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Abstract: A hyperspectral image (HSI) is often corrupted by various types of noise during image
acquisition, e.g., Gaussian noise, impulse noise, stripes, deadlines, and more. Thus, as a preprocessing
step, HSI denoising plays a vital role in many subsequent tasks. Recently, a variety of mixed noise
removal approaches have been developed for HSI, and the methods based on spatial–spectral
double factor and total variation (DFTV) regularization have achieved comparable performance.
Additionally, the nonlocal low-rank tensor model (NLR) is often employed to characterize spatial
nonlocal self-similarity (NSS). Generally, fully exploring prior knowledge can improve the denoising
performance, but it significantly increases the computational cost when the NSS prior is employed. To
solve this problem, this article proposes a novel DFTV-based NLR regularization (DFTVNLR) model
for HSI mixed noise removal. The proposed model employs low-rank tensor factorization (LRTF) to
characterize the spectral global low-rankness (LR), introduces 2-D and 1-D TV constraints on double-
factor to characterize the spatial and spectral local smoothness (LS), respectively. Meanwhile, the
NLR is applied to the spatial factor to characterize the NSS. Then, we developed an algorithm based
on proximal alternating minimization (PAM) to solve the proposed model effectively. Particularly,
we effectively controlled the computational cost from two aspects, namely taking small-sized double
factor as regularization object and putting the time-consuming NLR model before the main loop with
fewer iterations to solve it independently. Finally, considerable experiments on simulated and real
noisy HSI substantiate that the proposed method is superior to the related state-of-the-art methods in
balancing the denoising effect and speed.

Keywords: hyperspectral image; mixed noise removal; low-rank tensor factorization; spatial–spectral
double factor; total variation; nonlocal low-rank model; alternating direction method of multipliers;
augmented Lagrangian method; proximal alternating minimization

1. Introduction

A hyperspectral image (HSI) consists of contiguous spectral band images from ultravi-
olet to infrared wavelengths [1,2]. Therefore, HSI contains abundant spatial and spectral
information and plays an important role in various applications [3–7], such as military
surveillance, natural disaster monitoring, terrain detection, mineral exploration, and food
safety detection. Nevertheless, due to the interference of the detector sensitivity, platform
vibrations, and atmospheric turbulence, a real HSI is inevitably affected by various noises,
such as Gaussian noise, impulse noise, stripes, deadlines, etc. [8,9]. The existence of the
above noises greatly degrades the quality of the HSI, limiting the subsequent tasks, such as
classification [10], unmixing [11], fusion [12], feature learning [13], super-resolution [14],
and target detection [15]. Hence, HSI denoising is a fundamental preprocessing step for
further applications. In the field of remote sensing (RS), it is generally assumed that the
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mixed noise in optical remote sensing images is mainly additive noise, and multiplicative
noise often appears in synthetic aperture radar (SAR) images. Recently, there have been
many studies on denoising based on this assumption, and it can basically meet the actual
denoising needs. Therefore, this article only focuses on the discussion of removing the
hyperspectral mixed noise composed of additive noise.

Currently, HSI denoising approaches can be generally divided into two categories,
namely model-based methods and data-based methods [2]. The present challenge of
data-based methods is the lack of real HSIs that can serve as training data [16,17]. In
addition, although the speed of data-based methods is faster, the cost of the previous model
training stage is higher, and the universality of the training model is limited. In contrast,
model-based methods based on prior knowledge have a good general performance [8,16].
The improvement in the denoising performance is closely related to the mining of prior
knowledge more fully, but more prior terms inevitably lead to the increase in the computa-
tional cost. The HSI denoising methods listed below refer to model-based methods, unless
otherwise specified. Recently, many advanced HSI denoising methods have been proposed,
among which the works exploring and modeling the intrinsic prior knowledge have made
the most outstanding achievements. The most important priors mainly include spectral
global low-rankness (LR) [18], spatial–spectral local smoothness (LS) [19], spatial nonlocal
self-similarity (NSS) [20], and the sparsity of sparse noise (S).

In recent years, more and more researchers have paid more attention to removing
mixed noise. With the prosperity of optimization theory, methods based on low-rankness
have been developed. For instance, many methods utilized tensor decomposition to exploit
LR by treating the HSI as a third-order tensor [21–23]. Moreover, various total variation
(TV) regularizations were introduced to remove noises and preserve the image edges. For
instance, Chang et al. [24] proposed a model based on anisotropic spatial–spectral TV (SSTV)
to promote LS. Fan et al. [25] employed SSTV and low-rank tensor factorization to remove
the mixed noise of HSIs without changing the spatial structures. In order to further explore
NSS, models based on nonlocal low-rank tensor decomposition and TV regularization
were proposed in [26–28]. However, using either spatial LS or spatial–spectral LS will
unavoidably result in oversmoothing or artifacts [29].

Usually, the methods based on low-rank TV (LRTV) are good at characterizing the
LR and LS of HSIs, while at the expense of a higher computational cost [30]. To be clear,
there are two main reasons for the above high computational cost. First, the cost of
directly imposing constraints on HSIs with a large data volume is higher. Second, the
cost of a high-performance denoising model based on fully mining prior knowledge is
higher. Compared to panchromatic and infrared RS images, an HSI X ∈ RM×N×B has a
larger spectral dimension B (usually several hundred). Therefore, this article follows the
convention of [2,31] and distinguishes based on the size of spectral dimension, assuming
that the HSI is “large-sized”, while the other RS images and the factors U − V mentioned
below with relatively small spectral dimensions are “small-sized”. Is it possible that the
original HSI has a factor with a smaller size that inherits the prior knowledge of X ? If
this is true, it is hoped that we can reduce computational costs while guaranteeing the
denoising performance. Inspired by this aim, we turned our attention to low-rank matrix
factorization (LRMF)/low-rank tensor factorization (LRTF). For an HSI X ∈ RM×N×B, its
unfolded matrix along the spectral dimension can be expressed as X ∈ RMN×B, and the
rank of X is R (R << B). Then, X and X can be factorized as X = U×3V and X = UVT,
respectively, where V ∈ RB×R denotes the spectral factor and U ∈ RM×N×R/U ∈ RMN×R

corresponds to the spatial factor [32]. The LRTF/LRMF model can reflect LR and has the
advantage of not requiring large-scale singular value decomposition (SVD) calculation [2].
Furthermore, the image corresponding to U/U can maintain the structure of the original
image better [2].

Therefore, under the framework of LRMF/LRTF, several HSI denoising methods
based on spatial single-factor U or spatial–spectral double-factor U − V regularization
have been proposed [2,26,30,31,33,34]. For example, the LRTFDFR method proposed by
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Zheng et al. [31] applied the weighted TV l21 norm and the data fidelity term to U and
V, which describe the spatial and spectral LS, respectively, but it did not consider NSS.
The RCTV proposed by Peng et al. [2] applied the TV l1 norm to U to describe the spatial
LS, but it did not consider the spectral LS and NSS. The SNLRSF method proposed by
Cao et al. [30] applied the nonlocal low−rank decomposition to U to describe NSS, but it
did not consider LS. The NLSSR method proposed by Zha et al. [35] characterized the NSS
and LR of HSIs with nonlocal structured sparsity regularization, but it ignored LS and
S. The LRTRDGS method proposed by Wang et al. [36] characterized the LR, LS, and S
with weighted group sparsity-regularized low-rank tensor ring decomposition, but it did
not consider NSS. In short, almost all methods fail to fully explore the prior knowledge
of HSIs and noise. Furthermore, the DFTCR method proposed by Han et al. [37] fully
explored the priors of HSIs and noise, but it did not balance the high computational cost
caused by introducing an NSS prior. The related research conclusion in [2] also shows that
the circular search and matching strategy of similar blocks often used to characterize NSS
greatly increase the computational cost. In summary, there is still room to improve the
denoising performance based on the existence of HSIs in the low-dimensional subspace.

Based on the above discussion, this article aims to recover the clean HSI X from
the observation data Y polluted by additive mixed noise. In this regard, we propose a
spatial–spectral double factor TV-based nonlocal low-rank tensor regularization method
(DFTVNLR) to remove HSI mixed noise. We use the LRTF framework X = U×3V to
characterize the LR. Additionally, the TV regularization is added to the spatial factor U and
spectral factor V to characterize the spatial bidirectional LS and spectral LS. Moreover, we
introduce a weight strategy [18] to promote LS. Furthermore, we introduce the nonlocal
low-rank tensor model (NLR) to characterize NSS and pre-estimate the initial value of U .
The contributions of this article are summarized in what follows:

1. First, under the framework of LRTF, by applying the weight TV regularization to
the small-sized double factor (U−V), namely ‖Wh � (DhU )‖1 + ‖Wv � (DvU )‖1 and
‖DvV‖2

F, it not only helps to reduce the computational cost, but also accurately
characterizes the spatial–spectral LS of HSIs.

