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Abstract: Thin ice with a thickness of less than half a meter produces strong salt and heat fluxes
which affect deep water circulation and weather in the polar oceans. The identification of thin ice
areas is essential for ship navigation. We have developed thin ice detection algorithms for the AMSR2
and FY-3C MWRI radiometer data over the Arctic Ocean. Thin ice (<20 cm) is detected based on the
classification of the H-polarization 89–36-GHz gradient ratio (GR8936H) and the 36-GHz polarization
ratio (PR36) signatures with a linear discriminant analysis (LDA) and thick ice restoration with
GR3610H. The brightness temperature (TB) data are corrected for the atmospheric effects following
an EUMETSAT OSI SAF correction method in sea ice concentration retrieval algorithms. The thin
ice detection algorithms were trained and validated using MODIS ice thickness charts covering the
Barents and Kara Seas. Thin ice detection is applied to swath TB datasets and the swath charts are
compiled into a daily thin ice chart using 10 km pixel size for AMSR2 and 20 km for MWRI. On
average, the likelihood of misclassifying thick ice as thin in the ATIDA2 daily charts is 7.0% and
42% for reverse misclassification. For the MWRI chart, these accuracy figures are 4% and 53%. A
comparison of the MWRI chart to the AMSR2 chart showed a very high match (98%) for the thick ice
class with SIC > 90% but only a 53% match for the thin ice class. These accuracy disagreements are
due to the much coarser resolution of MWRI, which gives larger spatial averaging of TB signatures,
and thus, less detection of thin ice. The comparison of the AMSR2 and MWRI charts with the SMOS
sea ice thickness chart showed a rough match in the thin ice versus thick ice classification. The AMSR2
and MWRI daily thin ice charts aim to complement SAR data for various sea ice classification tasks.

Keywords: Arctic; passive microwave remote sensing; polynya; thin sea ice

1. Introduction

During the winter months in the Arctic Ocean, the formation of thin sea ice occurs not
only along the ice edge but also within leads and polynyas amidst pack ice. Additionally,
in the marginal ice zone (MIZ) a vast expansion of thin ice takes place during the sea ice
freeze-up period. Thin ice, with a thickness under half a meter, is responsible for significant
salt and thermal fluxes, impacting the circulation of deep ocean currents and atmospheric
conditions in the polar areas. Accurately identifying thin ice regions is also crucial for
navigating ships through icy waters.

Thin ice detection and ice thickness (hi) retrieval in winter conditions can be performed
with microwave radiometer data. L-band brightness temperature (TB) data from the Soil
Moisture and Ocean Salinity (SMOS) satellite are applicable to estimate hi up to 1.5 m [1–4].
However, the detection of smaller polynyas and leads is hampered by the relatively low
spatial resolution of the TB data, ranging from 35 km to 50 km.

Ice formation and thickening in polynyas have been the subject of several studies that
utilize high-frequency channels (near 36 and 90 GHz) of radiometer data [5–12]. There
are detailed reviews of these studies in [9,13]. The hi retrieval algorithms are mostly
exponential regression equations between polarization ratio (PR) at 36 or 90 GHz and
hi derived from TS in thermal infrared imagery. PR gives an indirect hi estimate through
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the surface salinity of thin ice. On average, the surface salinity decreases with increasing
hi, leading to a decrease in PR [14,15]. The maximum estimated thin ice hi has typically
been 20 cm [6,8,9,16,17]. Atmospheric factors like cloud liquid water and water vapor can
significantly lower PR90, potentially leading to an overestimation of hi [6]. Contaminated
PR90 pixels are usually flagged and only PR36 is used for the hi retrieval. The minimum
sea ice concentration (SIC) for the hi estimation has usually been set to 15% or 30%. The
uncertainty of the estimated hi has been assessed to be from 5 to 8 cm when characterized by
the root-mean-square difference (RMSD) [7,8,10,16–18]. The PR36 and PR90 based hi data
have been used to track Antarctic and Arctic polynyas in terms of their occurrence, size, ice
production, and temporal trends, e.g., [7–9,11,12].

Only the detection of thin ice (thickness < 30 cm) has been also conducted. Notably,
the polynya signature simulation method (PSSM) integrates the high spatial resolution of
90 GHz with the reduced atmospheric impact at 36 GHz to differentiate between first-year
ice (FYI), thin ice, and open water, achieving a resolution of 5 km and producing maps
indicating polynyas or ice edges [19,20]. The discrimination between thin ice and FYI is
sensitive on the chosen tie points for these ice types. An algorithm for detecting leads using
daily average TB data from the Advanced Microwave Scanning Radiometer–Earth Observ-
ing System (AMSR-E) have been created in [21]. The utilized statistic is the V-polarization
ratio between TB’s at 89 and 18.7 GHz (TB89V/TB18V). The method was developed and
validated with MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. It
identifies leads over 3 km wide, detecting at least half of those visible in MODIS imagery
and is applicable in areas with dense sea ice (>90%) during Arctic winter.

Recently, we introduced an algorithm for detecting thin ice (thickness < 0.2 m)
in the Arctic Ocean using AMSR2 (Advanced Microwave Scanning Radiometer 2) ra-
diometer data [13]. This algorithm, denoted as ATIDA2 (AMSR2 Thin Ice Detection
Algorithm—Version 2), is an improved version of the original ATIDA algorithm [22]. It em-
ploys linear discrimination analysis (LDA) to classify PR36 and H-polarization 89–36 GHz
gradient ratio (GR) signatures, along a process for correcting misidentified thick ice in-
stances using GR3610H, a new feature that is not present in the original ATIDA. This
correction step is essential for eliminating incorrect thin ice detections due to the signature
mixing between thin and thick ice. The ATIDA2 algorithm is used solely under conditions
where sea ice concentration (SIC) is above 70% and air temperature Ta is a below −5 ◦C to
limit the misidentification of thick ice as thin ice. The algorithm processes AMSR2 L1R TB
swath data [23], aggregating the outcomes into a daily chart of thin ice. For the TB data,
an atmospheric correction is applied following an EUMETSAT OSI SAF (Ocean and Sea
Ice Satellite Application Facility) correction method in SIC retrieval algorithms [24–26].
Adjustments to PR and GR signatures based on Ta, standardized to −25 ◦C address the
slight increases observed with rising Ta. The daily charts exhibit an 8.7% average risk of
mistaking thick ice for thin and a 37.0% risk for the reverse. A comparative analysis of the
ATIDA2 charts with SMOS ice thickness data reveals a general alignment in the differentia-
tion of thin ice versus thick ice categories. Aimed at complementing SAR imagery for sea
ice classification, ATIDA2 is tuned to significantly reduce the risk of misclassifying thick
ice as thin, a critical factor in maritime navigation.

