in the electrical network U overall heat transfer coefficients, kW/(m2 ◦C)
k index of streams in CCPP Wdemand (t) water demand at time t, m3/h
n number of distillation effects in MED XO2 molar fraction of oxygen
t index of time periods Xb salt concentration in brine, ppm
bg fuel cost coefficient of generator g Xf salt concentration in feed seawater, ppm
Ce electricity cost, USD/kWh γa specific heat ratio of air
Cf fuel cost, USD/MJ Zij impedance of branch ij
Cp,a specific heat at a constant pressure of air △PCC pressure difference in the combustion chamber
CRF capital recovery factor △TLM log mean temperature difference
LHV lower heating value, kJ/kg θij phase angle of the impedance of branch ij
Mf molecular weight of fuel An heat transfer surface area in effect n, m2

MF maintenance factor AOC annual operational cost
NCCPP annual operation time of CCPP, h/year Bn brine flow rate in effect n of MED, kg/s
nRO number of membranes in RO hk specific enthalpy of stream k, kJ/kg
ηCC first-law efficiency of the combustion chamber HTAMED total heat transfer surface area of MED, m2
PL

i,t active power load of bus i at time t, MW Ls latent heat of motive steam, kJ/kg

Pi
g,max maximum limit of active power output of g

connected to bus i
Lv (n) latent heat in effect n, kJ/kg

Pi
g,min minimum limit of active power output of g

connected to bus i
ma air mass flow rate, kg/s

Pij
max maximum limit of active power flow of branch ij mc exit water to sea from main condenser, kg/s

ρs average density of seawater, kg/m3 mdis net distillate produced from MED, kg/s
QL

i,t reactive power load of bus i at time t, MW mf fuel mass flow rate, kg/s

Qi
g,max maximum limit of reactive power output of g

connected to bus i
mfeed

MED feed water flow rate at first effect in MED, kg/s

Qi
g,min minimum limit of reactive power output of g

connected to bus i
mfeed

RO feed water flow rate in RO, kg/s

Qij
max maximum limit of reactive power flow of branch ij mg combustion gases mass flow rate, kg/s

ms steam mass flow rate, kg/s
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