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Abstract: This manuscript presents a novel scheme to achieve high-resolution laser-radar ranging
with a small sample number under low signal-to-noise ratio (SNR) conditions. To reduce the sample
number, the Restricted Isometry Property-based optimal multi-channel coprime-sampling (RIP-
OMCS) strategy is established. In the RIP-OMCS strategy, the data collected across multiple channels
with very low coprime-sampling rates can record accurate range information on each target. Further,
the asynchronous problem caused by channel sampling-time errors is considered. The sampling-
time errors are estimated using the cross-correlation function. After canceling the asynchronous
problem, the data collected by multiple channels are then merged into non-uniform sampled signals.
Using data combination, target-range estimation is converted into an optimization problem of sparse
representation consisting of a non-uniform Fourier dictionary. This optimization problem is solved
using adaptive hybrid re-weighted constraint (AHRC) l1 minimization. Two constraints are formed
from statistical attributes of the targets and clutter. Moreover, as the detailed characteristics of the
target, clutter, and noise are unknown before the solution, the two constraints can be adaptively
modified, which guarantees that l1 minimization obtains the high-resolution range profile and
accurate distance of all targets under a low SNR. Our experiments confirmed the effectiveness of the
proposed method.

Keywords: high-resolution ranging; restricted isometry property-based optimal multi-channel
coprime sampling (RIP-OMCS); adaptive hybrid re-weighted constraint (AHRC); low SNR

1. Introduction

Laser radar, an active measurement technology utilizing laser for target detection and
range measurement, compares the phase, the frequency, and other attributes of transmitted
and echo signals to provide target-range information [1,2]. Its advantages, including
a high resolution, strong directivity, and narrow beam width, make it indispensable in
environmental perception, meteorological research, and high-precision ranging [3–8].

Despite significant progress, challenges in laser-radar ranging persist. Laser radar
can measure the frequency of the dechirp signal for target-range information, with the
bandwidth of the dechirp signal determined by the range of the observation scene [9–11]
According to the Nyquist sampling theorem, the sampling frequency must exceed twice
the signal bandwidth during analog-to-digital signal conversion. Wide observation scenes
necessitate higher sampling rates, increased data storage, and enhanced signal-processing
capabilities. These demands increase with ultra-wide bandwidths and expansive ranging
scenarios [12,13]. Furthermore, the rapid attenuation of laser-radar signals compared to
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microwave signals results in a low SNR during long-distance detection, impeding high-
precision long-distance ranging.

To enhance the ranging performance of laser radar, two distinct methods have been
proposed: (1) utilizing improved spectrum-estimation methods [14–18]; and (2) employing
techniques like compressive sensing [19–28], multi-channel technology [29–35], or deep
learning [36–38].

In terms of improving spectrum-estimation methods, Liu et al. [39] proposed the zoom
fast Fourier transform (ZFFT) algorithm, reducing the influence of the spectrum barrier
effect in Fast Fourier Transform (FFT) operations, thereby improving ranging accuracy. Li
et al. [40] used frequency-domain oversampling interpolation and chirp z-transform algo-
rithms to process the dechirp signal of Frequency Modulated Continuous Waves (FMCW)
laser radar, effectively reducing measurement errors caused by inherent frequency-domain
sampling intervals and enhancing the ranging resolution. Arseny Vasilyev et al. [41] pro-
posed a method to increase the effective bandwidth of frequency-modulated continuous-
wave ranging systems by increasing the sweep bandwidth to improve the ranging resolu-
tion. Scherr et al. [42] improved the frequency-estimation algorithm of dechirp signals in
FMCW laser radar using the chirp z-transform (CZT) algorithm, continuously refining the
phase of the signal to improve the ranging accuracy. Xu et al. [43] proposed the coherent
CZT algorithm, which combines the fast variation characteristics of the coherent spectrum
near the peak to achieve high-precision ranging.