Unfortunately, several error sources persist in the detection and thickness estimation of
thin ice using radiometer data, including the mixing of TB signatures from different surfaces
(open water, thin ice, FYI, and landfast ice) due to the coarse resolution of radiometers.
Such mixing can, for example, make thick ice with low SIC appear similar to thin ice near
100% SIC. Although setting a higher SIC threshold for detecting thin ice may reduce this
feature, SIC for thin ice is often underestimated [25,27–29]. The physical characteristics
of thin ice, including surface roughness and the presence of frost flowers or a dry snow
layer, can lead to TB signatures similar to those of much thicker ice [14,30–32]. Atmospheric
interference in TB data also poses a risk of overestimating thin ice thickness [6] or falsely
detecting thin ice. In spite of these error sources, many studies have demonstrated thin ice
detection and its thickness estimation with sufficient accuracy [7,9,12,13,20,21].
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In this study, we improve the TB atmospheric correction and determine an ATIDA2-like
algorithm for the FY-3C (FengYung 3C) MWRI (Micro-Wave Radiation Imager) TB data that
has a much coarser resolution than the AMSR2 data. The specific objectives of our study
are the following. (1) Enhance the atmospheric correction of the TB data. (2) Re-determine
ATIDA2 for the AMSR2 TB data with the new TB atmospheric correction. (3) Determine
the MWRI thin ice detection algorithm (MTIDA2) using MWRI TB data corrected with
the same atmospheric correction method as for the AMSR2 data. (4) Calculate ATIDA2
and MTIDA2 charts over the Arctic for one winter season, October2016–May 2017, and
investigate their statistical similarities and differences. (5) Compare ATIDA2 and MTIDA2
Arctic charts against the SMOS hi chart. MODIS ice thickness charts over the Barents and
Kara Seas were chosen to be used in the learning and evaluation of ATIDA2 and MTIDA2.
They were the only data source of thin ice thickness available in fine resolution. The SMOS
hi chart is the operational validated source of thin ice thickness data.

The AMSR2 and MWRI daily thin ice charts are intended to complement SAR data
in various sea ice classification tasks. Previously, we have used AMSR2 thin ice chart in
conjunction with SAR and sea ice modeling data for ship navigation purposes [33]. In
addition, the updated charts can indicate the presence of thin ice in the SIC and snow depth
estimation for either pixel flagging or corrective actions.

2. Materials

Datasets used in this study are described below. Many datasets originate from our
earlier studies in [13,22] and, therefore, they are described here only shortly.

2.1. MODIS Ice Thickness Charts

MODIS ice thickness (hiM) swath charts over the Barents and Kara Seas (BKS) are
used in the learning and evaluation of ATIDA2 and MTIDA2 algorithms and MODIS
hiM daily charts, also over BKS, in the validation of the daily thin ice charts, see ex-
amples in Figures 1 and 2. The processing methods of the hiM swath chart are detailed
in [22,34] and those of the hiM daily chart in [35]. The hiM retrieval is carried out only
when air temperature, Ta, according to the ERA5 reanalysis data, is below −5 ◦C due
to high uncertainty in warmer temperatures. The daily chart is calculated from cloud-
masked swath hiM charts. The swath charts cover the time periods January–April 2014 and
October 2014–April 2015 and their total number is 173. The daily charts cover two winters,
November–April in 2015–2017, and there are in total 317 charts. The charts are in a polar
stereographic (PS) coordinate system with true-scale latitude of 70N, mid-longitude of 55E,
and grid size of 1 km and have a coverage of 1850 km (northing) by 2200 km (easting).
The cloud masking for the hiM swath charts during the 2014–2015 season utilizes both
manual and automated techniques [34], whereas only automated procedures are applied in
the cloud masking of the swath charts processed to the daily charts, with the cloud mask
resolution set at 10 km [35]. The cloud mask is composed of the original 1 km mask by
flagging a 10 × 10 km block cloudy if there were more than 10% cloudy 1 km pixels.

The thickness values in the swath hiM chart range from 0 to 1 m, with a resolution of
0.01 m. Ice thickness estimates exceeding 1 m or those yielding negative values (indicating
a failure in estimation) are flagged as 1 m and −0.1 m, respectively. The daily hiM chart
shows the daily median hiM calculated from at least two samples. It consists of pixelwise
hiM values of 0–0.3 m for thin ice, 0.4 m to represent ice thicknesses between 0.31 and 0.5 m
(corresponding to the initial stage of thin FYI) [36], and 0.5 m for ice with hi exceeding 0.5 m.
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Figure 1. MODIS ice thickness swath chart derived from the ice surface temperature data acquired 
on 6 December 2014, 06:35 UTC. Dark blue is either cloud mask (thickness −0.2 m), no data mask 
(−0.3 m), or scan angle larger than 40° (−0.2 m) and light blue (−0.1 m) indicates areas where ice 
thickness retrieval was unsuccessful. Pixel size is 1 km. 

 
Figure 2. MODIS daily median ice thickness chart on 2 December 2015. Vertical bar shows the nu-
merical scale for different sea ice thickness values and masks: 0.0–0.3 m for thin ice thickness, thick-
ness range from 0.31–0.5 m with the value of 0.4 and >0.51 m with 0.5 m, and land and no-data 
masks with 0.6 m and −0.1 m, respectively. Pixel size is 1 km. 

2.2. AMSR2 Radiometer Data 
AMSR2 level L1R (resampled L1) 𝑇  data [23] and L2 SIC swath data [37] were col-

lected for four winters in October–May 2013–2017. Here, we use 36.5 and 89 GHz 𝑇  data 
at the footprint size of the 36.5 GHz data (7 km × 12 km) and 10.65 and 36.5 GHz 𝑇  data 
at the 10.65 GHz footprint (24 km × 42 km). 

The L1R data at the 36.5 GHz (or 10.65 GHz) footprint over BKS were rectified to the 
PS coordinate system of the MODIS charts with 10 km (30 km for 10.65 GHz) grid size 
using linear interpolation. One 30 km pixel covers an area of 3 × 3 10 km pixels. The L2 

Figure 1. MODIS ice thickness swath chart derived from the ice surface temperature data acquired
on 6 December 2014, 06:35 UTC. Dark blue is either cloud mask (thickness −0.2 m), no data mask
(−0.3 m), or scan angle larger than 40◦ (−0.2 m) and light blue (−0.1 m) indicates areas where ice
thickness retrieval was unsuccessful. Pixel size is 1 km.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 19 
 

 
Figure 1. MODIS ice thickness swath chart derived from the ice surface temperature data acquired 
on 6 December 2014, 06:35 UTC. Dark blue is either cloud mask (thickness −0.2 m), no data mask 
(−0.3 m), or scan angle larger than 40° (−0.2 m) and light blue (−0.1 m) indicates areas where ice 
thickness retrieval was unsuccessful. Pixel size is 1 km. 

 
Figure 2. MODIS daily median ice thickness chart on 2 December 2015. Vertical bar shows the nu-
merical scale for different sea ice thickness values and masks: 0.0–0.3 m for thin ice thickness, thick-
ness range from 0.31–0.5 m with the value of 0.4 and >0.51 m with 0.5 m, and land and no-data 
masks with 0.6 m and −0.1 m, respectively. Pixel size is 1 km. 