2. Second, we fully explore all priors of HSIs, such as LR, spatial–spectral LS, and NSS.
And the NLR model is introduced before the main loop to estimate the initial value of
U , which indirectly characterizes NSS and solves the problem of high computational
cost caused by the introduction of NLR.

3. Third, the alternating direction multiplier method (ADMM) and augmented La-
grangian method (ALM) are used to solve the proposed DFTVNLR. The experi-
mental results show the proposed DFTVNLR is superior to several other excellent
methods for mixed noise removal, spatial texture structure restoration, and spectral
feature preservation.

2. Notations and Preliminaries

Throughout this article, we denote scalars, vectors, matrices, and tensors in light
lowercase letters, bold lowercase letters, bold uppercase letters, and light uppercase cur-
sive letters, respectively, e.g., x, x, X, and X . A N-order tensor can be expressed as
X ∈ Rn1×n2×···×nN , whose element is denoted as X (i1, i2, · · · , in) or Xi1,i2,··· ,in . The HSI
can be viewed as a 3-D tensor X ∈ RM×N×B. For the other notations used in this article,
see Table 1 in [31]. Additionally, the definitions of mode-k unfolding (X(k) = unfoldk(X ),
X = Foldk(X(k))), mode-k tensor-matrix product (X×kA), and the detailed introduction of
the tensor can be found in [31,38]. The inner product of the two matrices X and Y with
the same size is defined as 〈X, Y〉 := ∑i,j xi,j · yi,j, where xi,j is (i, j)th element of X [2].
Furthermore, ‖X‖F :=

√
〈X, X〉 and ‖X‖1 := ∑i,j

∣∣xi,j
∣∣ represent the Frobenius norm and l1

norm, respectively [2]. The TV norm, which characterizes LS, is introduced below. Each
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band of X can be regarded as a gray image X ∈ RM×N . Therefore, the anisotropic TV
norm [39] or the l0 gradient [40] of X is defined as follows:

l0TV(X) = ‖X‖TV :=
M

∑
i=1

N

∑
j=1

C
[∣∣xi+1,j − xi,j

∣∣+ ∣∣xi,j+1 − xi,j
∣∣]

=
M·N
∑ C[‖vec(DhX)‖1 + ‖vec(DvX)‖1]

(1)

where Dh and Dv represent first-order forward finite difference operators along the spatial
horizontal and vertical modes, respectively. C(X) is a binary function, and its specific
definition can be found in [29]. The vec(·) stands for a matrix vectorization operator. For
an HSI X ∈ RM×N×B, the simplest and most direct TV model is ∑B

k=1‖X (:, :, k)‖TV, in
which the spectral LS of the HSI is neglected. The TV norm or l0 gradient considering the
spatial–spectral LS of the HSI is defined as follows [29]:

l0HTV(X ) = ‖X ‖TV :=
M

∑
i=1

N

∑
j=1

C

{
B

∑
k=1

[∣∣∣Xi+1, j, k −Xi, j, k

∣∣∣+ ∣∣∣Xi, j+1, k −Xi, j, k

∣∣∣]} (2)

Table 1. Computational complexity of solving the operators involved in common prior terms.

Prior Term Subject Algorithm Computational Complexity

Spectral
Global Low-Rankness

(LR)

X ∈ RM×N×B SVD O(MNB2)

V ∈ RB×R SVD O(BR2)

Spatial–Spectral
Local Smoothness

(LS)

X ∈ RM×N×B 2-D FFT O[MNBlog(MN)]
U ∈ RM×N×R 2-D FFT O[MNRlog(MN)]

V ∈ RB×R 1-D FFT O[BRlog(B)]

Spatial Nonlocal
Self-Similarity

(NSS)

X ∈ RM×N×B SBS + SVD O
[

M2N2B(PatSize)2/(StepSize)4

+(GroupNum)B2(PatNum)(PatSize)2

]

U ∈ RM×N×R SBS + SVD O
[

M2N2R(PatSize)2/(StepSize)4

+(GroupNum)R2(PatNum)(PatSize)2

]
Sparsity of

Sparse Noise (S) S ∈ RM×N×B SoftThreshold O(MNB)

l0HTV(X ) has the obvious advantage of obtaining the spatial edge of the HSI [29].
Additionally, another TV norm considering the spatial–spectral LS of the HSI is SSTV,
which can be used to restore most structural details of the HSI. It incorporated the 2-D
spatial TV and 1-D spectral TV, and is defined as follows [41]:

‖X ‖SSTV := ‖DX‖1 = ‖DhX‖1 + ‖DvX‖1 + ‖DsX‖1 = ‖DhXDs‖1 + ‖DvXDs‖1 (3)

where Ds represents the first-order forward finite difference operator along the spectral
mode, D = [Dh, Dv, Ds] stands for the 3-D forward finite difference operator, and they are
defined as follows [41]:

DhX = Xi, j+1, b −Xi, j, b, DvX = Xi+1, j, b −Xi, j, b, DsX = Xi, j, b+1 −Xi, j, b (4)

3. HSI Mixed Noise Removal via DFTVNLR
3.1. Problem Formulation

For simplicity, it is assumed a real observed noisy HSI is only corrupted by additive
mixed noise, which typically includes additive Gaussian noise and additive sparse noise
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(impulse noise, deadlines and stripes, etc.) [42]. Then, the HSI degradation process can be
approximately formulated as an additive mixed system [2]:

Y = X +N + S (5)

where Y ∈ RM×N×B, X ∈ RM×N×B, N ∈ RM×N×B, and S ∈ RM×N×B denote the
observed noisy HSI, the underlying clean HSI, additive Gaussian noise, and additive sparse
noises, respectively. M, N, and B are the height of the spatial image, the width of the spatial
image, and the number of spectral bands, respectively. The key task is to recover X from Y .
Generally, the general HSI denoising model is expressed as follows [31]:

min
X ,S

1
2
‖Y − X − S‖2

F + λ1R(X ) + λ2R(S) (6)

where 1
2‖Y − X − S‖

2
F is a data fidelity term and indirectly characterizes Gaussian noise.

R(X ) is the regularization term associated with the clean HSI, which can be used to
explore the LR, LS, and NSS of the HSI.R(S) is designed to suppress sparse noise, which
can usually be characterized as l0-norm, l1-norm, or l21-norm, etc. The parameters λ1
and λ2(≥ 0) are utilized to combine the three terms and to balance their contribution
on the final result. The performance of a denoising model is heavily dependent on the
choice of regularization, which encodes the prior of the HSI and noise. Nevertheless,
adding regularization to the large-sized HSI unavoidably causes a high computational
cost. Fortunately, due to the high correlation between the spectral bands of the HSI, it is
reasonable to use LRTF (usually expressed as mode-3 tensor–matrix product) to characterize
the LR prior of the large-sized clean HSI X [43]:

X = U×3V (7)

where U ∈ RM×N×R and V ∈ RB×R(R� B) represent the small-sized spatial factor and
the small-sized spectral factor, respectively. The symbol ×3 represents the mode-3 tensor–
matrix product. Specifically, the element in U denotes the representation coefficient of X
with respect to V. Particularly, U is often called representation coefficient image (RCI), and
its mode-3 slices are termed eigen-images [30].

Except for the LR, to further improve the denoising performance, most existing works
adopt some other spatial priors of HSI, such as LS [9] and NSS [44]. Related research [2] has
proven that the spatial information of original large-sized X can be reflected on small-sized
U . Enlightened by this, we can explore the spatial priors on U instead of X . Additionally,
U is robust to noise, and the robustness is analyzed in E3DTV [19]. Furthermore, according
to [20,45], U can inherit two important properties of X , namely the LR and the NSS.
Therefore, many methods [2,30,31,46] based on the subspace and LRMF/LRTF have been
proposed, in which various regularization R(U ) are employed. Therefore, the general
denoising model based on LRTF is established as follows [31]:

min
V, U , S

1
2
‖Y − U×3V− S‖2

F + λ1R(U ) + λ2R(S) (8)

It is generally assumed that V is orthogonal, i.e., VTV = I. However, the existing
research [32] shows that, even if V is not orthogonal, U can also inherit the spatial prior
information of X to some extent. V usually can be learned from Y through the HySime
algorithm [47]. In recent years, the priors of HSI denoising have been fully mined. However,
in order to control the computational cost, only partial priors have been utilized at the
same time. Therefore, the overall denoising performance of the HSI still has room for
improvement. The key issue is how to balance the contradiction between fully representing
priors and controlling the computational cost.
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3.2. Proposed Denoising Model
3.2.1. Spectral Global Low-Rankness (LR) Characterized by LRTF

By comparing the HSI denoising performance based on the LR method [2,30,31,41,46] in
recent years, it was found the LRTF can fully explore LR and has a certain noise robustness.
Hence, we used Equation (7) to characterize LR.