On the other hand, the use of multi-channel technology, compressive-sampling technol-
ogy, or deep learning technology to enhance ranging accuracy has also attracted widespread
attention. For example, Zhang et al. [44] presented a three-path-structure FMCW resam-
pling ranging method, which improves laser-radar detection performance by partially
resampling with the same frequency interval through auxiliary interference. Li et al. [31]
proposed multi-channel inverse synthetic-aperture laser-imaging detection technology and
experimental research with high-resolution imaging capabilities. He et al. [45] and Zang
et al. [46] proposed synthetic-aperture lidar-imaging algorithms based on compressive-
sensing theory, which can achieve high-resolution imaging with low sampling conditions.
Tian et al. [47] proposed a target linear-observation model for constructing sparse signals
and realizing the reconstruction of lidar target images. Wu et al. [48] proposed a new
millimeter wave (MMW) synthetic-aperture radar (SAR) sparse-imaging method by estab-
lishing a 2D pseudorandom spiral-sampling pattern. A singular value thresholding (SVT)
algorithm was applied to reconstruct the complete echo from partial samples observed by
sparse sampling. This method achieves real-time signal acquisition while reducing system
costs. Wang et al. [49] proposed a low-computational-complexity SAR imaging algorithm
for ship monitoring via 2D band-limited sparse Fourier transform (2D-BLSFT), utilizing
the block-sparse feature of imaging scenes. This method utilizes the sublinear computa-
tional and sample complexity of 2D-BLSFT to reduce the computational complexity of
SAR imaging algorithms. Fan et al. [50] proposed a new point-matching algorithm for
SAR image registration using a sparse representation of the newly designed image-patch
feature. This method can utilize the obtained sparse coefficients to improve localization ac-
curacy. Pu et al. [51] proposed a robust principal component analysis autoencoder network
(RPCA-AENet) in a single-channel SAR system. Reconstruction loss of the autoencoder,
entropy loss of the imaging results, and measurement distance loss were proposed to guide
the learning of the weights in the networks to obtain the optimal imaging results. The
algorithm does not need the accurate movement information of the radar platform, and
it is capable of solving the problem of clutter suppression and simultaneous moving and
stationary target imaging in the presence of motion errors.

Although many methods have been proposed to improve the ranging performance
of laser radar, there are still some challenges due to the influence of a large bandwidth,
large range, and low SNR. Many improved spectrum-estimation methods [39–43] assume
that the sampling rate satisfies the Nyquist sampling theorem. For laser-radar signals
with an ultra-wide bandwidth and large ranging range, the sampling rate according to



Remote Sens. 2024, 16, 1647 3 of 24

the Nyquist sampling theorem will lead to a huge amount of data that are difficult to
process efficiently [52]. The method of combining some technologies, such as compressive
sensing [45–50], often uses random sampling, which is difficult to achieve, and it easily
produces a time-sampling error. Although multi-channel technology [34,35] is expected to
improve performance, it usually ignores the time error between channels. Deep learning
technology [37,38,51] can learn the distance characteristics between radar and the target
and obtain the target distance information by training many ranging scenes. However,
the training and optimization process of the model requires a lot of time and computing
resources. The interpretability of the deep learning model is poor, which makes it difficult
to explain the basis and process of its judgment. Meanwhile, in another sampling method, it
is necessary to retrain the model. At the same time, the ranging performance of the existing
methods still needs to be improved at a low SNR, and more efficient noise-suppression
methods are needed. Therefore, this manuscript proposes a novel scheme to achieve high-
resolution ranging with a small sample number under low-SNR conditions. Compared with
the state-of-the-art methods currently available, the proposed method can achieve higher-
ranging performance under small sampling and a low SNR. The internal sampling of each
channel is uniform, making hardware implementation easier. The model establishment
and the solution process have a clear mathematical meaning, which can accurately obtain
high-performance target distance information. The contributions of this manuscript are
as follows.

(1) Firstly, we introduce an RIP-OMCS strategy. This strategy ensures uniform internal
sampling within each channel and coprime sampling among channels, facilitating
hardware implementation. This strategy achieves a much smaller sample number
while maintaining high-ranging accuracy.

(2) Subsequently, we utilize the cross-correlation function for estimating sampling-time
errors. Using the cross-correlation function of the time-domain spectrum of the
reference channel and other channels, the asynchronous sampling-time error can
be estimated. After compensating for these estimated errors, we perform ranging
model registration.

(3) Finally, we reformulate target-range estimation as an optimization problem of sparse
representation. This optimization incorporates sparse constraints and AHRC to
embody prior information. Through an iterative solving process, AHRC gradu-
ally refines, thereby enhancing the accuracy of the solution. AHRC combines the
characteristics of the logarithmic penalty function and the arctangent penalty func-
tion in different regions. Therefore, AHRC effectively distinguishes the influence
of signal and noise when solving the optimization problem. This leads to the re-
construction of a high-resolution range profile and the acquisition of a more ac-
curate target distance while reducing the influence of noise. The proposed method
achieves accurate high-resolution ranging under low-SNR, ultra-wide bandwidth, and
sub-Nyquist sampling.