2.2. AMSR2 Radiometer Data 
AMSR2 level L1R (resampled L1) 𝑇  data [23] and L2 SIC swath data [37] were col-

lected for four winters in October–May 2013–2017. Here, we use 36.5 and 89 GHz 𝑇  data 
at the footprint size of the 36.5 GHz data (7 km × 12 km) and 10.65 and 36.5 GHz 𝑇  data 
at the 10.65 GHz footprint (24 km × 42 km). 

The L1R data at the 36.5 GHz (or 10.65 GHz) footprint over BKS were rectified to the 
PS coordinate system of the MODIS charts with 10 km (30 km for 10.65 GHz) grid size 
using linear interpolation. One 30 km pixel covers an area of 3 × 3 10 km pixels. The L2 

Figure 2. MODIS daily median ice thickness chart on 2 December 2015. Vertical bar shows the
numerical scale for different sea ice thickness values and masks: 0.0–0.3 m for thin ice thickness,
thickness range from 0.31–0.5 m with the value of 0.4 and >0.51 m with 0.5 m, and land and no-data
masks with 0.6 m and −0.1 m, respectively. Pixel size is 1 km.

2.2. AMSR2 Radiometer Data

AMSR2 level L1R (resampled L1) TB data [23] and L2 SIC swath data [37] were
collected for four winters in October–May 2013–2017. Here, we use 36.5 and 89 GHz TB
data at the footprint size of the 36.5 GHz data (7 km × 12 km) and 10.65 and 36.5 GHz TB
data at the 10.65 GHz footprint (24 km × 42 km).

The L1R data at the 36.5 GHz (or 10.65 GHz) footprint over BKS were rectified to the
PS coordinate system of the MODIS charts with 10 km (30 km for 10.65 GHz) grid size
using linear interpolation. One 30 km pixel covers an area of 3 × 3 10 km pixels. The L2
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SIC data were projected to a 10 km pixel size using nearest neighbor interpolation as it has
a land mask. Using block averaging SIC data at 30 km grid size was then calculated. A
daily SIC chart was calculated by temporal averaging of the SIC swath charts.

Over the Arctic Ocean one winter, October 2016–May 2017, L1R TB and L2 SIC data
were processed in a similar way as for the BKS. Here, the PS coordinate system of the SMOS
hi chart was used, see Section 2.7.

Land masks for the 10 and 30 km BSK grids were derived in [22]. Land masks for the
Arctic TB data at 10 and 30 km grids were obtained from the OSI SAF OSI-403-d global sea
ice type product with 10 km grid [38].

2.3. FY-3C MWRI Radiometer Data

FY-3C is one of China’s second-generation polar-orbiting meteorological satellites. It
has an MWRI radiometer, which is a conical scanning imager at five frequencies
(10.65, 18.7, 23.8, 36.5, and 89 GHz) with H- and V-polarization (10 channels in total) [39].
The footprints of the MWRI are larger than those for AMSR2: 51 km × 85 km at 10.65 GHz,
18 km × 30 km at 36.5 GHz, and 9 km × 15 km at 89 GHz. The swath width is 1400 km,
slightly narrower than for AMSR2 (1450 km). MWRI has an incidence angle of around 53◦

whereas AMSR2 has 55◦.
Here, we use FY-3C MWRI L2 CRM (Channels Resolution Match) TB and L2 SIC

products available at the FENGYUN Satellite Data Centre. MWRI data were downloaded
for October 2014–April 2015 and for two winters in October–May 2015–2017. The MWRI
CRM TB data are not available for the January–April 2014 period of the MODIS swath
hiM charts. The 36.5 and 89 GHz TB data used here are those sampled in the product to
the footprint size of the 36.5 GHz data, 18 km × 30 km. This TB data and SIC data were
projected with 20 km pixel size using linear interpolation. The TB data are used to calculate
PR36 and GR8936H. Daily SIC data are calculated from the gridded SIC swath charts.
GR3610H is calculated from the TB data sampled to the footprint of the 10.65 GHz data,
51 km × 85 km. These TB data are gridded to the PS projections with 40 km pixel size. A
pixel in the 40-km grid covers a 2 by 2 block of 20 km pixels. Landmasks with 20 and 40 km
pixel sizes were processed from the AMSR2 10 km landmask.

2.4. ERA5 Data

Atmospheric data for the TB atmospheric corrections were extracted from the ECMWF’s
ERA5 reanalysis data [40,41]. The data extracted have a one-hour time step and 0.25◦ by
0.25◦ grid as well as the following parameters: 10-m wind speed (V10), 2-m Ta, total column
liquid water (LW), total column water vapor (WV), and skin temperature (TS). The ERA5
data were sampled to the 10 (AMSR2) and 20 km (MWRI) PS grids with cubic interpolation
and then block averaged for the 20 (AMSR2) and 40 km (MWRI) grids. The gridded data
were further interpolated to the time stamps of the swath TB datasets.

2.5. Combination of TB and TS Data

The datasets of the AMSR2 TB for BKS (10 and 30 km grids) in conjunction with
TS data spanning three winter seasons from 2014 to 2017 are utilized to examine the
average dependence of PR36, GR8936H, and GR8910H sea ice signatures on TS as outlined
in [13,22]. The following criteria were applied in this analysis: SIC ≥ 70% and TS ≤ −5 ◦C.
Similarly, TB datasets from MWRI for BKS on 20 and 40 km grids and TS data were
combined. The size of the datasets used in these investigations ranges significantly from
2.0 × 106 to 40.8 × 106 samples.

2.6. Combination of TB and MODIS Ice Thickness Data

Datasets from co-located MODIS swath hiM and AMSR2 swath TB, TS, and Ta with
pixel resolutions of 10 km and 30 km were integrated for the formulation of ATIDA2 as
described in [13,22]. The thickness threshold for distinguishing between thin and thick ice
is maintained at 20 cm. Specifically, combined TB and pixel-based mean hiM (hiM) data were
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only chosen over AMSR2 pixels having relatively uniform hiM and SIC ≥ 70%. Within the
10 km (30 km) data compilation, the total count of samples reached 101,054 (10,572). The
sample count for thin ice (hiM ≤ 0.2 m) is 21,241 and 1810 for the 10 and 30 km datasets. For
a thick ice class of 0.2 < hiM < 1.0 m (thick1 class), the number of samples is 18,148 (10 km)
or 3578 (30 km). For the third class, thick ice hiM ≥ 1 m (thick2 class) and there are
61,665 (10 km) or 5184 (30 km) samples. Approximately 94% of the thick1 samples were
retrieved when Ta < −20 ◦C, whereas this figure is 57% for thin ice. In the thick2 class, the
upper Ta limit was set to −25 ◦C as in warmer conditions, the hiM retrieval may fail for ice
thinner than 1 m as well [34].

In similar way, MODIS-MWRI datasets were compiled for the development of MTIDA2.
The sample sizes are reduced in this case due to the larger pixel dimensions and the absence
of TB CRM data for the period from January to April 2014. The aggregate sample count
for the 20 km (40 km) dataset stands at 27,406 (5517). For thin ice, the sample figures are
4996 and 807 for the 20 km and 40 km datasets, respectively. In the thick1 category, the
sample sizes are 9189 (20 km) and 1822 (40 km), and for the thick2 category, there are
13,221 (20 km) and 2888 (40 km) samples. About 87% of the thick1 class samples are for
Ta < −20 ◦C. This figure is 53% for thin ice.