3.2.2. Spatial–Spectral Local Smoothness (LS) Characterized by DFTV

The distribution of the SSTV model in Equation (3) is the same in all directions. How-
ever, in an actual scene, the different distributions of each band along the spatial–spectral
three directions are different [9,19]. To solve this issue, based on the weighted strategy,
some adaptive SSTV (ASSTV) models have been proposed [9,41]. The ASSTV model [41]
selected in this article is defined as follows:

‖X ‖ASSTV = ‖W � (DX )‖1 = ‖Wh � (DhX )‖1 + ‖Wv � (DvX )‖1 + ‖Ws � (DsX )‖1 (9)

whereW = [Wh,Wv,Ws] ∈ RM×N×3B is the weight tensor used to adjust the smoothing
intensity of different pixel positions in different directions.

Additionally, remarks 1 and 2 in [31] have proven that the LS constraint on small-
sized U − V can promote LS in X . The simulation results of [31] also show that the
strategy of regularizing the U − V can enrich the spatial texture structure and smooth
the spectral feature. In particular, the differential operations DhU and DvU of the third-
order tensor U are equivalent to the tensor–matrix product operations U×1Dh and U×2Dv,
respectively [31]. The symbol ×1/×2 represents the mode-1/2 tensor–matrix product.
Therefore, we obtained the idea of [31,41], and a double-factor TV model (DFTV) based on
weight strategy is proposed, which is specifically defined as follows:

‖X ‖DFTV
= λ1‖Wh � (DhU )‖1 + λ1‖Wv � (DvU )‖1 + λ2‖DsV‖2

F
= λ1‖Wh � (U×1Dh)‖1 + λ1‖Wv � (U×2Dv)‖1 + λ2‖DsV‖2

F

(10)

For the determination of the weight tensorW , please refer to the calculation process
in [41]. However, unlike [41], we calculated the weight tensorW based on the denoised
spatial factor Û instead of the denoised HSI X̂ during the iteration; so, the corresponding
weight tensor is revised as follows:

U0 = LRA1
(
Û
)

Wh = max(|DhU0|)
|DhU0|+δmax(|DhU0|)

= max(|U0×1Dh |)
|U0×1Dh |+δmax(|U0×1Dh |)

Wv = max(|DvU0|)
|DvU0|+δmax(|DvU0|)

= max(|U0×2Dv|)
|U0×2Dv |+δmax(|U0×2Dv |)

(11)

where LRA1(·) stands for the rank-1 low-rank approximation operator, and δ is a threshold
set to avoid unexpected large values in the weight tensor [41].

3.2.3. Spatial Nonlocal Self-Similarity (NSS) Characterized by NLR

At present, there are two main methods to characterize the NSS prior of HSIs, including
the method based on low-rank tensor decomposition [9,21] and the method based on patch
low-rank approximation [28,48]. The literature [41] points out that the method based on
patch low-rank approximation can better characterize the NSS of HSIs. However, it is
extremely time-consuming to directly perform a full-band group matching operation on a
large-sized X , which is an important reason why many researchers choose to ignore the
characterization of NSS. According to [20,45], the spatial factor U (its forward slice is called
feature image) can inherit two important properties of X , namely the NSS of feature images
and the LR between feature images.

Therefore, we adopted a patch-based nonlocal low-rank tensor model (NLR) proposed
in [41], which takes small-sized U as the operation object instead of large-sized X . This
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model first learns the spectral factor V through the HySime algorithm and then applies the
NLR model to the spatial factor U , which can be expressed as follows. Note that we use Pi
to represent the execution of similar block searching, matching, denoising, stacking, and
other processes involved in the NLR model. The specific execution process can be found in
the open source code provided in [41].

‖X ‖NLR =
P

∑
i=1
‖PiU‖w,∗ (12)

This method can reduce the computational cost by using the small-sized U to char-
acterize the NSS of the HSI. But, the repeated similar 3-D patch search and match of the
NLR model in the main loop are still an important reason that affects the computational
efficiency. For further reducing the computational cost, we chose to solve the NLR model
outside the main loop and decreased the iteration times. This is not only an effective
method to characterize NSS and roughly estimate the initial value of U in the main loop at
the same time, but also greatly reduces the cost.

3.2.4. DFTVNLR-Based HSI Denoising Model

Based on Sections 3.2.1–3.2.3, we preliminarily determined the relatively advanced
strategy and model for characterizing the LR, LS, and NSS priors of the HSI as LRTF, DFTV,
and NLR, respectively. The above three advanced models were obtained from previous
studies, but there has been no research on coupling and improving these three advanced
models to remove HSI mixed noise. Therefore, in order to balance the denoising perfor-
mance and computational cost, we propose a DFTV-based NLR regularization (DFTVNLR)
model for HSI mixed noise removal as follows:{∼

U ,
∼
V,
∼
S
}

= min
U ,V,S


1
2‖Y − U×3V− S‖2

F + λ1[‖Wh � (DhU )‖1 + ‖Wv � (DvU )‖1]

+λ2‖DsV‖2
F + λ3

P
∑

i=1
‖PiU‖w,∗ + λ4‖Ws � S‖1

 (13)

where λi(i = 1, 2, 3, 4) > 0 is a regularization parameter, which is used to balance the
weights of the items in the objective function. The proposed model contains five compo-
nents. The first item 1

2‖Y − U×3V− S‖2
F uses the lF-norm to characterize the data fidelity

of the normal distribution of N , and the U×3V contained in it is used to characterize the
LR of X . The second item ‖Wh � (DhU )‖1 + ‖Wv � (DvU )‖1 adds adaptive spatial bidi-
rectional TV to U and uses l1-norm to characterize the spatial LS of X . Wh andWv are
the weight tensors [49] for promoting LS. The third term ‖DsV‖2

F adds TV to V and uses

lF-norm to characterize the spectral LS of X . The fourth term,
P
∑

i=1
‖PiU‖w,∗, adds a nonlocal

low-rank constraint to U to characterize the NSS of X , and puts it outside the main loop
of the algorithm to solve the initial value of U in the main loop. The fifth item ‖Ws � S‖1
characterizes the sparsity of S with l1-norm combined with weight strategy, which is used
to remove impulse noise, deadlines, and stripes. Ws is the weight tensor used to promote
the sparsity of S . The flowchart of the proposed DFTVNLR method is shown in Figure 1.

The key of the proposed DFTVNLR model to improve the denoising performance is
that it fully characterizes all the priors of the HSI and mixed noise. However, considering
the fact that fully exploiting prior knowledge will increase the computational cost, the
proposed model can effectively control the computational cost by using small-sized double
factors rather than large-sized HSIs as constraint objects, and placing the time-consuming
NLR model outside the main loop to indirectly characterize the NSS prior. Hence, the main
advantages of the proposed DFTVNLR model are as follows.

1. Exploration of the prior knowledge of clean HSIs and mixed noise more fully. Com-
pared to HSI mixed noise removal methods [2,29–31,41,46], which only consider
partial priors, the proposed DFTVNLR comprehensively and fully considers LR, the
spatial–spectral LS, the NSS of X , data fidelity of N , and the sparsity of S .
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2. A better balance of the contradiction between the comprehensive representation of
priors and the high computational cost. Compared to directly applying regularization
to the large-sized X [29,41] or only to U [2], we applied regularization to small-
sized U − V, which not only fully explores prior knowledge but also reduces the
cost. Furthermore, we characterized NSS in the assisted loop instead of the main
loop [30,41], which is another important measure to effectively control the cost.
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Remote Sens. 2024, 16, 1686 9 of 33

3.3. Solving the Optimization Algorithm
3.3.1. Estimate the Initial Values of U and V

In this article, HySime algorithm was used to learn the Vl+(1/2) from Y and take it
as the initial value of V in the main loop of the algorithm. In addition, in order to reduce

the computational cost, the
P
∑

i=1
‖PiU‖w,∗ in model (13) was placed outside the main loop,

and U l+(1/2) was solved independently with few iterations, which was taken as the rough
initial value of U in the subsequent main loop. We referred to the solution strategy of U in
reference [41], and the process of estimating the initial value of U is as follows:

U l+(1/2) = argmin
U

λ3

P

∑
i=1
‖PiU‖w,∗ +

∥∥∥U − U l
∥∥∥2

F
(14)

Furthermore, we used the famous ADMM [50] to solve model (13) by alternately
updating the following equation:

Step1 : Vl+1 = argmin
V

f
(

V,U l ,S l
)
+ ρ

2

∥∥∥V−Vl
∥∥∥2

F

Step2 : U l+1 = argmin
U

f
(

Vl+1,U ,S l
)
+ ρ

2

∥∥∥U − U l
∥∥∥2

F

Step3 : S l+1 = argmin
S

f
(

Vl+1,U l+1,S
)
+ ρ

2

∥∥∥S − S l
∥∥∥2

F

(15)

where f (V,U ,S) is the objective function of model (13) and ρ > 0 is the proximity parameter.