The manuscript is organized as follows. Section 2 introduces the principles of laser-
radar ranging and presents a ranging model based on a multi-channel coprime low-
sampling scheme. In Section 3, we formulate the target-range estimation problem and
outline our approach to obtain the optimal solution. This section is further divided into
the RIP-OMCS strategy, asynchronous sampling-time error estimation and ranging model
registration, and the target-range estimation method based on AHRC l1 minimization.
Section 4 discusses the results of the experiments that were conducted. Conclusions are
drawn in Section 5.

2. Laser-Radar Ranging Model with Small Sample Number Based on Multi-Channel
Coprime Sampling

The mathematical model of laser-radar ranging is introduced in Section 2.1. In Sec-
tion 2.2, we establish the ranging model based on the multi-channel coprime low-sampling
scheme, which considers the sampling-time error.
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2.1. Mathematical Model of Laser-Radar Ranging

Laser-radar ranging systems commonly utilize Linear FMCW for transmission. Range
information between the target and the radar is acquired by measuring the frequency
difference between the target echo and the local signal. A typical laser-radar ranging
system [31] is shown in Figure 1.
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Figure 1. Typical laser-radar ranging system.

Considering that laser-radar signals have a wide bandwidth and the observed scenes
are relatively small, the dechirping processing can effectively reduce the sampling rate. We
can take the sawtooth FMCW as an example, as shown in Figure 2. The blue line represents
the time–frequency curve of the reference signal, the dashed orange line represents the
time–frequency curve of the received signal, and the red line represents the time–frequency
curve of the dechirp received signal. Observing Figure 2, TP represents the pulsewidth,
f = 1/TP is the sweep frequency, and B is the bandwidth. τ represents the time interval
between the transmission of the signal from the radar system and its reception by the radar
detector after reflection from the target, τ = 2R/c. R represents the range between the
target and radar. c represents the speed of light.
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Assume that the transmission signal of the laser radar is linearly frequency-modulated
(LFM):

s(t) = rect
(

t
TP

)
exp

(
j2π

(
fct +

1
2

γt2
))

(1)

where rect[] is the rectangular window function, t represents the fast time. fc represents the
carrier frequency, and γ is the chirp rate of the signal.

If the target is composed of P scattering points, the range from the i-th (1 ≤ i ≤ P)
scattering point to the radar is Ri, and the target echo signal received by the radar is

sr(t) =
P

∑
i=1

airect

(
t− 2Ri

c
TP

)
exp

(
j2π fc

(
t− 2Ri

c

)
+ jπγ

(
t− 2Ri

c

)2
)

(2)

where ai represents the reflectivity coefficient corresponding to the i-th scattering point.
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The reference signal is

sre f (t) = rect

 t− 2Rre f
c

Tr

 exp

(
j2π fc

(
t−

2Rre f

c

)
+ jπγ

(
t−

2Rre f

c

)2
)

(3)

where Rre f represents the reference range. Tr represents the pulsewidth of sre f (t), which is
longer than TP.

sd(t) = sr(t) · s∗re f (t)

=
P
∑

i=1
airect

(
t− 2Ri

c
TP

)
exp

(
−j 4π

c γ
(

t− 2Rre f
c

)
Ri∆

)
exp

(
−j 4π

c fcRi∆

)
exp

(
j 4πγ

c2 R2
i∆

) (4)

where Ri∆ = Ri − Rre f , and []∗ represents conjugate operation. Applying the Fourier
transform to Equation (4), we can obtain the range profile of laser radar, which can be
expressed as

Sd( f ) =
P

∑
i=1

aisin c
[

TP

(
f +

2γ

c
Ri∆

)]
exp

(
−j

4π

c
fcRi∆

)
exp

(
j
4πγ

c2 R2
i∆

)
exp

(
−j4π f

Ri∆
c

)
(5)

Observing Equation (5), the dechirp-received signal becomes a narrow pulse in the
shape of a sinc function with a width of TP and its peak is located at f = −2γ× Ri∆/c in
the frequency domain. We can obtain the range from the target to the laser radar through
the position of this narrow pulse.

Ri∆ = − c f
2γ

(6)

The range resolution can be written as

ρ =
c

2γ
× 1

TP
=

c
2B

(7)

If the observation range of the laser radar is ∆R, then the frequency range after the
dechirping is [−∆R× γ/c, ∆R× γ/c], and the bandwidth of the dechirp-received signal
can be expressed as

fd =
2∆R

c
γ (8)

After dechirp reception, the bandwidth of the dechirp received signal decreases
significantly compared to the original signal. Effective sampling of the dechirp received
signal can be achieved when the sampling frequency is greater than twice the highest
frequency of the dechirp-received signal.

