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Abstract: In this paper, we propose a global ionospheric total electron content (TEC) maps (GIM)
prediction model based on deep learning methods that is both straightforward and practical, meeting
the requirements of various applications. The proposed model utilizes an encoder-decoder structure
with a Convolution Long Short-Term Memory (ConvLSTM) network and has a spatial resolution
of 5◦ longitude and 2.5◦ latitude, with a time resolution of 1 h. We utilized the Center for Orbit
Determination in Europe (CODE) GIM dataset for 18 years from 2002 to 2019, without requiring any
other external input parameters, to train the ConvLSTM models for forecasting GIM 1, 2, and 3 days
in advance. Using the CODE GIM data from 1 January 2020 to 31 December 2023 as the test dataset,
the performance evaluation results show that the average root mean square errors (RMSE) for 1, 2
and 3 days of forecasts are 2.81 TECU, 3.16 TECU, and 3.41 TECU, respectively. These results show
improved performance compared to the IRI-Plas model and CODE’s 1-day forecast product c1pg,
and comparable to CODE’s 2-day forecast c2pg. The model’s predictions get worse as the intensity of
the storm increases, and the prediction error of the model increases with the lead time.

Keywords: ionosphere; TEC; forecast; ConvLSTM; neural network

1. Introduction

The ionosphere, extending from about 60 to 1000 km in altitude, is the ionized part
of Earth’s upper atmosphere. There are many charged particles in the ionosphere, which
have an important influence on the propagation of radio waves [1]. The total electron
content (TEC) of the ionosphere represents the integrated total number of electrons within
a column of one-meter squared cross-sectional area, also known as the columnar integral of
the electron density. TEC is a very important parameter in the study of the ionosphere [2],
which is proportional to the additional time delay of radio wave propagation caused by
the ionosphere. Based on the study of TEC parameters, phenomena such as daily changes
in the ionosphere and ionospheric disturbances are explored. From the perspective of
the application, TEC prediction has a serious impact on the fields involving radio wave
propagation and the electromagnetic environment, such as navigation, radar imaging, and
short-wave communication. Therefore, the monitoring and prediction of the total electron
content is an important research content of space weather [3].

In general, there are two types of TEC prediction models: the empirical models and
the statistical models [4]. However, current statistical methods employed for regional
TEC forecasting rely on relatively simple theoretical models. International Reference
Ionosphere (IRI) [5,6] is one of the most widely used empirical models of the ionosphere,
which was established by the International Union of Radio Sciences using a large amount

Remote Sens. 2024, 16, 1700. https://doi.org/10.3390/rs16101700 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16101700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1353-8873
https://orcid.org/0000-0002-2174-5904
https://orcid.org/0000-0003-2692-9451
https://orcid.org/0000-0003-2175-3936
https://doi.org/10.3390/rs16101700
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101700?type=check_update&version=2