2.7. SMOS Ice Thickness Data

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
produces a daily sea ice thickness (hiS) chart from the SMOS satellite data, which serves
here as a guideline for assessing the accuracy of the Arctic ATIDA2 and MTIDA2 ice
charts. The evaluation spans from October 2016 through to April 2017. Comprehensive
information on the methodology for deriving the SMOS hiS chart and its characteristics is
documented in [2,4,42,43]. An evaluation study conducted in the Barents Sea indicated
that the hiS values tend to underestimate the actual ice thickness by approximately 50–60%
on average [2]. This underestimation is not taken into account here in the data analyses.

The correlation coefficient against the validation datasets was 0.75 and the root mean
square deviation (RMSD) was 0.31 m. Capability to retrieve hiS is constrained by the sea
ice temperature and salinity, with a maximum detectable thickness of up to 1.5 m [2]. It is
recommended that the analysis of hiS always incorporates considerations of its saturation
ratio (the ratio of the retrieved to the maximum retrievable hiS) and/or uncertainty [43].
Data characterized by a saturation ratio exceeding 95% or an uncertainty greater than 1 m
are deemed unsuitable for use.

The daily hiS chart has a 12.5 km pixel size and a daily gridded TB, utilized for
determining hiS, which is derived from near-nadir TBs with an approximate footprint
of 35–40 km [2]. This chart is produced in the PS grid of the National Snow and Ice
Data Center (NSIDC) with a standard latitude of 70◦N [44]. The latest version of the hiS
chart is v3.3, covering the Arctic Ocean from latitudes 50◦N to 85◦N, and available from
15 October to 15 April annually. The hiS data were adapted to the AMSR2 10 km grid
through nearest-neighbor interpolation and the AMSR2 10 km land mask was applied to
this interpolated dataset.

3. Methods

The following methods used in this study are described. Most of the methods originate
from our earlier studies in [13,22] and, therefore, they are described here only shortly.

3.1. Atmospheric Correction

The TB data are corrected for the atmospheric effects due to WV, LW, V10 (wind rough-
ened ocean surface), and TS following the OSI SAF atmospheric correction method [24,26].
The OSI SAF correction method calculates a correction term ∆TBc as a difference between
two TB calculations with a parametrized RTM (radiative transfer model) described in [45,46]:
TBnwp, TB calculated with NWP (numerical weather prediction) data uses atmospheric data
(TS, V10, WV, and LW), while TBre f has an atmospheric reference state with zero V10, WV,
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and LW and the same TS as in TBnwp. ∆TBc is an estimate of the atmospheric contribution
in the TB measurement. Until recently, TB data were not corrected for the influence of LW
because its NWP model data were not accurate enough [24,25,47]. In the current version of
the OSI SAF Global Sea Ice Concentration climate data record (product OSI-450-a) released
in 2022, the correction for LW is now included. It was found that ERA5 has some skills
representing LW variation in the Arctic and including LW in the TB correction decreased
the uncertainty of the retrieved SIC at low SIC values. In our earlier study in [13], the LW
correction was not applied.

The corrected TB is calculated as [24,26]

TBc = TB −
(

TBnwp − TBre f

)
, (1)

TBnwp = TB( f , p, θ0, esi, V10, WV, LW, TS, SIC), (2)

TBre f = TB( f , p, θ0, esi, 0, 0, 0, TS, SIC), (3)

where f is frequency, p is polarization, θ0 is incidence angle, and esi is sea ice emissivity.
For esi OSI SAF uses fixed emissivities (see Table 1), which are more accurate for FYI
when compared to monthly FYI and multiyear ice (MYI) emissivities in [48]. Previously,
in [13], ERA5 Ta instead of TS was used in the atmospheric correction. Below, FYI and
MYI emissivities (eFYI and eMYI) and FYI and MYI sea ice effective temperatures (TFYI

e f f and

TMYI
e f f ) by Mathew et al. [48] are denoted simply by ‘Mathew’.

Table 1. OSI SAF mixing coefficients for calculating Te f f with (4) and sea ice emissivities at different
AMSR2 channels [46].

Parameter Radiometer Channel

6.9V 6.9H 10.65V 10.65H 18.7V 18.7H 36.5V 36.5H 89V 89H

emissivity 0.96 0.88 0.9 0.9 0.95 0.90 0.93 0.88 0.90 0.83

Tmix 0.45 0.40 0.4 0.4 0.75 0.47 0.95 0.70 0.97 0.97

In [13], the TB correction was modified to use wintertime mean Mathew eFYI and
eMYI and Mathew TFYI

e f f and TMYI
e f f for TBnwp as well as Te f f reference values for TBre f .

Earlier, the winter time eFYI and eMYI were means of their wintertime monthly values
(November to April) given in [48]. The reference TFYI

e f f and TMYI
e f f were calculated from

average Tas for three winter seasons. This modification was targeted to compensate the
effect of spatial and temporal variation in Te f f on the measured TB data. However, this
reference Ta value may be too small for MIZ and also too small during freeze-up season,
giving too large TB corrections. Therefore, we switch to using a daily reference TS (TSre f )
chart calculated by averaging the ERA5 hourly data within two days of previous and
current dates. Furthermore, monthly Mathew eFYIs and eMYIs are interpolated to the daily
scale with 15 days of moving averaging. Finally, OSI SAF TFYI

e f f is now used instead of the
Mathew one. The OSI SAF Te f f s depend on both on TS and ice bottom freezing temperature
whereas Mathew Te f f s are the only function of TS and thus, the OSI SAF Te f f s should be
better for FYI.

In the following, the OSI SAF and Mathew et al. [48] sea ice data and interim stages
needed to apply the atmospheric correction with the FYI and MYI data are presented.

3.1.1. OSI SAF Sea Ice Data

Te f f is calculated as a linear mixture between the sea ice bottom freezing temperature
of 272 K and the sea ice surface temperature (Tssi; taken here as ERA5 TS) [25,46]:

Te f f = Tmix·Tssi + (1 − Tmix)·272. (4)
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If the resulting Te f f > 272 K then Te f f is set to 272 K, i.e., the ice surface is under melting
conditions. The mixing coefficient Tmix at each AMSR2 channel is shown in Table 1. At lower
frequencies Te f f is higher, i.e., closer to 272 K, than at higher ones under cold conditions.
Table 1 also shows the fixed esi used in the default OSI SAF atmospheric correction.

3.1.2. Sea Ice Data by Mathew et al. [48]

The monthly eFYI and eMYI given in [48] are interpolated to the daily scale with 15 days
moving averaging. Mathew et al. [48] derived linear relationships between TFYI

e f f and TMYI
e f f

and the lowest level air temperature (Tal) in the Celsius scale at each AMSR-E frequency
and independent of polarization. These linear relationships are of the following form [48]:

Te f f = a·Tal + b. (5)

There are different relationships for the winter months from December to March and
for the spring (April–May) and freeze-up seasons (August to November). Here, Tal is
approximated with the ERA5 TS.