Fs ≥
2∆R

c
γ (9)

Here, Fs denotes the Nyquist sampling frequency of the dechirp-received signal.

2.2. Ranging Model Based on the Multi-Channel Coprime Low-Sampling Scheme

Although the sampling rate can be reduced by dechirp operation, it still faces chal-
lenges of high-speed sampling and high data storage when dealing with wide bandwidths
and expansive scenes. To address this issue, this manuscript proposes the multi-channel
coprime low-sampling scheme. The sampling rate remains constant within each channel,
while the intervals among channels are coprime. Compared to random sampling, the
proposed method has a simpler hardware implementation.
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The transformation of the dechirp-received signal from the time domain to the fre-
quency domain can be discretely expressed [25,26,35] as

s = Fa (10)

where F is the inverse Fourier basis matrix. a is the range profile, which corresponds to
the frequency-domain vector of the dechirp-received signal and has strong sparsity. s is
observation vector of the dechirp-received signal in the time domain.

The multi-channel coprime low-sampling scheme is shown in Figure 3. There are I
coprime multiple channels, and each channel has a fixed sampling frequency. The sampling
intervals among channels are uniform and coprime. The sampling rates of each channel
ADC are Fs/D1, Fs/D2, · · · Fs/DI , where Fs is the Nyquist sampling rate of the laser radar,
and D1, D2, · · · , DI are all coprime. The sum of the sampling rates of multi-channel coprime
low-sampling is less than Fs. s(i) ∈ Mi × 1 is the time-domain echo of the dechirp-received
signal that can be collected by the ith channel, where 1 ≤ i ≤ I. M is the number of
sampling points of laser radar under ideal Nyquist sampling.
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The signals collected by the multi-channel coprime low-sampling can be expressed as

sMCO = ΦMCOa + n

sMCO = Γ
(

vec
(

s(1), s(2), · · · , s(I)
)T
)

M×1

ΦMCO = Γ
(
[Φ1, Φ2, · · · , ΦI ]

T
)

M×M

Φi =
[
Φ(1)

i , Φ(2)
i , · · ·Φ(Mi)

i , · · ·Φ(M)
i

]
Mi×M

(1 ≤ i ≤ I)

Φ(n)
i =

[
Φ(n,1)

i , Φ(n,2)
i , · · ·Φ(n,Mi)

i , · · ·Φ(n,M)
i

]
(1 ≤ n ≤ Mi)

Φ(n,m)
i = exp

(
j2π

(n−1)Dim
M

)
(1 ≤ m ≤ M)

(11)

where sMCO represents the pre-processed echo after the dechirping of the multi-channel
coprime low-sampling scheme. a is the range profile to be reconstructed. n is the system
noise, and ΦMCO is the sensing matrix of the multi-channel coprime low-sampling, which
is the non-uniform Fourier transform matrix. In Equation (11), s(i) and Φi represent echo
under dechirp processing and partial sensing matrix of the i-th channel. Γ(·) represents
the matrix operation, which sorts the data according to the acquisition time and eliminates
the repeated acquisition values of multi-channels at the same time. After the above matrix
operation on data from the multi-channel coprime low-sampling scheme, sMCO is the M× 1
matrix, ΦMCO is the M×M matrix, and M < ∑I

i=1 Mi. In the model-establishment process,
we can see that the sample number based on the multi-channel coprime low sampling is
much smaller than the Nyquist sampling.
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When ADC based on the multi-channel coprime low-sampling scheme performs laser-
radar sampling, there is asynchronous sampling-time error among the channels. The model
is as follows:

sMCO_g = ΦMCO_ga + n = (Θ�ΦMCO)a + n (12)

where sMCO_g represents the echo after the dechirping process of the multi-channel coprime
sampling with sampling-time error, Θ is the phase-error matrix of the sampling-time error,
and � represents the Hadamard product.

3. High-Resolution Ranging Based on Optimal Multi-Channel Coprime
Low-Sampling under Low SNR

High-resolution ranging based on optimal multi-channel coprime low-sampling under
low SNR is proposed in this section, and some key procedures are discussed in detail.
According to the ranging model in Section 2, the challenges of selecting the optimal multi-
channel coprime low-sampling combination and mitigating asynchronous sampling-time
error and noise interference are crucial for accurately estimating the target range with a
small sample number. To address these issues, in this manuscript, we propose the novel
processing framework shown in Figure 4.