Remote Sens. 2024, 16, 1700 2 of 15

of ground-related observation data and combining long-term accumulated ionospheric
research results. The IRI-Plas model refers to the International Reference Ionosphere model
extended to include the Plasmasphere. It presents comprehensive vertical analytical profiles
of electron density, seamlessly conformed to IRI electron density profiles at the altitude
corresponding to the upper half-peak density (400–600 km) and extending towards the
plasmapause (up to 36,000 km) [7–9]. Typical empirical models also include the Klobuchar
model [10] and the NeQuick model [11]; these two models help correct about 50% to 70%
of the ionospheric delay in terms of root mean square (RMS) [11,12]. In 2011, A et al.
presented a global ionospheric TEC model based on the empirical orthogonal function
(EOF) analysis method [13]. This model is able to accurately reflect the majority of the
variations and temporal-spatial distribution characteristics of the global ionospheric TEC.
Also, in 2018, a data ingestion method was developed to incorporate TEC products from
the Madrigal database into the NeQuick 2 model [14]. The NeQuick TEC, driven by the
effective ionization parameter (Az) and modeled by EOF, shows an accuracy improvement
of 10–15% compared to the standard ionospheric correction algorithm used in the Galileo
navigation system. In 2022, Shubin proposed an approach to enhance the GTEC median
global model of TEC under disturbed conditions, incorporating dynamic and aeronomic
corrections based on spherical harmonic analysis of GIM-TEC Global Ionospheric Maps
spanning 1996–2019, resulting in improved forecast accuracy compared to the IRI-Plas
ionospheric reference model [15]. However, those models reflect regular variations of
ionosphere TEC, while the instantaneous variations and perturbations cannot be well
reflected. Therefore, many academics use statistical methods for forecasting. Among the
existing approaches, auto-regressive moving average (ARIMA) [16,17], multiple linear
regression model [18], support vector machine (SVM) [19], and artificial neural network
(ANN) [20] are extensively used. In particular, Zhang et al. used an ARIMA model to
predict global TEC. Results from numerical experiments show that during ionospheric quiet
periods, the average relative prediction accuracy for a six-day period is up to 83.3% [17]. In
2020, Xia et al. were working on developing a regional forecast model for the ionospheric
TEC over the China region using SVM algorithms. The results of the model’s predictions
indicated that the RMSE ranges from 1.31 to 1.64 TECU, while the relative error (RE) varies
from 10.73% to 15.86%, and the correlation coefficient falls within the range of 0.92–0.99 [19].

As early as 1997, Cander and Lamming began to use neural networks to analyze
and predict nonlinear time series and use the multi-layer perceptron method to model
different parameters of the ionosphere [21]. In the same year, Hochreiter and Schmidhuber
developed long- and short-term memory neural networks [4]. Habarulema et al. developed
neural networks for TEC prediction of the global positioning system over South Africa, and
the results showed that neural networks (NNs) predict GPS TEC more accurately than the
IRI at South African GPS locations [22]. Furthermore, a neural network-based prediction
model with one input layer, two hidden layers, and one output layer was proposed in
2011. It was observed that ANNs extrapolate relatively well during quiet periods while
the accuracy was low during geomagnetically disturbed conditions [23]. Recently, Song
et al. proposed a genetic algorithm that improved the neural network to predict TEC in
China, which has solved the problem that traditional neural networks tend to fall into local
optimization, and the prediction error was about 5–8 TECU [24].

Deep learning is a specific type of machine learning. It is an upgrade on the basis of
traditional artificial neural networks, which can use the training network to automatically
extract the characteristics of data. This technique is considered to be a second-generation
neural network [25]. In 2018, Yuan et al. established a 24-h ahead forecasting model for
TEC at the Beijing station based on deep learning Recurrent Neural Network (RNN) and
compared it with Back Propagation Neural Network (BPNN). The results showed that the
RMSE of the disturbed ionosphere TEC predicted by the RNN model is lower than the
BPNN model by 0.49~1.46 TECU [20]. The traditional recurrent neural network model may
capture the time variations, but with the increase of input data, the influence of previous
input values will gradually weaken or even disappear, and it fails to reflect long-term
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dependent information. In 2021, Xiong et al. proposed a novel extended encoder-decoder
long short-term memory extended (ED-LSTME) neural network, and it was enhanced by
considering solar flux and geomagnetic activity data, which obtained satisfactory results
under geomagnetically disturbed conditions. In comparison to other statistical models,
the ED-LSTME model exhibited greater performance, as evidenced by its lower root mean
square error values of 12.09 TECU [26]. In 2022, Liu et al. apply ConvLSTM-based machine
learning models to forecast global ionospheric TEC maps with up to 24 h of lead time.
Results show that for the convLSTM model, the minimum RMSE values for quiet and storm
time are 0.81 and 1.28 TECU, respectively, while the maximum RMSE values for quiet and
storm time are 2.15 and 3.26 TECU, respectively [27]. Ren et al. developed an ionospheric
long short-term memory network (Ion-LSTM) with multiple input parameters to predict
the 1-day and 2-day global ionospheric TEC, which was evaluated with two solutions
based on spherical harmonic coefficients (SHC) and vertical TEC (VTEC) prediction. The
results show that both solutions perform well in accuracy and stability, and the RMSE
of Ion-LSTM is 0.7 TECU lower than that of conventional methods under different solar
and geomagnetic activities [28]. Furthermore, Ren et al. developed a new approach called
the deep learning-based multi-model ensemble method (DLMEM) to forecast ionospheric
TEC during geomagnetic storms. They utilized seven different features to model 170
geomagnetic storm events. The results of their study showed that the DLMEM model was
able to reduce the RMSE by an average of 43.6% compared to their previously presented
model, Ion-LSTM [29]. LSTM is a powerful tool for handling temporal variations due
to its memory retention capabilities, but it has limitations when dealing with problems
that have both temporal and spatial characteristics. To address this, the paper introduces
the convolution operation, which can effectively extract the spatial features of the data.
By combining the temporal feature extraction ability of LSTM with the spatial feature
extraction ability of convolution, the model can more effectively extract spatiotemporal
features.