3.3.2. Update V

The solution equation of the V-subproblem is detailed as follows:

Vl+1 = argmin
V

1
2

∥∥∥Y − U l
×3V− S l

∥∥∥2

F
+ λ2‖ DsV‖2

F +
ρ

2

∥∥∥V−Vl
∥∥∥2

F
(16)

The above equation can be transformed into the following Sylvester matrix equation
and then be solved:

2 λ2DT
s DsV + VUl

(3)

(
Ul
(3)

)T
+ ρV =

(
Y(3) − Sl

(3)

)(
Ul
(3)

)T
+ ρVl (17)

For a fast solution of the Sylvester matrix equation, please refer to Theorem 1 in [31].
The typical Sylvester matrix equation satisfies the form AX + XB = Y, where A ∈ RM×M,
B ∈ RN×N , X ∈ RM×N , and Y ∈ RM×N . In the above V subproblem, the four terms
corresponding to X, A, B, and Y in the typical Sylvester matrix equation are: X = V,

A = 2λ2DT
s Ds, B = Ul

(3)

(
Ul
(3)

)T
, and Y =

(
Y(3) − Sl

(3)

)(
Ul
(3)

)T
+ ρVl , respectively. The

diagonalization process of DT
s Ds and Ul

(3)

(
Ul
(3)

)T
are as follows:

DT
s Ds = FT

1ψ1F1, Ul
(3)

(
Ul
(3)

)T
= U1Σ1UT

1 . (18)

where F1 represents the 1-D discrete fast Fourier transformation (FFT). Therefore, the
V-subproblem can be solved as follows:

Vl+1 = FT
1 ((1/T1)� (F1GU1))UT

1 (19)
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 G =
(

Y(3) − Sl
(3)

)(
Ul
(3)

)T
+ ρVl

T1 = 2λ[diag(ψ1), · · · , diag(ψ1)] + ρ · ones(B, R) + [diag(Σ1), · · · , diag(Σ1)]
T

(20)

where diag(Λ) is a column vector, whose elements are diagonal elements of Λ, and
ones(B, R) is an B×R matrix, whose elements are all 1.

In particular, the initial iteration value of Vl+(1/2) was estimated in advance by the
HySime algorithm in the assisted loop of Section 3.3.1, which helps the algorithm to
accelerate the convergence.

3.3.3. Update U
The solution equation of the U -subproblem is detailed as follows:

U l+1 = argmin
U

1
2

∥∥∥Y − U×3Vl+1 − S l
∥∥∥2

F
+ λ1

2

∑
k=1
‖Wk � (U×kDk)‖1 +

ρ

2

∥∥∥U − U l
∥∥∥2

F
(21)

By introducing the auxiliary variable Ak(k = 1, 2), (21) is rewritten as:

U l+1 = argmin
U

1
2

∥∥∥Y − U×3Vl+1 − S l
∥∥∥2

F
+ λ1

2
∑

k=1
‖Wk �Ak‖1 +

ρ
2

∥∥∥U − U l
∥∥∥2

F

s.t. Ak = U×kDk, k = 1, 2.
(22)

We used ALM [51] to solve the above (22), and its augmented Lagrangian function is
as follows:

Lµ(U ,Ak,Mk) =
1
2

∥∥∥Y − U×3Vl+1 − S l
∥∥∥2

F

+
2
∑

k=1

{
λ1‖Wk �Ak‖1 +

µ
2

∥∥∥U×kDk −Ak +
Mk

µ

∥∥∥2

F

}
+ ρ

2

∥∥∥U − U l
∥∥∥2

F

(23)

whereMk(k = 1, 2) is a Lagrange multiplier and µ > 0 is the penalty parameter. Under
the framework of ADMM, we can alternately optimize (23) to solve U , Ak, andMk.

(1) Update U l+1,p+1

The subproblem for updating U can be expressed as follows:

U l+1,p+1 = argmin
U

1
2

∥∥∥Y − U×3Vl+1 − S l
∥∥∥2

F
+

ρ

2

∥∥∥U − U l
∥∥∥2

F
+

µ

2

2

∑
k=1

∥∥∥∥∥U×kDk −A
p
k +
Mp

k
µ

∥∥∥∥∥
2

F

(24)

Deriving (24) with respect to U , we can obtain the following equation:
µ

2
∑

k=1
U×k

(
DT

k Dk
)
+ U×3

[(
Vl+1

)T
Vl+1

]
+ ρU = K

K =
(
Y − S l

)
×3

(
Vl+1

)T
+ ρU l + µ

2
∑

k=1

(
Ap

k −
Mp

k
µ

)
×k

DT
k

(25)

The solution of (25) can be obtained by the following Sylvester matrix Equation:

µ
[(

IN ⊗DT
1 D1

)
+
(

DT
2 D2 ⊗ IM

)]
UT
(3) + UT

(3)

[(
Vl+1

)T
Vl+1

]
+ ρUT

(3) = KT
(3) (26)

The diagonalization process is as follows:

µ
[(

IN ⊗DT
1 D1

)
+
(
DT

2 D2 ⊗ IM
)]

= FT
2ψ2F2,

(
Vl+1

)T
Vl+1 = U2Σ2UT

2 (27)

where F2 represents 2-D discrete FFT.
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Therefore, the U l+1,p+1-subproblem can be solved as follows:

U(3) =
[
FT

2

(
(1/T2)�

(
F2DT

(3)U2

))
UT

2

]T
, U l+1,p+1 = Fold(3)

[
U(3)

]
(28)

where
T2 =[diag(ψ2), diag(ψ2), · · · , diag(ψ2)] + ρ · ones(MN, R)

[diag(Σ2), diag(Σ2), · · · , diag(Σ2)]
T (29)

In particular, the initial iteration value of U l+(1/2) was estimated in advance by the
NLR model in the assisted loop of Section 3.3.1, which helps the algorithm to accelerate
the convergence.

(2) Update Ap+1
k

The subproblem for updating Ak can be expressed as follows:

Ap+1
k = argmin

Ak

λ1‖Wk �Ak‖1 +
µ

2

∥∥∥∥∥U l+1,p+1
×kDk −Ak +

Mp
k

µ

∥∥∥∥∥
2

F

(k =1, 2) (30)

The closed-form solution of A can be obtained by using the known soft-thresholding
operator [52] as follows:

Ap+1
k (i, j, :) = S|Wk(i,j)|·

λ1
µ

(
U l+1,p+1

×kDk +
Mp

k
µ

)
(k =1, 2) (31)

where Sλ(·) represents the soft-thresholding operator with parameter λ and
Sλ(x) = sgn(x)max(|x| − λ, 0). Additionally, the selection method and calculation process
of Wk(i, j)(k = 1, 2) are the same as those in Section 3.2.2 of this article.

(3) UpdateMp+1
k

The multipliersMk are updated by the following Equation:

Mp+1
k =Mp

k + µ
(
U l+1,p+1

×kDk −A
p+1
k

)
(k =1, 2) (32)

3.3.4. Update S
The solution equation of the S-subproblem is detailed as follows:

S l+1 = argmin
S

1
2

∥∥∥Y − U l+1
×3Vl+1 − S

∥∥∥2

F
+ λ4‖Ws � S‖1 +

ρ

2

∥∥∥S − S l
∥∥∥2

F
(33)

The solution of S can be obtained by the soft-thresholding operator as follows:

S l+1 = SWs�
λ4

1+ρ

(
Y − U l+1×3Vl+1 + ρS l

1 + ρ

)
(34)

where let Ŝ =
(
Y − U l+1×3Vl+1 + ρS l

)
/(1 + ρ); then,Ws = 1/

(∣∣Ŝ ∣∣+ ε
)
. ε is a small

constant for avoiding the appearance of singularities.
To sum up, we describe the pseudocode of the developed algorithm for solving the

DFTVNLR-based HSI denoising model in Algorithm 1.
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Algorithm 1. The pseudocode of the algorithm for solving the DFTVNLR model

Input: The observed noisy HIS Y ∈ RM×N×B, rank R (the dimension of subspace);
the regularization parameters λ1, λ2, λ3, and λ4; the penalty parameter of ALM
function µ = 15, 000; and the proximal error parameter ρ = 0.1.

Initialization: In the assisted loop iteration: n = 0, nmax = 10, U0 and V0 are
estimated by SVD (under the condition of rank R), S0 = 0, A0

1 = 0, A0
2 = 0,

M0
1 = 0,M0

2 = 0, PatSize = 5, PatNum = 200, SearchWin = 55, Step = 5.
In the main loop iteration: l = 0, lmax = 50, the alternate iteration of AL function:
p = 0, pmax = 10, and the maximum tolerance of iterative results ε = 10−4.

Assisted loop: Pre-estimation of the U−V initial value.
1: Vl+(1/2) is obtained from Y by the HySime algorithm, and it is taken as the initial value V0

in the main loop.