• To reduce the overall sample number of the laser-radar system, we propose the
RIP-OMCS strategy. This strategy achieves a small overall sample number while
maintaining ranging accuracy.

• Addressing the issue of asynchronous sampling-time error, we propose the cross-
correlation method to estimate errors. The time error compensation is performed by
means of ranging model registration.

• To tackle the performance limitations of traditional sparse-reconstruction algorithms
and the accuracy issues of target-range estimation under low SNR, we introduce a
target-range estimation method based on AHRC l1 minimization under a low SNR.
AHRC is formulated by combining logarithmic and arctangent penalty functions. This
constraint function dynamically imposes precise constraints on the noise and target
components, obtaining a high-resolution range profile and enhancing the target-range-
estimation accuracy.
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3.1. RIP-OMCS Strategy

Nyquist sampling may lead to a large amount of data transmission and storage
requirements, increasing system cost and complexity. According to the model established
in Section 2, this section proposes the RIP-OMCS strategy, which can significantly reduce
the sample number while ensuring the ranging accuracy.
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Assume that the range profile a ∈ CM contains at most K non-zero elements, where
CM represents the space of complex numbers. Then, a is referred to as K-sparse [19],
denoted as

a ∈∑K =
{

a ∈ CMtextb f :‖a‖0 ≤ K
}

(13)

where ‖·‖p is the lp norm.
Since the range profile is sparse, we can use compressed sensing to process sparse

signals, which can achieve high-precision estimation of target-range information with fewer
data. If the sparse sampling strategy satisfies the RIP [20,53,54], the accurate estimation of
the range can be obtained under the minimum number of samples. The general sampling
method can be described by the sensing matrix. In Section 2, the sensing matrix ΦMCO is a
non-uniform Fourier transform matrix, so ΦMCO should meet the RIP. For any K-sparse
range profile, the following conditions should be satisfied

(1− δK)‖a‖2
2 ≤ ‖ΦMCOa‖2

2 ≤ (1 + δK)‖a‖2
2 (14)

where δK is the K-order Restricted Isometry Coefficient (RIC), and its value range is
0 ≤ δK ≤ 1. The RIP ensures that the sensing matrix does not map different sparse
signals to the same target-range unit.

The non-uniform Fourier transform matrix ΦMCO can be regarded as a dimensionality-
reduction operator. If ΦMCO satisfies the RIP, the measurement is accurate enough, and the
original signal is a sparse signal. Equation (12) has a unique exact solution. For any K-sparse
laser-radar range profile a, let τ be its support set; then, we can obtain the following:

‖ΦMCOa‖2
2 = 〈Φτ

MCOa, Φτ
MCOa〉 =

〈
(Φτ

MCO)
HΦτ

MCOa, a
〉

(15)

where 〈·〉 is the scalar product, and (·)H denotes conjugate transpose. If ΦMCO satisfies the
RIP, then the eigenvalues of

(
Φτ

MCO
)H(Φτ

MCO
)

belong to [1− δK, 1 + δK]. The smaller δK is,

the closer the eigenvalue of
(
Φτ

MCO
)H(Φτ

MCO
)

is to 1, which means that
(
Φτ

MCO
)H(Φτ

MCO
)

is closer to the unit matrix. This shows that the column vectors of ΦMCO are approximately
orthogonal to each other, and the equation group (12) composed of the laser-radar ranging
model based on a multi-channel coprime low-sampling scheme is independent. A more
accurate target-range estimation result is obtained by solving this equation group.

In this manuscript, the optimal RIC is used as the RIP-OMCS strategy for the selection
of a multi-channel coprime low-sampling combination. The selected optimal coprime
multiple channels can significantly reduce the required sample number while maintaining
high-quality signal acquisition. This provides data support for the high-performance sparse
reconstruction of target-range information.

3.2. Asynchronous Sampling-Time Error Estimation and Compensation

The performance of hardware implementation components may constrain the sam-
pling time of different channel ADCs. Asynchronous sampling-time errors can lead to
mismatches in the ranging model, failing to reconstruct the range profile. In Section 3.2,
the mathematical model analyzes the influence of sampling-time errors of the coprime
channels, and sampling-time errors are estimated by the cross-correlation function.