Most of the research mentioned above incorporates solar and geomagnetic indices as
training data. Since the ionosphere is closely related to solar and geomagnetic activities,
this approach often leads to better forecasting results. However, in specific instances such
as equipment maintenance, network failures, holiday periods, etc., the timely acquisition
of geomagnetic and solar indices might pose limitations. These conditions may limit
the use of the model and fail to meet the requirements of operational forecasting [30–33].
Real-time collection of monitoring data emerges as a crucial factor in the transition from
Space Weather Research to Operations (R2O) [34–36]. The forecast products of CODE,
such as c1pg, which is produced based on the extrapolation of spherical harmonic (SH)
coefficients [27], reducing reliance on external parameters. These products release regular
global ionospheric TEC map forecast products accurately every day, which can be used
by the majority of navigation and positioning users. This paper addresses the operational
forecasting requirements for ionospheric TEC maps, employing the ConvLSTM model to
develop a predictive model for global ionospheric TEC maps, capable of providing forecast
products for ionospheric TEC maps for the next 1, 2, and 3 days.

To improve the accuracy of predicting ionospheric TEC, this paper utilizes a ConvL-
STM neural network. This deep learning technique enables the prediction of ionospheric
TEC maps with a time accuracy of 1 h, providing insight into the spatiotemporal variations
of global TEC. In this study, we utilized an encoder-decoder structured neural network
to implement the ConvLSTM architecture. The convolutional layers and pooling layers
for feature extraction and dimensionality reduction are efficient for speeding up network
training and reducing data size, while the middle layer uses a convolution long short-term
memory network to obtain the time series prediction [37]. The data set used in this paper is
based on GIM provided by CODE from 2002 to 2022. The aim of this work is to predict the
GIM 1, 2, and 3 days in advance. In particular, the performance of this model compared to
other model predictions and with different geomagnetic storm levels on the model are also
discussed.
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2. Data and Methods

This section presents the source, format, and resolution of data we used in this study.
Then, the principle of the ConvLSTM network and the data preprocessing were introduced.
Furthermore, we calculated the RMSE, mean relative deviation (MRD in %), and mean
absolute error (MAE) as evaluation metrics for the prediction performance of the proposed
model.

2.1. Data Description

The ionospheric TEC dataset is a global ionospheric GIM-TEC data generated in the
standard Ionosphere map exchange format (IONEX) file format provided by the Interna-
tional GNSS Service (IGS). IGS has many ionosphere associate analysis centers that provide
global ionospheric TEC map operational forecast products, such as CODE, Jet Propulsion
Laboratory (JPL), and European Space Agency (ESA). This paper utilizes GIM data from
CODE for the purpose of research. Since 19 October 2014, the time resolution of CODE-TEC
data has changed from 2 h to 1 h. The longitude ranges from 180◦ west to 180◦ east, and
the latitude ranges from 87.5◦ south to 87.5◦ north. The spatial resolution is 5◦ longitude
and 2.5◦ latitude.