The change in Te f f s between the seasons is mitigated by weighted averages when
the date is at maximum two days from the ending of a current or the beginning of a new
season, i.e., from 28 November to 3 December or from 29 March to 3 April. The weighting
factors are [1:+1:6]/7 and [6:−1:1]/7.

Figure 3 shows Mathew Te f f ’s at 36.5 and 89 GHz for the winter months together with
the OSI SAF Te f f s. The Mathew Te f f s increase slower with increasing TS than the OSI SAF
Te f f s and thus, their differences are not constant. The OSI SAF Te f f s saturate toward the
freezing temperature of sea ice (272 K) with increasing TS but Mathew Te f f s do not.
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Figure 3. Sea ice effective temperatures at 36.5 and 89 GHz with the OSI SAF equation in (4) and for
FYI and MYI for the winter months (December to March) by Mathew et al. [48]. The OSI SAF 89V
and 89H Te f f s are the same.

3.1.3. Daily Surface Temperature Chart

Using two-day time interval (previous and current date), an average TS chart is
calculated from the hourly ERA5 TS data at the 10/20 km grid. This average TS chart is
used for Te f f s in TBre f . The daily TS chart at the 30/40 km pixel size is obtained with block
averaging the 10/20 km chart.
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3.1.4. FYI and MYI Fractions

The use of separate FYI and MYI emissivities and Te f f s in the TB correction requires
estimation of FYI and MYI fractions for each pixel. These are calculated from the NASA
Team (NT) algorithm [49] SICFYI and SICMYI as

fFYI=
SICFYI

SICFYI+SICMYI
and fMYI =

SICMYI
SICFYI+SICMYI

. (6)

fFYI and fMYI are constrained from 0 to 1 range and their sum is always one. Unfortu-
nately, fFYI and fMYI are quite noisy for a single swath and therefore, two days averaging
of swath fFYI and fMYI is conducted and then rounded to 0.05 resolution (their sum is
again one).

The NT SIC is based on the 18.7 and 36.5 GHz TB data, which are in either the 30 km
(AMSR2) or 40 km (MWRI) grid here. For calculating the 10 km (AMSR2) or 20 km (MWRI)
grid, fFYI and fMYI of the 30/40 km grid TBs are upscaled to the 10/20 km pixel size
by replicating, e.g., a 30 km pixel contains 3 × 3 10 km TBs of equal value. Following a
SIC study by Shi et al. [50], the MWRI TB data are matched to the SSMIS (Special Sensor
Microwave Imager/Sounder) F17 data and then the SSMIS NT tie points are used. The TB
data matching is conducted using monthly linear regression equtions.

Over BKS pixels with fMYI are only allowed to occur within a MYI mask processed
from the Arctic and Antarctic Research Institute (AARI), Russia, weekly ice charts [51]
for October–May in 2014–2017 (three winter seasons). The polygonal AARI charts were
gridded to 1 km pixel size and pixels that have at least one ‘old ice’ type (same as MYI)
assignment were identified, resulting in a MYI mask. Next, this mask was processed at a
10 km pixel size by allowing a 10 km pixel to have MYI if at least one 1 km pixel within
it had MYI. Finally, the MYI mask was smoothed by manual editing and also aggregated
to 30 km pixel size (MYI is allowed if it least one 10 km pixel had MYI). This MYI mask
allows fMYI to occur only in the northern part of BKS. Previously, in [13], the MYI mask
was not used.

The Arctic MYI mask was derived from the daily OSI SAF OSI-403-d global sea ice type
product [38]. During a time period from 1 October 2016 to 31 May 2017, daily occurrences
of MYI in each pixel was counted and from the resulting summary chart, the maximum
extent of MYI was manually determined.

For the MWRI 20 and 40 km grids over BKS and Arctic MYI masks were processed
from the AMSR2 10 km MYI masks.

3.1.5. Atmospheric Correction with FYI and MYI Data

Daily esi charts are used for both TBnwp and TBre f . Mathew eFYI and eMYI are combined
into general esi as

esi = fFYI ·eFYI + fMYI ·eMYI . (7)

Spatial variation is smoothed with 3 × 3 sliding window averaging. TBre f has a
bottom-of-atmosphere (BOA) TB term (TBOA

B ), which is calculated as

TBOA
B = fFYI ·eFYI ·TFYI

e f f + fMYI ·eMYI ·TMYI
e f f , (8)

where eFYI and eMYI are daily values and TFYI
e f f and TMYI

e f f are calculated using the daily TS

chart. Like for esi with (7) spatial variation is smoothed with 3 × 3 sliding window averaging.
Swath TBOA

B for TBnwp is calculated as (8), the same daily eFYI , eMYI , fFYI , and fMYI

are used, but TFYI
e f f and TMYI

e f f are now with instantaneous TS (ERA5 TS interpolated to the
time of the TB swath acquisition). Sliding window averaging is also applied here.

3.2. Thin Ice Detection with AMRS2 or MWRI TB Data

Previously, we introduced a new iterative algorithm for detecting thin ice using the
AMSR2 TB data, denoted as ATIDA2 [13]. This algorithm employs linear discriminant
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analysis (LDA) to categorize PR36 and GR8936H signatures, alongside a method for cor-
recting misidentifications of thin ice, referred to as thick ice restoration using GR3610H.
This correction technique effectively eliminates inaccuracies in the thin ice detection due
to overlapping PR36 and GR8936H signatures. ATIDA2 is applied only when Ta ≤ −5 ◦C
and SIC ≥ 70% to minimize misclassification of thick ice as thin ice. In this study, ATIDA2
is re-determined for the AMSR2 TB data with the new atmospheric correction method and
a similar algorithm is also determined for the first time for the MWRI TB data, denoted
as MTIDA2.

The determination of the LDA classifier of ATIDA2 is described in detail [13] and
the following are some main points of its determination process. (a) During the learning
phase, we use samples from the thin and thick1 classes where Ta is below −20 ◦C and
set a threshold for thin ice at PR36 < 0.06. Eliminating higher PR36 values brings the
PR36−GR8936H distribution closer to a Gaussian distribution, making it better suitable for
the LDA classification. The thick2 class is omitted to prevent its overwhelming influence
on the combined covariance matrix, given its clear distinction from the thin ice class.
(b) Samples from the thin ice and thick1 classes are randomly split into equal-sized training
and testing datasets. The thick2 class, along with thin ice samples having Ta ≥ −20 ◦C or
PR36 > 0.06, and all thick1 with Ta ≥ −20 ◦C are included in the testing dataset. (c) In the
training and testing datasets, the GR8936H and PR36 signatures are normalized to TS of
−25 ◦C. (d) Due to the random nature of the training dataset, the division to training and
testing datasets and determination of the LDA classifier is repeated 1000 times and average
LDA coefficients are calculated. This extensive sampling ensures that the derived LDA
coefficients remain consistent in repeated experiments.