2: The NLR regularization term
P
∑

i=1
‖PiU‖w,∗ is used to solve U l+(1/2) independently, and it is

taken as the initial value U0 in the main loop.
3: while n < nmax do
4: Update U l+(1/2) by Equation (14).
5: n = n + 1.
6: end
7: V0 = Vl+(1/2), U0 = U l+(1/2).

Main loop: Solution of the V−U−S subproblem.
1: while not converged and l < lmax do
2: Update Vl+1 by Equations (19) and (20).
3: while p < pmax do
4: Update U l+1 by Equations (28) and (29).
5: Update the auxiliary variable Ap+1

k (k = 1, 2) by Equation (31).
6: Update the Lagrange multiplierMp+1

k (k = 1, 2) by Equation (32).
7: p = p + 1.

8: Check the convergence condition:
∥∥∥U l+1, p+1 −U l+1, p

∥∥∥
F

/
∥∥∥U l+1, p

∥∥∥
F
≤ ε.

9: end while
10: U l+1 = U l+1, p+1.
11: Update S l+1 by Equation (34).
12: l = l + 1;
13: X l+1 = U l+1×3Vl+1.

14: Check the convergence condition:
∥∥∥X l+1 −X l

∥∥∥
F

/
∥∥∥X l

∥∥∥
F
≤ ε.

15: end while
Output: The denoised HSI X l+1 ∈ RM×N×B.

3.3.5. Computational Complexity Analysis

According to Algorithm 1, the computational cost of the proposed DFTVNLR is mainly
reflected in operations such as FFT, SVD, similar block search (SBS), soft-thresholding opera-
tion (SoftThreshold), and the matrix or tensor product. Based on the relevant conclusions in
reference [2,31], we summarize the computational complexity of solving operators involved
in common prior terms in Table 1.

In this article, the algorithm cost calculation method mentioned in reference [2] was
adopted, that is, the cheap matrix or tensor product operation cost was ignored, and only
operators with a high computational cost, such as FFT, SVD, SBS, and SoftThreshold, were
considered. First, updating U l+(1/2) via (14) mainly involves SBS and SVD, which leads
to the O

[
M2N2R(PatSize)2/(StepSize)4 + (GroupNum)R2(PatNum)(PatSize)2

]
cost ap-

proximately. Second, updating V via (19) and (20) mainly involves SVD and 1-D FFT, which
leads to the O(BR2 + BRlog(B)) cost approximately. Third, updating U via (28) and (29)
needs about O(BR2 + MNRlog(MN)) of computational cost, since it mainly involves SVD
and 2-D FFT. Finally, updating A1 and A2 via (31) and updating S via (34) mainly involve
SoftThreshold, and the computational cost is about O(MNB). In addition, when updating
the initial value of V by HySime and updating M1 and M2 by (32), only the product
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operation between the matrices or tensors is involved, and the computational cost can be
ignored. To sum up, the cumulative computational cost of assisted and main loop iteration
can be roughly estimated by the following Equation (35).

O
{

n
[

M2N2R(PatSize)2/(StepSize)4 + (GroupNum)R2(PatNum)(PatSize)2
]

+l
[
BR2 + BRlog(B) + MNRlog(MN) + pMNB

] }
(35)

4. Experimental Results and Discussion

In this section, to demonstrate the performance of the proposed DFTVNLR in terms
of visual quality and quantitative evaluation, we conducted a series of experiments on
both the simulated and real HSI data. Additionally, we adopted nine state-of-art model-
based HSI denoising methods for comparison, which are most relevant to our method, i.e.,
LRTFDFR [31], WNLRATV [41], RCTV [2], SNLRSF [30], FastHyMix [46], L0L1HTV [29],
LRTDTV [9], LRMR [53], and FGSLR [54]. Their implementation codes can be directly
obtained from the authors’ websites. These methods can be divided into four categories.
Specifically, the methods based on noise modeling include WNLRATV and FastHyMix.
The methods based on factor or representation coefficient include LRTFDFR, WNLRATV,
RCTV, and SNLRSF. The methods considering NSS prior include WNLRATV and SNLRSF.
The methods based on TV include LRTFDFR, WNLRATV, RCTV, and L0L1HTV.

The differences between our method and the selected comparison method are sum-
marized in Table 2. All relevant parameters involved in these competing methods are
set by the default parameters presented by the author. For our DFTVNLR solver, we
would like to present a detailed discussion of parameter setting in Section 4.3. Before the
simulated and real experiments, the gray values of the HSI are normalized into the interval
[0, 1] band-by-band. All experiments were implemented on a PC with Windows 10 in the
environment of an Intel Core i7-8700CPU@3.20GHz processor and 32 GB RAM.

Table 2. The detailed relations and distinctions between the proposed method and the
compared methods.

Method
Spectral
Global

Low-Rankness (LR)

Spatial–Spectral
Local Smoothness

(LS)

Spatial Nonlocal
Self-Similarity

(NSS)

Gaussian Noise
(G)

Sparse Noise
(S)

LRTFDFR X = U×3V
τ∑2

k=1‖Wk � (U×kDk)‖2,1

+λ‖D3A‖2
F

___ 1
2 ‖Y − U×3V− S‖2

F µ‖Ws � S‖1

WNLRATV X = U×3V λ1‖W � (DX )‖1 λ2
P
∑

i=1
‖PiU‖w,∗

‖W � (Y −X )‖2
F ___

RCTV X = UVT ∑2
k=1 τk‖∇k(U)‖1 ___ β‖N‖2

F λ‖S‖1

SNLRSF X = UVT ___ λ1∑
i
( 1

δ2
i
‖RiU− Li‖2

F+K(Li)) 1
2

∥∥Y −UVT − S
∥∥2

F
λ2‖S‖1

L0L1HTV ___ λ1(‖DhXDz‖1 + ‖DvXDz‖1)
+I‖B‖θ

1,0
(BDX )

___ ‖Y − X − S‖2
F λ2‖S‖1

LRTDTV X =
C×1U1×2U2×3U3

τ‖X ‖SSTV ___ β‖N‖2
F λ‖S‖1

LRMR Minimize the rank
of matrix ___ ___ ‖Y− X− St−1‖2

F
When rank(X) ≤ r

‖Y− Xt − S‖2
F

When card(S) ≤ r

FGSLR X =
U×3V‖V‖2,1 + ‖U‖2,1

___ ___ β
2 ‖Y − U×3V− S‖2

F τ‖S‖1

DFTVNLR X = U×3V
λ1[‖Wh � (DhU )‖ 1
+‖Wv � (DvU )‖1]

+λ2‖DsV‖2
F

λ3
P
∑

i=1
‖PiU‖w,∗

1
2 ‖Y − U×3V− S‖2

F λ4‖Ws � S‖1

4.1. Simulated Data Experiments

We conducted the simulated experiment on two public HSIs in this section: one
was the simulated Indian Pines dataset (http://www.ehu.eus/ccwintco/index.php?title=

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Hyperspectral_Remote_Sensing_Scenes, accessed on 1 March 2023), with the size of
145 (rows) × 145 (columns) × 224 (bands). which has the obvious characteristics of LS
and large edge gradient, and is also used in the compared methods LRTFDFR, WNL-
RATV, L0L1HTV, and LRTDTV; the other was the Washington DC (WDC) Mall data-
set (http://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html, accessed on 5
March 2023), with the size of 256 (rows) × 256 (columns) × 191 (bands), which is rich in
local texture details, and is also used in the compared methods LRTFDFR, WNLRATV,
RCTV, SNLRSF, FastHyMix, L0L1HTV, LRMR, and FGSLR.

Because the noise in real HSIs usually shows a mixture of several types of noise, we
considered the following five additional noise mixing cases, which is basically consistent
with [31]. It should be noted the salt and pepper noise belongs to a typical and common
impulse noise.

Case 1 (Gaussian Noise): Add Gaussian noise with the average value of 0 and noise
standard deviation randomly sampled from [0.1, 0.2] to all bands.

Case 2 (Gaussian Noise + Salt and Pepper Noise): First, Gaussian noise is added as in case
1. Then, add the salt and pepper noise with the noise proportion randomly sampled from
[0.1, 0.2] to all bands.

Case 3 (Gaussian Noise + Salt and Pepper Noise + Deadlines): First, add Gaussian noise
and salt and pepper noise as in case 2. Then, add deadlines to the randomly selected 20%
bands. The width of the deadlines is sampled from the set [1, 2, 3]. The number of deadlines
in each band is sampled from the set [6, 7, 8, 9, 10].

Case 4 (Gaussian Noise + Salt and Pepper Noise + Stripes): First, add Gaussian noise and
salt and pepper noise as in case 2. Furthermore, add stripes to the randomly selected 40%
bands. The number of stripes in each band is sampled from the set [6, 7, 8, . . ., 15].

Case 5 (Gaussian Noise + Salt and Pepper Noise + Stripes + Deadlines): First, add Gaussian
noise and salt and pepper noise as in case 2. Then, 20% of all bands are randomly selected
to add deadlines as in case 3. Finally, 40% of all bands are randomly selected to add stripes
as in case 4.