The sampling-time error is a fixed synchronization time error, as shown in Figure 5.
When the channel has a sampling-time error ∆te, the signal received by the channel can be
expressed as
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The dechirp-received signal with a sampling-time error can then be obtained

sd_e(t + ∆te) =
P

∑
i=1

airect

(
t + ∆te − 2Ri

c
Tp

)
exp

(
−j

4π

c
γ

(
t + ∆te −

2Rre f

c

)
Ri∆

)
exp

(
−j

4π

c
fcRi∆

)
exp

(
j
4πγ

c2 R2
i∆

)
(17)

Fourier transform is performed on Equation (17), and the frequency-domain expression
of the dechirp-received signal with sampling-time error can be obtained

Sd_e( f ) =
P

∑
i=1

aisin c
[

TP

(
f +

2γ

c
(Ri∆)

)]
exp

(
−j

4π

c
fcRi∆

)
exp

(
j
4πγ(Ri∆)

2

c2

)
exp

(
−j4π f

Ri∆
c

)
exp(j2π fc∆te) (18)

It can be seen in Equation (18) that the dechirp-received signal with sampling-time
error from the time domain to the frequency domain becomes a sinc-shaped narrow pulse
with a width of 1/Tp and a peak value at f = −2γ× Ri∆/c. It is obvious that the peak
position is not affected by the sampling-time error. However, the phase in the frequency
domain will change, and the change is related to the sampling-time error ∆te. Due to
the phase error of the dechirp-received signal between the channels, the dechirp-received
signal among the channels will degenerate into a non-coherent signal, and it is impossible
to combine multiple channels to achieve high-precision signal recovery.

To solve these problems, Section 3.2 proposes a sampling-time error estimation method
based on cross-correlation function, which is shown in Figure 6.
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Figure 6. Sampling-time error-estimation diagram.
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Assuming that the sampling-time error is independent of time, the calibration signal
can be used to estimate sampling-time error, and the bandwidth of the calibration sig-
nal is less than the minimum channel sampling frequency in the optimal multi-channel
coprime low-sampling combination. The signal spectrum after the dechirping process
is Si(1 ≤ i ≤ IO), and IO is the total number of channels. The dechirp-received signal
spectrum is interpolated and truncated, so that the spectrum range and sampling points
of each channel are consistent, and the corresponding spectrum is ui. The corresponding
time-domain spectrum ut_i is further obtained. The first ADC sampling channel is used as
the reference channel, and the cross-correlation function of the time-domain spectrum of
the i-th channel and the reference channel can be expressed as

R1i(τ∆i) =
∫

ut_1(t)ut_i(t− τ∆i)dτ∆i(1 < i ≤ IO) (19)

According to the value of R1i(τ∆i), the coarse sampling-time error ∆tmi can be es-
timated. However, the coarse sampling-time error estimated by Equation (19) is the
multiple of the sampling time. The sampling rate of each channel is relatively low, and the
sampling-time error-estimation accuracy is also poor. In order to improve the accuracy of
sampling-time error estimation, the target phase in each channel spectrum can be used to
estimate the small sampling-time error, which can be expressed as

ui( f ) = u0_i( f ) exp(j2π f ∆tsi) (20)

where u0_i is the spectrum obtained by interpolating and truncating the dechirp-received
signal spectrum of each channel when there is no sampling-time error. The small sampling-
time error estimation results ∆tsi in the range of [−π, π] can be estimated from the phase
angle ui( f ). Using the small sampling-time error ∆tsi, combined with the coarse sampling-
time error ∆tmi of phase ambiguity eliminating, we can obtain the precise sampling-time
error ∆tei corresponding to the i-th coprime channel and the reference channel.

According to the phase-error factor of Equation (20), the laser-radar ranging model
is registered. The ranging model under sampling-time error compensation is obtained
as follows:

sMCO_g = ΦMCO_ga + n = (Θ�ΦMCO)a + n

sMCO_g = Γ
(

vec
(

sg
(1), sg

(2), · · · , sg
(I)
)T
)

M×1

Θ = Γ
([

Θ1, Θ2, · · · , ΘIO

]T
)

M×M

Θi =
[
Θ(1)

i , Θ(2)
i , · · ·Θ(n)

i , · · ·Θ(M)
i

]
Mi×M

(1 ≤ i ≤ IO)

Θ(n)
i =

[
Θ(n,1)

i , Θ(n,2)
i , · · ·Θ(n,Mi)

i , · · ·Θ(n,M)
i

]
(1 ≤ n ≤ Mi)

Θ(n,m)
i = exp

(
j2π ∆tei FS

M m
)

(1 ≤ m ≤ M)

(21)

where sMCO_g represents the echo based on the multi-channel coprime low-sampling
scheme with sampling-time error, and sg

(i) is the echo under dechirp processing of the
i-th channel with the sampling-time error. Θ is the phase-error matrix of the sampling-
time error.