The time range of the data set is from 1 January 2002 to 31 December 2023, and the
data of each day constitutes a file. The time resolution of data from 1 January 2002 to 18
October 2014 has been changed to 1 h through interpolation. According to the information
above, the scale of the grid points of the GIM is 71 × 73. In addition, we can combine the
TEC map data of one day, which is 24 TEC maps, as the input of a single sample, and the
output of the sample is the 24 TEC maps of the next day. Then, a five-dimensional tensor
can be derived, and its dimensions are (number, 24, 71, 73, 1). “Number” represents the
total amount of samples in the data set, as an example, “24” represents that each sample
contains 24 h which means 24 TEC maps, “71” and “73” are the dimensions of the TEC
map at each hour, “1” represents the number of color channels for maps, because the TEC
for each latitude and longitude is a one-dimensional value.

The CODE TEC data used in this study are from 1 January 2002 to 31 December 2019,
which are divided into training (95%) sets and validation (5%) sets. Data from 1 January
2020 to 31 December 2023 were used for testing sets.

2.2. ConvLSTM Network

This paper uses deep learning to predict the TEC map of the global ionosphere.
A classic encoder-decoder framework was used to build a deep neural network. This
framework is also known as a self-encoding decoder; it mainly converts the input vector
into an intermediate vector with lower dimensions through the encoder, then uses the
decoder to convert this intermediate variable into an output variable [38]. To process
ionospheric TEC data with both temporal and spatial features, the ConvLSTM model was
used to predict GIM.

Figure 1 shows the inner structure of the ConvLSTM network at time point t. The
ConvLSTM network uses input gates it, output gates ot, forget gates ft, and the same
memory cells as the hidden state Ht to record additional information. The input of all gates
is composed of the input Xt at the current time t and the hidden state Ht−1 at the time point
t − 1. The key equations of ConvLSTM are shown as:

it = σ(Wi ⊗ [Ht−1, Xt] + bi) (1)

ft = σ
(

W f ⊗ [Ht−1, Xt] + b f

)
(2)

ot = σ(Wo ⊗ [Ht−1, Xt] + bo) (3)
∼
c t = tanh(Wc ⊗ [Ht−1, Xt] + bc) (4)

ct = ft ∗ ct−1 + it ∗ ∼
c t (5)
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Ht = ot ∗ tanh(ct) (6)

where W represents the weights and b represents bias coefficients. Ht represents the final
output at time point t, which will be input at time point t + 1 along with cell state ct. Here,
‘⊗’ denotes the convolution operator, and ‘*’ denotes the Hadamard product.
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Figure 1. Inner structure of the convolution-optimized long and short-term memory network at time
point t.

In this study, the Python 3.9.16 programming language was utilized to write deep
learning code based on the Keras library. The neural network was constructed using this
framework and trained on a server equipped with NVIDIA A100 GPUs and 83.5 GB of
RAM. The whole neural network structure can be divided into three parts. The first part is
the encoder, which is the combination of the convolutional layer and the pooling layer. This
design can effectively extract the spatial key features of the input GIM, which means fewer
network parameters and a faster training process. The second part consists of a ConvLSTM
network, which can extract the time series features of TEC maps, and a batch normalization
layer used to prevent overfitting and normalize data. The last part is the decoder, which
consists of an upsampling layer and a convolutional layer corresponding to the encoder.
The input is 24 GIMs with a time accuracy of 1 h from 00:00 UT to 23:00 UT. The output
is the same GIM on the next day. The activation function of the convolutional layer is the
Exponential Linear Unit (Elu) function. The loss function was MAE, and the optimizer used
the improved Adamax algorithm that adaptively adjusts the learning rate [39]. The batch
size was 32, while the number of training rounds was set to 100. Deep learning code is
written using Python and the high-level abstraction of the Keras library (with TensorFlow
as the backend) to construct the neural network. By continuously adjusting the kernel
size and number of filters for each layer, a well-trained model is obtained. Figure 2 shows
the change curve of the loss function during the training process. It can be observed that
both the validation set error and training set error gradually decrease with the increase in
training epochs and eventually stabilize.
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2.3. Evaluation Metrics

To quantify the prediction performance of the ConvLSTM model, the RMSE, MRD
and MAE were estimated, the formula is as follows:

RMSE =

√
1
N ∑N

i=1

(
TECp − TECr

)2, (7)

MRD =
1
N ∑N

i=1

∣∣TECp − TECr
∣∣

TECr
× 100%, (8)

MAE =
1
N ∑N

i=1

∣∣TECp − TECr
∣∣, (9)

where N is the number of TEC bins, TECp is the predicted TEC values and TECr is the real
values.