In the simulated experiment, six frequently used evaluation metrics, i.e., the mean
of peak signal-to-noise ratio (MPSNR), the mean of structural similarity (MSSIM), the
mean of feature similarity (MFSIM), the mean of spectral angle mapping (MSAM), the
Erreur Relative Globale Adimensionnelle de Synthese (ERGAS), and the running time
of the algorithm, were employed to evaluate the overall quality of the denoised results
quantitatively. Among them, MPSNR, MSSIM, and MFSIM are the mean of PSNR [53],
SSIM [55], and FSIM [56] over the bands, respectively. In addition, the better denoising
effect and algorithm performance are indicated by the larger MPSNR, MSSIM, and MFSIM
values and the smaller MSAM, ERGAS, and Time values.

4.1.1. Visual Quality Comparison

To visually compare the denoising results, Figures 2–5, respectively, show some
pseudocolor synthetic bands of the Indian Pines dataset and the WDC Mall dataset denoised
under noise cases 1 and 5 and cases 4 and 5. For a better visual comparison, the common
region of each figure is marked by a red box and enlarged by 2.5 times.

From Figures 2–5, several observations can be easily made. First, all methods can
remove mixed noise for the two simulated datasets to some extent. Second, the proposed
DFTVNLR can both effectively remove mixed noise and preserve the global structure and
local details, as shown in the enlarged subregions of Figures 2l, 3l, 4l and 5l, indicating
that our method is reasonable, effective, and robust. Third, the denoising performances
of RCTV, FastHyMix, L0L1HTV, LRTDTV, LRMR, and FGSLR are not as good as that of
DFTVNLR, as shown in Figure 3e,g–l, Figure 4e,g–l and Figure 5e,g–l, which show that
the denoising ability of our proposed method is stronger, thanks to the adoption of LRTF,
DFTV, and NLR. Finally, the proposed DFTVNLR is better than LRTFDFR, WNLRATV, and
SNLRSF, as shown in Figure 3c,d,f,l, Figure 4c,d,f,l and Figure 5c,d,f,l, which show that
the strategies, exploration of prior knowledge more fully, adoption of small-sized factor

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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regularization, and prediction of the initial values of double factors by NLR and HySime
can improve the denoising performance. Additionally, RCTV, L0L1HTV, and FGSLR are not
universal and robust, and their denoising effects are highly dependent on the image types.
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4.1.2. Quantitative Comparison

In terms of the aforementioned six quality metrics, Tables 3 and 4 present the denoised
quantitative results of the Indian Pines and the WDC Mall datasets, respectively. Especially,
we respectively highlight the top three results using bold, underlining, and italicization for
each quality metrics. According to the quantitative results, the following four aspects can
be obviously observed:

1. The proposed DFTVNLR can achieve the best results under most noise cases, but
its MSSIM, MFSIM, or MSAM is slightly lower than LRTFDFR or WNLRATV under
some noise cases. This may be because our model is still difficult to completely match
the real degraded model, resulting in a further “enhancement”. However, it enhances
the visual effect to a certain extent.

2. The principle of DFTVNLR is closest to that of LRTFDFR, but our results are better
than those of LRTFDFR on the whole, which shows it is reasonable and effective to
introduce an NSS prior. Additionally, the NLR term of DFTVNLR is derived from
WNLATV, but our results are better than those of WNLATV on the whole, which
proves that the strategy based on double factor is more effective and robust.

3. Compared to the methods (LRTDTV, FGSLR, and L0L1HTV) that do not characterize
the time-consuming NSS prior but impose constraints on the large-sized HSI, our al-
gorithm is 1~2 times faster than them, thanks to our strategies of imposing constraints
on small-sized factors and characterizing NSS outside the main loop. Compared to
the methods (WNLRATV and SNLRSF) that also consider NSS prior and regularize
the small-sized spatial factor, our computational cost is reduced by about 4 times and
10 times, respectively, which is due to our strategy of independently solving the NLR
model with fewer iterations outside the main loop.

4. Although our approach has made efforts to reduce or control the computational cost, it
is currently difficult for us to achieve the optimal cost due to the fact we explore almost
all major priors. Therefore, our cost is still higher than those of RCTV, FastHyMix,
LRMR, and LRTFDFR, but our denoising performance is better. The faster execution
of FastHyMix is due to the introduction of a deep image prior. The cost of RCTV is
lower because it only imposes fewer regularization terms on small-sized spatial factor.
LRMR is fast because only a few priors are mined. But the denoising performance of
the above approaches is obviously insufficient. The cost of LRTFDFR is twice lower
than ours because it does not consider an NSS prior.

For comparing the performance of various methods in each band, we show the partial
bands’ PSNR and SSIM of the two simulated datasets in Figures 6 and 7, respectively. It
can be seen that the proposed DFTVNLR can achieve the highest PSNR and SSIM values in
most bands and noise cases. For further comparing the performance of the various methods
in restoring and maintaining the spectral characteristics, we present the spectral curves
of the two simulated datasets in Figures 8 and 9 under noise case 5. In addition, we also
present the spectral curves of these two simulated datasets at other spatial locations and
under other noise cases in the Supplementary Materials. It is observed that the spectral
curves obtained by the proposed DFTVNLR can better approximate the original ones than
those produced by the compared methods.
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Table 3. Quantitative comparison of all compared methods for the Indian Pines dataset.

Metrics Noisy LRTFDFR WNLRATV RCTV SNLRSF FastHyMix L0L1HTV LRTDTV LRMR FGSLR DFTVNLR

Case 1: Gaussian Noise

MPSNR 16.312 37.702 28.352 32.682 27.496 31.397 31.303 32.801 27.614 30.330 38.139

MSSIM 0.3592 0.9823 0.9694 0.9680 0.9447 0.9642 0.9665 0.9647 0.8845 0.9486 0.9839

MFSIM 0.4863 0.9960 0.9830 0.9812 0.9730 0.9782 0.9920 0.9763 0.9066 0.9656 0.9963

MSAM 0.2763 0.0304 0.0797 0.0526 0.0872 0.0569 0.0654 0.0483 0.0859 0.0640 0.0284

ERGAS 367.81 37.587 101.56 67.008 110.15 71.166 88.168 61.708 113.16 82.106 36.447

Time (s) 0.0000 26.958 196.86 4.7124 560.02 5.0000 178.21 73.618 35.845 98.515 50.770

Case 2: Gaussian Noise + SaltandPepper Noise

MPSNR 13.747 37.687 27.659 32.593 26.015 27.813 31.980 32.034 26.439 29.582 38.197

MSSIM 0.2181 0.9816 0.9622 0.9615 0.9107 0.9351 0.9637 0.9556 0.8537 0.9372 0.9840

MFSIM 0.3870 0.9957 0.9769 0.9747 0.9451 0.9432 0.9900 0.9654 0.8807 0.9537 0.9958

MSAM 0.3689 0.0289 0.0821 0.0525 0.0986 0.0820 0.0559 0.0473 0.1004 0.0710 0.0268

ERGAS 486.39 37.496 109.02 67.773 125.93 106.98 81.603 65.330 134.78 92.077 35.186

Time 0.0000 28.341 226.70 4.6043 557.89 4.2800 175.70 75.821 38.530 159.56 53.312

Case 3: Gaussian Noise + SaltandPepper Noise + Deadlines

MPSNR 13.521 36.658 27.701 29.690 25.837 26.278 29.969 29.754 25.971 29.512 37.007

MSSIM 0.2119 0.9825 0.9611 0.9312 0.9077 0.8757 0.9589 0.9423 0.8460 0.9243 0.9830

MFSIM 0.3835 0.9953 0.9761 0.9509 0.9380 0.8873 0.9845 0.9559 0.8727 0.9415 0.9954

MSAM 0.3803 0.0339 0.0814 0.0835 0.0932 0.1067 0.0701 0.0794 0.1030 0.0753 0.0323

ERGAS 500.19 42.8395 106.77 103.35 126.83 138.39 95.602 99.151 137.78 94.809 41.345

Time 0.0000 28.868 220.43 4.5730 562.29 4.1600 176.19 73.441 35.975 437.95 53.962

Case 4: Gaussian Noise + SaltandPepper Noise + Stripes

MPSNR 13.630 35.671 27.573 30.489 25.749 26.742 29.473 30.814 26.129 29.270 35.954

MSSIM 0.2137 0.9797 0.9586 0.9529 0.9086 0.9165 0.9589 0.9501 0.8479 0.9328 0.9805

MFSIM 0.3831 0.9951 0.9753 0.9691 0.9400 0.9206 0.9882 0.9606 0.8744 0.9502 0.9951

MSAM 0.3730 0.0362 0.0839 0.0712 0.1007 0.0957 0.0730 0.0560 0.1053 0.0749 0.0355

ERGAS 494.81 47.767 116.31 94.314 132.61 121.42 99.085 75.942 138.41 99.220 46.485

Time 0.0000 25.833 228.73 4.6481 562.17 3.9400 175.14 73.202 37.221 171.56 55.544

Case 5: Gaussian Noise + SaltandPepper Noise + Stripes + Deadlines

MPSNR 13.379 34.921 27.497 28.394 25.577 24.792 29.784 29.921 25.364 28.118 35.269

MSSIM 0.2069 0.9795 0.9582 0.9194 0.9005 0.8395 0.9560 0.9400 0.8375 0.9128 0.9790

MFSIM 0.3801 0.9948 0.9749 0.9393 0.9336 0.8567 0.9819 0.9521 0.8638 0.9303 0.9943

MSAM 0.3856 0.0410 0.0841 0.0932 0.1019 0.1268 0.0652 0.0713 0.1149 0.0867 0.0370

ERGAS 509.64 52.076 115.46 120.25 133.71 162.50 91.164 92.999 150.12 112.97 47.555

Time 0.0000 28.918 199.38 3.7623 569.10 5.8200 126.32 75.541 36.245 502.65 53.756

The results marked in bold, underlined and italicizated represent the top three results, respectively.
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Table 4. Quantitative comparison of all compared methods for the WDC Mall dataset.