3.3. AHRC l1 Minimization for Target-Range Estimation

After asynchronous sampling-time error compensation, the measurement data of the
multiple channels can be combined so that the target-range estimation can be converted into
the high-precision frequency-estimation problem of the non-uniformly sampled signals.
It is necessary to break through the limited length of data observation and non-uniform
sampling to complete ultra-high-precision frequency analysis. At the same time, due to the
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decrease in the amount of sampling data, the coherent accumulation value of the target
signal becomes lower, which makes the influence of environmental noise more obvious.
Thus, it is more critical to suppress the influence of noise.

Based on the ranging model obtained in Section 3.2, this section proposes an AHRC l1
minimization target-range estimation method combining the logarithmic penalty function
and arctangent penalty function.

Solving Equation (21) can realize the high-resolution range-profile reconstruction and
target-range estimation under the optimal coprime low-sampling multi-channel scheme.
The optimization problem of Equation (21) can be written as

min‖a‖1, s.t. sMCO_g = (Θ�ΦMCO)a + n (22)

By solving the optimization problem of Equation (22), the reconstructed laser-radar
range profile can be obtained, and the target range can be estimated. However, the perfor-
mance of the target-range estimation obtained by directly solving Equation (22) is limited
under the condition of a low SNR. To improve the accuracy of target-range estimation
under a low SNR, it is necessary to use l1 weighting [35,55,56] and prior knowledge to
ensure that the parameters converge to the actual value.

3.3.1. AHRC

The effective weighted l1 can distinguish the contribution of signal and noise on the
ranging model, improve the reconstruction performance of the range profile at a low SNR,
and make the target-range-estimation result more accurate at a low SNR. The weighted l1
optimization problem can be expressed as

min‖Wa‖1, s.t. sMCO_g = (Θ�ΦMCO)a + n (23)

where W is the weight diagonal matrix; the weight of the i-th component of a on the
diagonal is wi, and the others are zero. In the weighted l1 norm optimization problem of
Equation (23), it is necessary to select the appropriate weighting coefficient to make the
solution as small as possible to satisfy the sparsity. More importantly, the non-zero part
of the solution is consistent with the target amplitude and position, and the zero part of
the solution corresponds to the noise, which can make the recovery result more accurate.
Applying a large constraint coefficient to the element in the solution can make the element
reach a zero value. On the contrary, applying a small constraint coefficient can make the
element reach a non-zero value, and the value of the non-zero value is still affected by
the constraint coefficient. Therefore, how to establish the mapping relationship between
the constraint coefficient and the element values of the results to be restored determines
the accuracy of the recovery results. The constraint coefficient needs to be determined
by the solution, and the solution is unknown in the process of completing the solution,
which means the solution of Equation (23) can only be completed by the Expectation
Maximization (EM) algorithm. We must gradually correct the constraint coefficient of the
solution according to the change of the solution in the iterative solution process. In the
iterative process, the re-weighted constraint of the solution is updated, and the function
describing the relationship between the solution and the constraint coefficient cannot be
simply constructed by the inverse ratio of the solution. It should have sufficient sensitivity
to the numerical changes of the solution and have the rationality of change mapping so
that the constraint coefficient can converge to the most appropriate value in the iterative
process to ensure the rationality and accuracy of the solution.

Both the logarithmic function and arctangent function have the trend wherein the slope
tends to zero when the independent variable increases. The logarithmic function is such
that as the independent variable increases, the slope gradually approaches 0. The arctangent
function is such that as the independent variable increases, the slope can quickly approach
0, but the slope of the logarithmic function is greater than that of the arctangent function
when the independent variable is very small. Therefore, this manuscript proposes a hybrid
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re-weighted constraint coefficient construction method combining the logarithmic penalty
function and arctangent penalty function by using the characteristics of the logarithmic
penalty function and arctangent penalty function under different independent variables.