3. Results

In this section, we presented the results by comparing the ConvLSTM predictions
with c1pg, c2pg, IRI-Plas, and CODE data, which serves as the ground truth from the
CODE analysis center, to assess the accuracy of the ConvLSTM model. The c1pg and c2pg
in Figure 3 are 1-day and 2-day predicted global TEC maps released by CODE which is
produced based on the extrapolation of spherical harmonic (SH) coefficients [40]. The IRI-
Plas model is one of the best-known empirical models of the ionosphere and plasmasphere.
The model used in this paper is the IRI-Plas 2020 model.

Figure 3 shows the 1 h interval global TEC maps predicted by c1pg, c2pg, and Con-
vLSTM models, along with the ground truth during geomagnetic quiet day. The figures
showed that all TEC maps from c1pg, c2pg, and ConvLSTM are well in agreement with
the ground truth. In addition, the ConvLSTM is closer to the truth than c1pg and c2pg
maps where TEC is enhanced on the day side. For example, the TEC enhancement showed
around 80◦E–120◦E longitude, 0◦–20◦S latitude is well reproduced in the ConvLSTM, while
the c1pg and c2pg cannot reflect it. By using Formula (7) for calculation, we obtained the
RMSE of c1pg on 5 May 2022 as 3.32 TECU, the RMSE of c2pg is 3.63 TECU, while the
RMSE of ConvLSTM 1-day is 3.03 TECU, the RMSE of ConvLSTM 2-day is 3.06 TECU.
This shows that the error between the predicted results of ConvLSTM and the actual TEC
data is better than that of c1pg and c2pg. As expected, the 1-day predicted TEC maps of
both ConvLSTM and those released by CODE are closer to the ground truth than the 2-day
predicted.
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by CODE.

Figure 4 shows a comparison of hourly RMSE error between global ionospheric TEC
maps released by CODE and ConvLSTM during some geomagnetic quiet days. Whereas the
95% confidence interval for c1pg is ±0.06, for c2pg it is ±0.07, for ConvLSTM 1-day model
is ±0.06, and for ConvLSTM 2-day model is ±0.09. The results show that our ConvLSTM
1-day model outperforms the c1pg model, as it has a smaller RMSE. Similarly, the c1pg
model has a smaller RMSE than the c2pg model, indicating that our ConvLSTM 1-day
model has a better prediction ability. Moreover, our ConvLSTM 2-day model performs
similarly to the c2pg model in terms of performance. Furthermore, the RMSE of ConvLSTM
shows an obvious decline about every 12 h during geomagnetic quiet days.
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Figure 5 displays a comparison of 1-h interval TEC maps during the main phase of
a geomagnetic storm event from UT 19:00 to UT 21:00, 19 July 2022, during which the
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Dst index declines to −62 nT. The figure shows the ConvLSTM prediction along with the
global ionospheric TEC maps released by CODE and the ground truth. The plots reveal
that the maps predicted by the ConvLSTM model for 1-day and 2-day intervals are more
accurate than those generated by c1pg and c2pg, as they exhibit closer proximity to the
ground truth. The TEC enhancement showed a latitude near 0◦N–30◦N on the day side,
which is captured by the ConvLSTM model, while c1pg and c2pg fail to reflect it. By using
Formula (7) for calculation, we obtained the RMSE of c1pg on 19 July 2022 as 4.4 TECU, the
RMSE of c2pg is 4.22 TECU, while the RMSE of ConvLSTM 1-day is 3.41 TECU, the RMSE
of ConvLSTM 2-day is 3.98 TECU. Moreover, the prediction results from ConvLSTM in
Figure 2 are more consistent with those from the truth compared with Figure 4, indicating
the prediction capability performance of c1pg, c2pg, and ConvLSTM decrease as the storm
level increases.
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Figure 5. An example of predicted global TEC maps at 1 h interval during geomagnetic storm event
from UT 19:00 to UT 21:00, 19 July 2022, where the Dst index declines to −62 nT. The first and last
column represents the 1-day and 2-day predicted global ionospheric TEC maps released by CODE.
The second and fourth column represents the 1-day and 2-day predicted TEC maps from ConvLSTM
model. The middle column represents the ground truth provided by CODE.