Metrics Noisy LRTFDFR WNLRATV RCTV SNLRSF FastHyMix L0L1HTV LRTDTV LRMR FGSLR DFTVNLR

Case 1: Gaussian Noise

MPSNR 13.168 29.001 28.513 27.960 30.601 29.935 22.821 26.430 26.998 27.282 30.725

MSSIM 0.2864 0.9240 0.8878 0.8973 0.9426 0.9339 0.6131 0.8231 0.8643 0.8873 0.9463

MFSIM 0.7176 0.9709 0.9304 0.9500 0.9745 0.9718 0.7426 0.9203 0.9440 0.9605 0.9760

MSAM 0.5006 0.1954 0.1732 0.1968 0.1551 0.1644 0.3787 0.3222 0.2114 0.2047 0.1488

ERGAS 1054.5 162.38 153.17 187.61 134.84 140.30 286.22 216.23 201.65 207.81 125.91

Time (s) 0.0000 90.134 626.39 13.174 1692.8 10.130 478.94 156.18 105.53 1276.1 188.87

Case 2: Gaussian Noise + SaltandPepper Noise

MPSNR 12.731 27.871 28.248 25.751 26.228 24.490 22.696 26.112 26.429 24.987 29.338

MSSIM 0.1659 0.9145 0.8642 0.8675 0.8591 0.8343 0.6074 0.8014 0.8426 0.8073 0.9252

MFSIM 0.6305 0.9667 0.9179 0.9414 0.9382 0.9350 0.7360 0.9079 0.9327 0.9279 0.9615

MSAM 0.5345 0.2320 0.1562 0.2921 0.2312 0.3102 0.3818 0.3391 0.2180 0.3757 0.1784

ERGAS 1028.6 168.98 154.60 242.27 224.57 312.79 287.84 228.78 204.37 447.56 138.97

Time 0.0000 89.041 629.39 12.377 1691.5 16.210 462.36 157.67 118.98 6651.2 190.96

Case 3: Gaussian Noise + SaltandPepper Noise + Deadlines

MPSNR 12.764 27.965 28.311 25.801 24.283 23.878 22.721 25.537 26.130 24.054 28.716

MSSIM 0.1649 0.9136 0.8638 0.8674 0.8377 0.8282 0.6017 0.7948 0.8401 0.7846 0.9170

MFSIM 0.6294 0.9658 0.9188 0.9373 0.9353 0.9318 0.7339 0.9039 0.9293 0.9133 0.9628

MSAM 0.5367 0.2449 0.1584 0.2806 0.3165 0.3416 0.3800 0.3743 0.2462 0.4275 0.2088

ERGAS 1029.5 171.05 154.25 219.39 267.26 313.00 290.93 243.99 208.08 473.78 149.87

Time 0.0000 91.121 629.16 12.824 1687.8 17.130 472.53 156.49 112.65 7140.0 187.42

Case 4: Gaussian Noise + SaltandPepper Noise + Stripes

MPSNR 12.578 27.517 27.366 24.414 24.442 22.031 21.785 25.400 25.150 21.781 28.450

MSSIM 0.1615 0.9085 0.8679 0.8443 0.8330 0.7566 0.5908 0.7899 0.8322 0.7502 0.9163

MFSIM 0.6260 0.9659 0.9250 0.9372 0.9331 0.9103 0.7354 0.9053 0.9278 0.9040 0.9615

MSAM 0.5378 0.2714 0.2072 0.3638 0.3155 0.4391 0.4011 0.3980 0.2908 0.5032 0.2274

ERGAS 1048.0 182.88 178.34 290.17 288.67 461.74 323.23 264.59 223.34 538.91 166.86

Time 0.0000 89.871 638.22 12.990 1699.2 15.440 471.36 156.19 128.12 4645.8 189.11

Case 5: Gaussian Noise + SaltandPepper Noise + Stripes + Deadlines

MPSNR 12.657 28.652 28.094 24.615 24.104 21.210 23.119 24.907 25.639 24.320 29.631

MSSIM 0.1610 0.9165 0.8648 0.8422 0.8255 0.7309 0.6072 0.7892 0.8312 0.7812 0.9235

MFSIM 0.6253 0.9649 0.9185 0.9320 0.9307 0.8991 0.7339 0.9041 0.9258 0.9133 0.9594

MSAM 0.5374 0.2162 0.1671 0.3042 0.3300 0.4835 0.2878 0.3907 0.2652 0.4081 0.1789

ERGAS 1037.7 160.21 156.70 280.78 306.97 548.08 270.20 253.70 228.40 482.66 138.54

Time 0.0000 90.389 718.10 13.266 2640.6 14.440 369.64 157.34 123.19 7038.9 189.68

The results marked in bold, underlined and italicizated represent the top three results, respectively.
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4.2. Real Data Experiments

In this section, we conducted further experiments on two real HSI datasets. One
was the Earth Observing-1 (EO-1) Hyperion dataset (http://datamirror.csdb.cn/admin/
dataEO1Main.jsp, accessed on 10 April 2023), with the size of 200 (rows)× 200 (columns)×
166 (bands), which has a rich texture and is also used in SNLRSF and LRMR. The other was
the AVIRIS Indian Pines dataset (http://www.ehu.eus/ccwintco/index.php, accessed on
15 April 2023), with the size of 145 (rows) × 145 (columns) × 220 (bands), which is rich in
edges and is also used in LRTFDFR, WNLRATV, SNLRSF, L0L1HTV, LRTDTV, and FGSLR.
In both datasets, some bands are heavily polluted by Gaussian noise, salt and pepper noise,
stripes, deadlines, or other unknown types of noise.

For the real HSI, we could not obtain the noiseless image and evaluation metrics.
Alternatively, we randomly selected three bands and synthesized pseudocolor images for
display. Furthermore, we presented the column DN mean curve in some bands of the
denoised image, which should have a certain degree of smoothness.

4.2.1. EO-1 Hyperion Dataset

Figure 10 shows the denoising results of bands 166, 18, and 1 of the real EO-1 Hyperion
dataset, including the pseudocolor visual images and the column DN mean curve in the
corresponding bands. According to the pseudocolor image results, the following aspects can
be obviously observed. First, the selected bands of EO-1 Hyperion are seriously polluted
by Gaussian noise, stripes, and deadlines. Second, the denoising results of L0L1HTV
and LRTDTV are oversmoothed, which may be related to the improper setting of the
TV terms. Third, LRTFDFR and FastHyMix are excellent at keeping image details, but
their denoising results tend to decline in pixel DN and image contrast. Fourth, the other
compared methods remove mixed noise to varying degrees without image distortion, but
the proposed DFTVNLR has greater advantages in maintaining the global structure and
local details, and fully restoring the contrast.

Furthermore, we quantitatively evaluated the actual denoising effect in terms of the col-
umn DN mean curves. The curves show rapid fluctuations, as presented in Figure 10a-1,a-3,
which imply the existence of noise. Meantime, it can be observed that band 1 and band
18 are less affected by noise. After denoising, the fluctuations in band 166 are suppressed
more or less. Specifically, the curves of RCTV, SNLRSF, FastHyMix, LRTDTV, LRMR, and
FGSLR still fluctuate slightly locally, indicating that there is still some noises. Although the
curves of LRTFDFR and L0L1HTV are relatively smooth, the image contrast of LRTFDFR is
low and L0L1HTV is oversmoothed. By contrast, the curves of WNLRATV and DFTVNLR
are smooth and the DN curves are closest to the actual image.
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HTV, (h) LRTDTV, (i) LRMR, (j) FGSLR, (k) DFTVNLR (proposed). 
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Figure 10. Denoising results of pseudocolor synthetic bands (R: 166, G: 18, and B: 1) selected in the
real EO-1 Hyperion dataset. The rows from top to bottom, respectively, represent the noisy/denoised
pseudocolor images and the column DN mean curve in the corresponding bands, where (a) Noisy
Hyperion, (b) LRTFDFR, (c) WNLRATV, (d) RCTV, (e) SNRLRSF, (f) Fast Hymix, (g) L0L1 HTV,
(h) LRTDTV, (i) LRMR, (j) FGSLR, (k) DFTVNLR (proposed).