The LDA classifier accuracy is measured through specific probabilities: the incorrect
labeling of the thick1 category as thin ice (type Ia error), the misidentification of the thick2
category as thin ice (type Ib error), and the erroneous classification of thin ice as thick ice
(type II error). In the process of integrating the AMSR2/MWRI thin ice chart with the SAR
data for categorizing sea ice, we prefer to minimize the type I errors. Our goal for the type
Ia error is about 10%. To obtain this error level involves manual adjustments of the LDA
threshold (th) in increments of 0.05. That is, with the selected threshold, the type Ia error I is
around 10% (type Ib is already minimal at th = 0). Generally, elevating the threshold reduces
the occurrence of the type Ia and Ib errors but leads to an increase in the type II error.

The form of the LDA classifier determined in [13] was

LDAs = 44.1·PR36 + 21.4·GR8936H − 0.8, (9)

thin ice if LDAs > 0.6, (10)

where LDAs is the LDA score value.
The study [13] identified instances where a significant thick ice area was misclassified

as thin ice on the subsequent day. This misclassification is attributed to modifications
in the sea ice or snow characteristics that blur the distinctions between thin and thick
ice signatures. To address this issue, the restoration of thick ice was explored through
the employment of various V- and H-polarized GR’s across the frequency spectrum of
10.65 to 89 GHz. The GR that most effectively reduced the type I error was identified as
GR3610H. The GR3610H threshold (thGR) is adjusted with a 0.005 step to give very small
the type II error, just below 10%, i.e., GR3610H < thGR includes mostly thick ice signatures.
The learning data herein encompassed all the thick1 and thin data normalized to TS of
−25 ◦C; the testing data are the entire dataset, also normalized to −25 ◦C. In [13], we
applied thick ice restoration with

GR3610H ≤ 0.005. (11)

In ATIDA2 (MTIDA2), the thin vs. thick ice labeling is first carried out with (10) at
10 km (20 km in MTIDA2) resolution. Then, the thick ice restoration procedure (11) is
performed at 30 km (40 km) pixel size.
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The swath ATIDA2/MTIDA2 charts are incorporated into a single more dependable
daily thin ice chart, as detailed in [13,22]. The swath and daily charts have the same pixel
size (10/20 km). For the purpose of labeling a pixel as thin ice, it is a requisite that over
50% of the daily detections are categorized as such. The daily chart categorizes SIC into five
WMO SIC categories [36]: SIC ≤ 10%, 10 < SIC ≤ 40%, 40 < SIC < 70%, 70 ≤ SIC ≤ 90%, and
SIC > 90% and identifying thin ice versus thick ice within the last two categories. Pixels that
consistently receive unknown ice type assignments (Ta > −5 ◦C) throughout the entire day
are labeled accordingly in the chart.

4. Results

Below the ATIDA2 and MTIDA2 thin ice detection algorithms are described, followed
by statistical comparison between the Arctic ATIDA2 and MTIDA2 charts, and finally,
comparison of the charts to the SMOS ice thickness chart.

4.1. Thin Ice Detection—ATIDA2 for AMSR2

ATIDA2 is an iterative algorithm that initiates with the detection of thin ice using
LDA, which is subsequently followed by a process for restoring thick ice. As previously
established in [13], GR3610H acts as the optimal GR within the 10.65 to 89 GHz frequency
spectrum for the thick ice restoration. The procedure for detecting thin ice is performed
at 10 km pixel size, then a coarser pixel size, 30 km, is used for the thick ice restoration
phase. Prior to the execution of ATIDA2, the quantities PR36, GR8936H, and GR3610H are
adjusted to fixed TS set at −25 ◦C. Following [13,22], the average relationships between the
PR and GR signatures and TS were established via linear regressions. These regressions
analyzed the mean signatures inside 2 ◦C wide TS intervals with bin centers spanning from
−34 ◦C to −6 ◦C.

The re-determined ATIDA2 for the Arctic is the following:

1. Atmospheric correction of the TB data. OSI SAF correction with FYI and MYI data:
pixel emissivity is a mixture of Mathew eFYI and eMYI according to daily FYI and MYI
fractions from the NT SIC data. The MYI fraction is only allowed within a MYI mask.
OSISAF TFYI

e f f and Mathew TMYI
e f f with the daily TSre f chart used;

2. Thin ice detection with PR36 and GR8936H

LDAs = 52.5·PR36 + 25.3·GR8936H − 1.0, (12)

thin ice if LDAs > 0.6. (13)

3. TS scaling of PR36 and GR8936H is conducted with

PR36 = 0.0009·TS + 0.053, (14)

GR8936H = 0.0015·TS − 0.006. (15)

4. Thick ice restoration with
GR3610H ≤ 0.005. (16)

TS scaling of GR3610H is conducted with:

GR3610H = 0.0010·TS + 0.023. (17)

Figure 4 illustrates examples of the ATIDA2 Arctic ice charts. On average, 16% of the
pixels within a single swath dataset were identified as thin ice with the LDAs classifier, and
of these, an average of 53% were restored as thick ice using GR3610H. The percentage of
thin ice pixels restored as thick ice within individual swaths varied a lot, from 0% to 100%,
and STD was 20%.

The performance of the LDA classifier, when evaluated using the testing data part of the
combined AMSR2-MODIS dataset, gave the following accuracy metrics: a type Ia error of
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9.6%, a type Ib error of 0.7%, and a type II error of 30.2%. For comparison, the LDA classifier
was also trained with the original uncorrected TB data. The errors are now slightly larger, i.e.,
9.8%, 0.9%, and 31.3%. This demonstrates a contribution of the TB atmospheric correction.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 19 
 

Figure 4 illustrates examples of the ATIDA2 Arctic ice charts. On average, 16% of the 
pixels within a single swath dataset were identified as thin ice with the 𝐿𝐷𝐴  classifier, 
and of these, an average of 53% were restored as thick ice using GR3610H. The percentage 
of thin ice pixels restored as thick ice within individual swaths varied a lot, from 0% to 
100%, and STD was 20%. 

  

(a) (b) 

  
(c) (d) 

Figure 4. AMSR2 and MWRI daily thin ice charts over the Arctic; AMSR2 daily thin ice chart on (a) 
31 December 2016 and (b) 31 January 2017; and MWRI daily thin ice chart on (c) 31 December 2016 
and (d) 31 January 2017. 

The performance of the LDA classifier, when evaluated using the testing data part of 
the combined AMSR2-MODIS dataset, gave the following accuracy metrics: a type Ia error 
of 9.6%, a type Ib error of 0.7%, and a type II error of 30.2%. For comparison, the LDA 
classifier was also trained with the original uncorrected 𝑇   data. The errors are now 
slightly larger, i.e., 9.8%, 0.9%, and 31.3%. This demonstrates a contribution of the 𝑇  at-
mospheric correction. 

Figure 4. AMSR2 and MWRI daily thin ice charts over the Arctic; AMSR2 daily thin ice chart on
(a) 31 December 2016 and (b) 31 January 2017; and MWRI daily thin ice chart on (c) 31 December 2016
and (d) 31 January 2017.