Figure 6 shows the Dst variations during 17–21 July 2022, where the minimum reaches
−62 nT, comparing the hourly RMSE error from ConvLSTM 1-day and c1pg for the storm
time. The 95% confidence interval in the figure for c1pg is ±0.14; for c2pg it is ±0.16; for
ConvLSTM 1-day model is ±0.1, and for ConvLSTM 2-day model is ±0.17. It can be seen
that the presented results demonstrate a high level of statistical credibility. In general, the
ConvLSTM model shows smaller RMSE than c1pg during the main phase of the storm
events. The performance of ConvLSTM prediction is better than c1pg, especially during the
main phase of the storm event, indicating an improved prediction capability for the storm
time. However, the performance of the 2-day prediction of both the c2pg and ConvLSTM
model during the main phase of a geomagnetic storm event is not very satisfactory.
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Figure 6. The first plot is Dst (green line) variations from 17 July to 21 July 2022, and the main phase
of geomagnetic storm event (between the two red dotted lines). The second plot is hourly RMSE
error from 1-day (red line) and 2-day (orange dotted line) predicted TEC maps of ConvLSTM, c1pg
(blue line) and c2pg (green dotted line).

Table 1 shows the classification of geomagnetic storm levels [41–45]. Table 2 displays
a quantitative estimate of the RMSE, MRD, MAE, and their confidence intervals (95%)
for models during the main phase of geomagnetic storm events of different levels. The
result is calculated by Formulas (7)–(9). As the level of geomagnetic storm increases, the
predictive performance of the model gradually becomes less satisfactory. The largest errors
are obtained in the IRI-Plas model for the intense storm events. It can be observed that
the performance of the ConvLSTM 1-day model is better than that of c1pg, while the
ConvLSTM 2-day is roughly equivalent to c2pg. By calculating the 95% confidence interval,
the presented results exhibit a higher statistical credibility.

Table 1. Classification of Storms.

Storm Level Dst Range (nT)

quiet Dst ≥ −30
small −50 ≤ Dst < −30

medium −100 ≤ Dst <−50
intense Dst < −100
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Table 2. Root mean square error RMSE (TECU), mean relative error MRD (%), mean absolute error MAE (TECU), and their confidence intervals (95%) of the model
under different levels of magnetic storm events.

Events Minimum
Dst (nT)

ConvLSTM 1-Day ConvLSTM 2-Day IRI-Plas 2020 c1pg c2pg

RMSE MRD MAE RMSE MRD MAE RMSE MRD MAE RMSE MRD MAE RMSE MRD MAE

31 March 2020
02:00 UT −41 1.48

(±0.05)
19.13

(±0.66)
1.01

(±0.02)
1.62

(±0.05)
21.55

(±0.72)
1.11

(±0.03)
6.26

(±0.07)
75.03

(±2.39)
4.14

(±0.05)
1.52

(±0.05)
18.70

(±0.56)
1.05

(±0.03)
1.60

(±0.06)
18.80

(±0.55)
1.09

(±0.04)
11 June 2021 11:00

UT −36 1.31
(±0.05)

23.39
(±0.91)

0.93
(±0.03)

1.49
(±0.05)

26.98
(±1.11)

1.08
(±0.03)

4.46
(±0.06)

114.84
(±4.21)

3.26
(±0.04)

1.42
(±0.07)

21.64
(±0.65)

1.01
(±0.05)

1.51
(±0.07)

24.23
(±0.76)

1.09
(±0.05)

6 October 2021
17:00 UT −32 2.17

(±0.07)
18.67

(±0.81)
1.52

(±0.05)
2.52

(±0.07)
20.55

(±0.83)
1.74

(±0.04)
7.61

(±0.11)
61.24

(±2.10)
5.56

(±0.08)
2.33

(±0.08)
20.24

(±0.88)
1.67

(±0.06)
2.40

(±0.08)
20.49

(±0.94)
1.70

(±0.05)