4.2.2. AVIRIS Indian Pines Dataset

Figure 11 shows the denoising results of bands 220, 161, and 1 of the real AVIRIS Indian
Pines dataset, including the pseudocolor visual images and the column DN mean curve in
the corresponding bands. According to the pseudocolor image results, the following aspects
can be obviously observed. First, the selected bands of AVIRIS Indian Pines are seriously
polluted by Gaussian noise and salt and pepper noise. Second, there is still some noises in
RCTV, SNLRSF, LRMR, and FGSLR, which is related to insufficient prior exploration. Third,
the image contrast is seriously changed in FastHyMix, L0L1HTV, LRTDTV, and LRMR,
which may be related to the LS or LR prior being ignored. Fourth, LRTFDFR, WNLRATV,
and the proposed DFTVNLR are relatively excellent in removing mixed noise and retaining
image contrast, but the proposed DFTVNLR has greater advantages in restoring the global
structure, local details, and clarity.

Moreover, based on the column DN mean curves, we quantitatively evaluated the
actual denoising effect to some extent. Due to the existence of noise, the curves show
rapid fluctuations, as presented in Figure 11a-1–a-3. After denoising, the fluctuations are
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suppressed more or less. The column DN mean curve tends to be oversmoothed and
closer to a constant in FastHyMix, L0L1HTV, LRTDTV, and LRMR, which is consistent
with the phenomenon of blurring and contrast reduction, as shown in Figure 11f–i. In
contrast, LRTFDFR, WNLRATV, and the proposed DFTVNLR can produce a relatively
smooth column DN mean curve, but there is a certain fluctuation range, which indirectly
shows that it can not only remove noises but also retain some local texture information.
However, for the proposed DFTVNLR, its overall fluctuation is more natural, the local
fluctuation is smoother, and the DN is closest to the actual image.
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Figure 11. Denoising results of pseudocolor synthetic bands (R: 220, G: 161, and B: 1) selected in the 
real AVIRIS IndianPines dataset. The rows from top to bottom, respectively, represent the noisy/de-
noised pseudocolor images and the column DN mean curve in the corresponding bands, where (a) 
Noisy Hyperion, (b) LRTFDFR, (c) WNLRATV, (d) RCTV, (e) SNRLRSF, (f) FastHyMix, (g) L0L1 
HTV, (h) LRTDTV, (i) LRMR, (j) FGSLR, and (k) DFTVNLR (proposed). 

Figure 11. Denoising results of pseudocolor synthetic bands (R: 220, G: 161, and B: 1) selected
in the real AVIRIS IndianPines dataset. The rows from top to bottom, respectively, represent the
noisy/denoised pseudocolor images and the column DN mean curve in the corresponding bands,
where (a) Noisy Hyperion, (b) LRTFDFR, (c) WNLRATV, (d) RCTV, (e) SNRLRSF, (f) FastHyMix,
(g) L0L1 HTV, (h) LRTDTV, (i) LRMR, (j) FGSLR, and (k) DFTVNLR (proposed).
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4.3. Discussion

As shown in Algorithm 1, there are seven crucial parameters in the proposed DFTVNLR,
which need to be set in advance, i.e., rank R, regularization parameters λ1, λ2, λ3 and λ4,
penalty parameter µ, and proximal parameter ρ. Among them, the parameter ρ is used
to ensure the theoretical convergence of PAM solver. References [31,54] suggested that ρ
should be set to 0.1. Next, we investigated the sensibility of other parameters.

4.3.1. Parameter Analysis

The R mainly characterizes the LR of the HSI, whose sensitivity analysis is presented
in Figure 12. When the R is between [12,34], the results exhibit a stable and superior
performance for various datasets and noise cases. Considering a larger R leads to a higher
calculation cost; so, the R should be set 12 or estimated by the HySime.
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The λ1 and λ2 determine the weights of the U−V-based regularization terms. The λ3
and λ4 determine the weight of NLR term and S , respectively. The sensitivity analyses
of λ1, λ2, λ3, and λ4 are presented in Figures 13–16, respectively. It can be seen that λ1
and λ4 are sensitive to both datasets and noise cases, but the change trend of sensitivity
is consistent. Additionally, λ3 is sensitive to datasets, but is robust to noise cases. The
proposed DFTVNLR is relatively robust to λ2. However, when λ1= 0.2, λ2 ∈ [0.005, 0.03],
λ3 ∈ [0.2, 10], and λ4 ∈ [0.03, 0.04], the denoising performance is stable and superior
under different noise cases and datasets.
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The sensitivity analysis of µ is presented in Figure 17. It can be clearly observed
that the sensitivity trend of µ to different datasets and noise cases is consistent. When
µ ∈ [10, 000, 20, 000], higher MPSNR and MSSIM can be obtained under different noise
cases and datasets.
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4.3.2. Convergence Analysis

In this section, we indirectly verify the convergence of Algorithm 1 from the perspec-
tive of numerical analysis. Figure 18 shows the MPSNR and MSSIM of the denoising results
for different simulated datasets under noise cases 1 and 5, and the relative changes in
adjacent iteration results. As the number of iterations increases, the MPSNR and MSSIM
monotonically increase, and the relative changes monotonically decrease. When L ≥ 35,
the relative variation errors are stable at 0. This verifies the convergence of Algorithm 1
numerically. Based on the above analysis results, we list the parameter setting suggestions
of DFTVNLR in Table 5.
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Table 5. Suggestions on the parameter setting of DFTVNLR when it is used in simulated and real
noisy HSI datasets.

Dataset

Parameter
R λ1 λ2 λ3 λ4 µ L

Simulated HSI dataset
Indian Pines 12

0.2
0.005

~
0.03

0.2
~
10

0.03
~

0.04

10,000
~

20,000

≥
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WDC Mall 9 or12
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5. Conclusions

In this article, we propose a novel DFTVNLR method for HSI mixed noise removal,
which fully considers the intrinsic priors of HSI and mixed noise. First, the LRTF framework
was used to characterize the LR. Then, the DFTV and weighted strategy were applied to
describe and promote the spatial–spectral LS. Additionally, we employed the NLR model
to characterize the NSS. In order to solve the proposed DFTVNLR model, we proposed an
PAM algorithm based on ADMM and ALM, which is theoretically convergent. Particularly,
we control the computational cost in two ways, namely regularizing the small-sized double-
factors and solving the NLR outside the main loop. Additionally, in the extensive numerical
experiments, the proposed DFTVNLR exhibits its superior performance in mixed noise
removal, spatial information recovery, and spectral signatures preserving.

In the future, we will focus on and try to solve the following problems. First, we will
incorporate the noise modeling idea [41,46] into our DFTVNLR method to further enhance
its capability in real-life scenarios. Second, there may be many kinds of degradations in
actual HSIs that are difficult to decouple, such as noise and blur [57]. Therefore, it is of great
practical value to study the HSI restoration method that simultaneously removes multiple
degradations. Third, the model-based and the data-based methods will be combined
to reduce the computational cost. Fourth, we assumed that the mixed noise in actual
HSIs is mainly additive noise, which has certain limitations [58]. Studying a reasonable
noise model that is more in line with the actual situation will help to further improve the
denoising performance.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16101686/s1, Figure S1. The spectral curves at spatial location
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Abbreviations
For facilitating a concise expression, the frequently used technical terms in this article are

summarized as follows in the form of abbreviations:
HSI hyperspectral image
RS remote sensing
SAR synthetic aperture radar
RCI representation coefficient image
LR spectral global low-rankness
LS local smoothness
NSS spatial nonlocal self-similarity
S sparsity of sparse noise
TV total variation
SSTV spatial–spectral TV
ASSTV adaptive SSTV
DFTV spatial–spectral double factor and total variation
LRTF low-rank tensor factorization
LRMF low-rank matrix factorization
LRTV low-rank TV
LRMR low-rank matrix recovery
NLR nonlocal low-rank tensor model
PAM proximal alternating minimization
ADMM alternating direction method of multipliers
ALM augmented Lagrangian method
SVD singular value decomposition
FFT fast Fourier transformation
SBS similar block search
SoftThreshold soft-thresholding operation
MPSNR the mean of peak signal-to-noise ratio
MSSIM the mean of structural similarity
MFSIM the mean of feature similarity
MSAM the mean of spectral angle mapping
ERGAS the Erreur Relative Globale Adimensionnelle de Synthese
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