The accuracy of the ATIDA2 daily ice chart was assessed using the MODIS daily hiM
charts for two winter seasons spanning 2015–2017 (November–April). This assessment
categorized sea ice in the MODIS charts into thin and thick classes at a 10 km pixel
resolution, as detailed in [13]. The evaluation involved counting the number of MODIS
hiM pixels containing ice thickness data within each AMSR2 pixel (up to a maximum
of 100 pixels). A label of thick (or thin) ice was set if at least 90% of the hiM pixels had
estimates greater than 20 cm (or hiM ≤ 20 cm), respectively. The type I and II errors, when
compared against two seasons of the MODIS hiM charts, were found to be 7.0% and 41.9%,
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respectively. In [13], these errors were reported as 8.7% and 37.0%. Therefore, there was
a slight improvement in the type I error, which is considered more significant than the
deterioration observed in the type II error. The error figures with the daily hiM charts are
somewhat unreliable as the cloud masking in the chart did not include manual editing.

In the analysis of how Ta affects the type I and II errors, it was observed that the
probability density functions (pdfs) of daily mean air temperature (Tam) associated with
these errors exhibit almost symmetric distributions. Moreover, type II errors are more
prevalent under extremely cold conditions: the proportion of Tam falling below −20 ◦C
stands at 0.52 for type II errors, whereas for type I errors, this proportion is just 0.12. The
lack of correlation between the errors and Tam indicates that the TS scaling of PR and GR
signatures work properly. In the daily ice charts, pixels labeled as thick ice predominantly
coincide with daily SIC > 90% (accounting for 90% of such pixels), whereas around 70%
of pixels with the thin ice label have SIC values ranging from 70 to 90%. This follows SIC
underestimation for thin ice [25,27–29].

4.2. Thin Ice Detection—MTIDA2 for MWRI

For determination of MTIDA2, there are coincident MWRI CRM TB data and MODIS
hiM charts only for the time period October 2014–April 2015. The resulting MTIDA2 for the
Arctic is

1. Same atmospheric correction as for the AMSR2 TB data;
2. Thin ice detection with PR36 and GR8936H

LDAs = 63.3·PR36 + 36.2·GR8936H − 1.5 (18)

thin ice if LDAs > 0.8. (19)

TS scaling of PR36 and GR8936H is conducted with:

PR36 = 0.0011·TS + 0.057, (20)

GR8936H = 0.0019·TS − 0.008. (21)

3. Thick ice restoration with
GR3610H ≤ 0.005. (22)

TS scaling of GR3610H is conducted with

GR3610H = 0.0017·TS + 0.044. (23)

Samples of the MTIDA2 Arctic daily charts are depicted in Figure 4. The accuracy of
MTIDA2 determined with the testing data part of the combined MWRI-MODIS dataset is
the following: type Ia error is 10.7%, type Ib 0.2%, and type II 36.0%. The type Ia and II errors
are slightly larger than those for ATIDA2 (9.6% and 30.2%). The ATIDA2 vs. MTIDA2
accuracy differences are likely due to larger footprints of MWRI, which leads to larger
spatial averaging of TB signatures and thus, less detection of thin ice. In addition, the
MWRI-MODIS data are missing the January–April 2014 period.

The type I and II errors relative to the MODIS daily ice charts, categorized into thin
and thick ice at the 20 km pixel resolution of the MTIDA2 chart, are at 4.4% and 53.2%,
respectively. The type I error for the MTIDA2 chart is smaller compared to that of the
ATIDA2 chart (7.0%) but the type II error for MTIDA2 exceeds that of ATIDA2 (41.9%). It
is again noted, however, that the accuracy metrics derived from the MODIS daily charts
are just estimations. The Tam pdfs for the type I and II errors display a near symmetrical
distribution around their mean values, with type II errors being more frequent under very
cold conditions: for the type II error, the proportion of Tam < −20 ◦C is 0.47, in contrast to
only 0.12 for type I errors. In the MTIDA2 chart, the majority of thick ice pixels are found
in regions where the daily SIC > 90% (91% of pixels), whereas 44% of thin ice pixels are
associated with SIC ranging from 70 to 90%. For the ATIDA2 chart, the thin ice figure was
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much higher, at 70%. The difference is due to different SIC algorithms used for the L2
AMSR2 and MWRI products.

4.3. Comparison of AMSR2 and MWRI Arctic Daily Thin Ice Charts

Here, ATIDA2 and MTIDA2 Arctic charts for October 2016–May 2017 are compared to
each other. The first comparison is to investigate the statistics of the thick ice restoration in
the Arctic swath charts. This is conducted using swath charts, which had at least 100 thin
ice pixel detections in an ATIDA2 chart (10 km pixel) and 25 detections in an MTIDA2
chart (20 km). The number of the ATIDA2 charts is 3457 and that of the MTIDA2 charts is
3286. The ATIDA2 and MTIDA2 swath charts cannot be directly compared to each other as
the acquisition times are different. The mean thick ice restoration fraction, thick ice restora-
tion pixels/thin ice pixels, is 0.53 for ATIDA2 and 0.44 for MTIDA2. The 90th percentile is
larger for ATIDA2, 0.80, than, for MTIDA2, 0.73. Thus, thick ice restoration happens more
often in ATIDA2 and this is due to different resolutions.

Further comparison is conducted using the daily charts. For this, the MTIDA2 20 km
charts are replicated to 10 km pixel size. Pixels from both charts which show either thin
class or SIC classes 70–90% and >90% (both represent thick ice) are used in the comparison,
i.e., in a total of three classes, the results are shown as a confusion matrix in Table 2.

Table 2. Confusion matrix between ATIDA2 and MTIDA2 daily Arctic thin ice chart classes: thick ice
with SIC 70–90% or SIC > 90% and thin ice. Calculated pixel-wise and ATIDA2 as ‘ground truth’.

MWRI

AMSR2 Thick, 70–90% Thick, >90% Thin Ice

thick, 70–90% 21% 57% 22%

thick, >90% 1% 98% 1%

thin ice 7% 40% 53%

For the thick ice with SIC > 90% the correspondence in the ATIDA2 and MTIDA2
charts is very high but for the thin ice class only it is 53% and for the thick ice with 70–90%
SIC it is only 21%. Latter disagreement can be explained by different SIC data used; the
MWRI SIC data have in general higher SIC values than the AMSR2 SIC. The thin ice
disagreement is likely due to different resolutions, as a coarser resolution in the MTIDA2
chart leads to less detection of thin ice. For the MTIDA2 chart pixels with thin ice class, 72%
of co-incident ATIDA2 pixels also show thin ice.