20 April 2020 12:00
UT −59 1.56

(±0.10)
26.44

(±1.13)
1.07

(±0.06)
1.79

(±0.08)
30.15

(±1.10)
1.23

(±0.05)
6.14

(±0.10)
96.96

(±3.90)
4.01

(±0.06)
1.58

(±0.08)
22.70

(±0.76)
1.09

(±0.05)
1.61

(±0.07)
23.19

(±0.69)
1.11

(±0.05)
12 May 2021 14:00

UT −61 1.70
(±0.09)

25.69
(±1.40)

1.19
(±0.06)

1.83
(±0.08)

27.17
(±1.21)

1.31
(±0.06)

5.48
(±0.11)

105.59
(±6.25)

3.89
(±0.08)

1.77
(±0.09)

28.79
(±2.23)

1.28
(±0.06)

1.81
(±0.09)

27.90
(±1.92)

1.31
(±0.06)

7 July 2022 22:00
UT −82 2.39

(±0.12)
23.88

(±1.88)
1.76

(±0.10)
2.87

(±0.18)
27.28

(±2.50)
2.15

(±0.14)
4.66

(±0.07)
77.84

(±6.22)
3.63

(±0.05)
2.91

(±0.16)
26.57

(±2.24)
2.11

(±0.13)
3.25

(±0.18)
30.10

(±1.84)
2.43

(±0.14)

27 February 2023
12:00 UT −138 6.66

(±0.21)
24.23

(±1.18)
4.89

(±0.17)
7.67

(±0.25)
28.96

(±1.68)
5.76

(±0.19)
11.67

(±0.29)
32.89

(±1.19)
8.04

(±0.19)
7.02

(±0.23)
26.61

(±1.59)
5.28

(±0.17)
7.33

(±0.26)
29.77

(±2.29)
5.58

(±0.22)
24 March 2023

02:00 UT −184 7.57
(±0.46)

30.61
(±2.59)

5.47
(±0.34)

8.68
(±0.65)

39.55
(±4.68)

6.47
(±0.53)

12.74
(±0.38)

44.45
(±2.39)

8.71
(±0.26)

8.00
(±0.58)

34.88
(±3.81)

6.01
(±0.44)

8.66
(±0.54)

41.67
(±4.09)

6.68
(±0.42)

24 April 2023 05:00
UT −187 6.86

(±0.56)
39.58

(±5.03)
4.92

(±0.44)
7.65

(±0.58)
47.31

(±5.42)
5.71

(±0.44)
9.49

(±0.45)
70.83

(±6.56)
7.02

(±0.34)
7.10

(±0.64)
39.14

(±5.03)
5.26

(±0.48)
8.06

(±0.61)
46.39

(±4.91)
6.12

(±0.48)



Remote Sens. 2024, 16, 1700 11 of 15

Figure 7 illustrates the variation of RMSE and MRD in the test dataset for the year
2023 as latitude changes. The 95% confidence interval of the RMSE in the figure for c1pg
is ±0.025, for the ConvLSTM 1-day model, it is ±0.024, and for the IRI-Plas model, it
is ±0.044. Notably, the ConvLSTM model demonstrates the lowest error. It is evident
that the ConvLSTM model outperforms c1pg notably in mid-latitudes. All three models
exhibit pronounced latitude-dependent RMSE errors, a phenomenon that might be linked
to Equatorial Ionization Anomaly (EIA). In high-latitude regions, GIM-TEC values are
often very small or even zero, resulting in larger MRD values.
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Figure 7. The variation of RMSE MRD in the test dataset for the year 2023 as latitude changes.

Figure 8 displays the temporal variations of RMSE for different forecast days, revealing
a periodic change. The 95% confidence interval in the figure for c1pg is ±0.023; for
c2pg it is ±0.024; for ConvLSTM 1-day model is ±0.022; for ConvLSTM 2-day model is
±0.025, for ConvLSTM 3-day model is ±0.027, and for IRI-Plas model is ±0.033. In the
performance of the whole year, the RMSE of ConvLSTM 1-day is the smallest, the prediction
performance of ConvLSTM 1-day is better than c1pg, and the prediction performance is
the best. Additionally, as the number of days being forecasted increases, the RMSE value
also tends to increase, indicating a decrease in the predictive accuracy of the ConvLSTM
model over longer forecast horizons. The prediction effect of the model is related to the
season, and the RMSE value in the northern hemisphere summer is smaller than that in
spring, autumn, and winter. It is well known that the ionosphere is more stable in summer
due to longer periods of solar irradiance. In other seasons, however, dynamical processes
become significant, leading to poor results for any prediction method based on previous
observations.
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The trained model was utilized to analyze the ionospheric TEC prediction error 1 day
in advance, using the entire test set. Formula (7) was applied to calculate the RMSE of
each prediction. The resulting distribution histogram of the RMSE is displayed in Figure 9.
Based on the histogram shown in Figure 9, the trained model exhibited a mean RMSE value
of 3.17 TECU and a standard deviation of 0.86 TECU in 2022, indicating a high level of
stability in its predictions. Furthermore, the mean RMSE values for the ConvLSTM 2-day
and 3-day predictions were 3.16 TECU and 3.41 TECU, respectively.
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4. Conclusions

Currently, the solar activity index and geomagnetic index are mostly used as input
layer characteristic parameters in the ionospheric TEC map forecast modeling studies, but
these parameters often need to be acquired by actual measurements, and their accuracy
and timeliness directly affect the performance of the model, which is not conducive to the
engineering development and application of the model. In this paper, a ConvLSTM model
combined with CNN was proposed to predict GIM. The CODE GIM from 2002 to 2019
was used to train (95%) and validate (5%) the model, and data from 1 January 2020 to 31
December 2023 were used for testing sets to forecast TEC maps 1, 2, and 3 days in advance.
The model was compared to IRI-Plas, c1pg, and c2pg, and the results indicated that our
model provided more accurate predictions, particularly during geomagnetic storm periods.
Based on the comparison of our model with IRI-Plas, c1pg and c2pg on the test set, as well
as its performance under different magnetic storm conditions, the following conclusions
were drawn:

1. The mean RMSE of 1-day prediction in 2022 is 3.17 TECU, and the standard deviation
of the error is 0.86 TECU, which shows a relatively stable performance during the
geomagnetic quiet and small magnetic storms. The mean RMSE of ConvLSTM 1-day
prediction is 2.81 TECU, ConvLSTM 2-day is 3.16 TECU, while the mean RMSE of
3-day prediction is 3.41 TECU;

2. Our findings suggest that the ConvLSTM 1-day model outperforms c1pg in situations
characterized by geomagnetic quietness and small magnetic storm conditions. How-
ever, the performance of our ConvLSTM 2-day model is similar to that of c2pg. Model
predictions get worse as the intensity of the storm increases;

3. The prediction RMSE of the model gradually increases with the increase of the predic-
tion date.

4. In conclusion, the proposed global ionospheric TEC forecasting model in this paper is
simple, practical, and has a relatively high forecast accuracy. By only inputting the
GIM of the current day, it can forecast the GIM for the next 1, 2, and 3 days, which is
convenient for engineering applications. Providing timely, precise, and dependable
ionospheric TEC data, along with error correction information, is crucial for scientific
research and engineering applications. These datasets find utility in various fields, in-
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cluding satellite navigation, radar imaging, mitigation of radiocommunication issues,
aviation purposes, shortwave communication, and more. Geomagnetic perturbations
have an important impact on the ionosphere, but forecasting magnetic storms is still
a challenging task [46]. With increasing geomagnetic activity, the impacts of ener-
getic particle precipitation on electron production in the ionosphere become more
significant [47,48]. Therefore, we did not include geomagnetic indices in our training
mainly for the above reasons. In the future, utilizing TEC-measured data, such as
MIT’s GNSS-TEC data, can be a promising area of research to enhance the accuracy of
global or regional forecasts.
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