4.4. Comparison againts SMOS Sea Ice Thickness Chart

To facilitate comparison with the ATIDA2 chart, the SMOS hiS chart with a 12.5 km
pixel size, was resampled to the 10 km grid using nearest neighbor interpolation. This
resampled SMOS hiS chart was then further block averaged into 20 km pixel size, aligning it
for comparison with the MWRI2 chart. Subsequently, the daily SMOS hiS data were labeled
into thin and thick ice categories based on a thickness threshold of 0.2 m. Comparisons
between the ATIDA2/MTIDA2 and SMOS charts were conducted on a daily basis, focusing
on pixels with valid data in both datasets, from which mean type I and II errors were
derived using the SMOS chart as a benchmark. Additionally, statistical analysis of the hiS
data within the ATIDA2/MTIDA2 defined thin and thick ice categories were performed.
The hiS data, collected daily from 15 October 2016 to 15 April 2017, included only hiS data
with a saturation ratio below 90% and uncertainty of less than 1 m [43]. The reliability
of these accuracy evaluations against the SMOS chart is somewhat limited due to the
high uncertainty of 0.31 m for hiS [2], especially when considered in relation to the 0.2 m
thickness threshold distinguishing thin ice and thick ice categories.

The mean type I and II errors identified for the ATIDA2 chart are 3.8% (with std of
2.1%) and 50.7% (std of 12.4%), respectively. When aggregating all daily hiS data, the mean
thickness for the thin ice category is 0.21 m (1.34 × 106 samples) and 0.51 m for the thick
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ice category (5.45 × 106 samples). The proportion of hiS ≤ 0.2 m for the thin ice category
is average, at 0.58, while for the thick ice category, the proportion of hiS > 0.2 m is very
high, at 0.86. Figure 5 shows the frequency distributions of hiS data for the ATIDA2 chart’s
thin ice and thick ice categories. For the MTIDA2 chart, the mean type I and II errors are
2.7% (with std of 1.6%) and 59.0% (std of 12.1%), respectively. Notably, the type II error is
considerable for both charts, which may be partially attributed to the inaccuracies within
the SMOS dataset. For the thin ice category under the MTIDA2 chart, the mean hiS is 0.18 m
(0.27 × 106 samples) and for the thick ice category, the mean is 0.48 m (1.49 × 106 samples).
These means closely resemble those for the ATIDA2 chart (0.21 m and 0.51 m). For the
MTIDA2 thin ice category, the proportion of hiS ≤ 0.2 m is 0.67, i.e., better than for ATIDA2,
and for the thick ice category, the proportion of hiS > 0.2 m is high, at 0.81, as illustrated
in Figure 6.
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ATIDA2 and MTIDA2 thick and thin ice categories in the SMOS data support the following
conclusion. We can infer that both ATIDA2 and MTIDA2 charts have a rough match with
the SMOS data in the thin ice vs. thick ice classification.

5. Discussion and Conclusions

The investigations herein extend our previous study [13], where an algorithm ATIDA2
for thin ice detection was presented. The same approach was applied to the FY-3C MWRI
radiometer data resulting in the MTIDA2 thin ice identification algorithm. We also rede-
fined the ATIDA2 algorithm for the AMSR2 data. This was needed as the TB atmospheric
correction was modified to better compensate for this temporal and spatial variation in sea
ice Te f f . The results showed that thin ice detection with MWRI data, which has roughly
two times coarser resolution than the AMSR2 data, is also possible with sufficient accuracy.

For both the AMSR2 and MWRI swath TB data, LDA is utilized for the classification
of PR36 and GR8936H signatures for thin ice detection, and GR3610H is applied for the
restoration of falsely detected thin ice, mitigating errors due to thin ice and FYI or MYI
signature mixing. The upper limit for thin ice thickness remained at 20 cm, consistent
with [13]. The ATIDA2 algorithm generates a daily thin ice chart at a 10 km grid, whereas
the MTIDA2 chart is produced at a 20 km grid. The daily charts are compiled from
the swath charts with the same pixel sizes. Thin ice detection is performed only when
SIC ≥ 70% and Ta < −5 ◦C, to limit the incorrect identification of thick ice as thin ice. The
atmospheric correction of TB data precedes the thin ice detection process and follows the
OSI SAF atmospheric correction methodology [24,26].

Both ATIDA2 and MTIDA2 algorithms were trained and evaluated using the MODIS
hiM charts as reference. On average, the likelihood of misclassifying thick ice as thin ice
in the ATIDA2 daily chart is 7.0% and 41.9% for reverse misclassification. Corresponding
accuracy figures for the MTIDA2 daily charts are 4.5% and 52.4%. The higher type II error
for MTIDA2 stems from the MWRI’s coarser resolution, which results in larger spatial
averaging of TB signatures and, therefore, reduced thin ice detection.

A comparative analysis between the MTIDA2 and ATIDA2 charts showed a 98%
match for the thick ice category with SIC above 90% but only 54% for the thin ice category
and 21% for the thick ice category with SIC between 70–90%. The discrepancy in thin
ice detection can be attributed to the MWRI’s coarser resolution. When comparing the
ATIDA2 chart against the MTIDA2 chart, the agreement rate for thin ice was 72%. A larger
proportion of high SIC values in the MWRI SIC data contributes to the disagreement in the
thick ice category with SIC 70–90%. The comparison of the ATIDA2 and MTIDA2 charts
with the SMOS ice thickness chart indicated a general concurrence in the classification of
thin versus thick ice.

Thin ice detection algorithms developed earlier for radiometer data were targeted
to detect either polynyas [19,20] (polynya signature simulation method (PSSM)) or wide
leads within pack ice [21]. Our ATIDA2/MTIDA2 can detect polynyas and very wide leads
(~10 or 20 km in width) and also thin ice in MIZ where it may have a large coverage during
the freeze-up season. Compared to PSSM, ATIDA2/MTIDA2 offers a simpler approach for
polynya detection, facilitating its application to vast radiometer datasets. The successful
detection of thin ice using AMSR2 and MWRI data suggests potential applicability to
AMSR-E data, though SSM/I and SSMIS datasets are unsuitable due to the absence of the
10.65 GHz channel. Monitoring of ice thickness and thickness production rates in polynyas
have been investigated in many studies, e.g., [5–12]. In these studies, algorithms were
trained using hi calculated based on TS from TIR (thermal infrared) imagery. Estimation of
hi is mostly conducted up to 20 cm thickness. However, herein, estimation of thin ice hi
with sufficient accuracy is practically impossible due to the significant variability in the
MODIS hiM versus PR36 data. We reached this conclusion in [22] based on our extensive
MODIS training dataset that included thin ice from polynyas, ice edges, and large MIZ
areas during freeze-up.
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The main uncertainties in the thin ice detection and thickness retrieval with any
radiometer algorithm include TB signature mixing from various surface types (open water,
thin ice, FYI, and MYI), low SIC in thick ice that may resemble thin ice signatures at 100%
SIC, and ice surface effects like snow cover on thicker thin ice (~10–30 cm) and roughness,
which can generate signatures similar to those of thick ice [14,30–32]. We assume that
further notable improvements in thin ice detection require additional satellite data, such as
a combination of radiometer and scatterometer data, e.g., [52].

The AMSR2 and MWRI daily thin ice charts aim to complement SAR data for sea
ice classification tasks. The ATIDA2 and MTIDA2 algorithms prioritize minimizing the
mislabeling of thick ice as thin ice—a serious flaw for ship navigation. For snow depth and
SIC algorithms, the charts can show the occurrence of thin ice either for corrective actions
or pixel flagging.
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