The arctangent penalty function is used to construct weights; Equation (23) can be
expressed as

min
M
∑

m=1
arc tan

(
|am |

ε

)
,

s.t. sMCO_g = (Θ�ΦMCO)a + n, m = 1, · · ·M
(24)

where am is the m-th component of a, ε > 0. Equation (24) can then be rewritten as

min
M
∑

m=1
arc tan

(
|um |

ε

)
,

s.t. sMCO_g = (Θ�ΦMCO)a + n, |am| ≤ um

(25)

These formulas show that if a∗ is the solution of Equation (24), (a∗, |a∗|) is the solution
of Equation (25); conversely, if (a∗, u∗) is the solution of Equation (25), then a∗ is the
solution of Equation (24).

uk and ak are the k-th iteration result of the optimization variable. The first-order

Taylor expansion of
M
∑

m=1
arc tan

(
|um |

ε

)
can be expressed as

M

∑
m=1

arc tan
(
|um|

ε

)
≈

M

∑
m=1

arc tan


∣∣∣uk

m

∣∣∣
ε

+
M

∑
m=1

(
um − uk

m

)
(
|uk

m|2+ε2

ε

) (26)

Through deduction, we can obtain(
ak+1, uk+1

)
= argmin

M
∑

m=1

um

(uk
m)

2
+ε2

,

s.t. sMCO_g = (Θ�ΦMCO)a + n, |am| ≤ um

(27)

where uk
m is the m-th component of uk.ak

m is the m-th component of ak. It can be rewritten as

ak+1 = argmin
M
∑

m=1

am

(ak
m)

2
+ε2

,

s.t. sMCO_g = (Θ�ΦMCO)a + n

(28)

The arctangent penalty function can determine that the re-weighted matrix of a in the
k-th iteration is

Wk
arc tan = diag

{(∣∣∣ak
m

∣∣∣2 + ε2
)−1

}
(29)

The logarithmic penalty function [55] is used to construct the reweighted weights
Wk

log, and Equation (23) can be expressed as

min
M
∑

m=1
log(|am|+ ε),

s.t. sMCO_g = (Θ�ΦMCO)a + n

(30)

By repeating the Equations (24)–(28) deduction process, the logarithmic penalty func-

tion constructs the reweighted matrix Wk
log = diag

{(∣∣∣ak
m

∣∣∣+ ε
)−1

}
of a in the k-th iteration.
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When ak
m is small, the logarithmic penalty function performs better, and when ak

m is
large, the arctangent penalty function performs better. The weight distribution factor P is
introduced to construct the AHRC matrix W.

Pk
m =

∣∣∣ak
m

∣∣∣
max

(∣∣ak
m
∣∣)+ C

(31)

wk
m =

1∣∣ak
m
∣∣2 + ε2

× Pk
m +

1∣∣ak
m
∣∣+ ε

×
(

1− Pk
m

)
(32)

Here, Pk
m represents the weight-distribution factor of the ak

m, and the larger the value
of
∣∣∣ak

m

∣∣∣, the larger the value of Pk
m. C > 0 is the weight-balance coefficient. wk

m is the AHRC

coefficient corresponding to ak
m.

The flowchart of AHRC is shown in Figure 7. In this manuscript, ε is considered to be
one-thousandth of the average absolute value of the distance image, and the weight-balance
coefficient C is the average absolute value of the profile range. As shown in Figure 7, AHRC
adopts a complex weighting scheme, which adds a smaller weight to the strong-scattering
center region and a bigger weight-to-noise region. Combined with the characteristics of
the logarithmic penalty function and the arctangent penalty function in different regions,
AHRC can better distinguish the influence of signal and noise on solving the optimization
problem, reconstruct the target distance more accurately, and reduce the influence of noise
in the solution process. In addition, the strategic allocation of weights enables AHRC
to dynamically adapt to changing SNR and ensure robust performance under different
scenarios and environmental conditions.
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struction of the target range and the AHRC: 

( )=
2

_ 12
ˆ argmin

MCO g MCOa
m

é ù
ê ú- Q F +
ê úë û

a s a Wa  (35) 

( )ˆ=
W
FW a  (36) 
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Figure 7. Flowchart of the AHRC.

3.3.2. Statistical Modeling

In this section, maximum a posteriori (MAP) estimation [22,23] is used to transform
the laser-radar ranging model based the optimal multi-channel coprime low-sampling
scheme into the sparse representation problem. The complex Gaussian model is used to
represent the noise distribution [22,26]. The weighted range profile Wa submits to the
Laplace distribution, and the elements are independent of each other and submit to the
same distribution [23].
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Here, σ2
n is the variance of n. γ is the Laplace scale coefficient. Using the MAP

estimation, the final formulation is decomposed into the iteration between the sparse
reconstruction of the target range and the AHRC:

â = argmin
a

[∥∥sMCO_g − (Θ�ΦMCO)a
∥∥2

2 + µ‖Wa‖1

]
(35)

W = FW(â) (36)

where µ represents the sparse-constraint coefficient, which is determined by the variance
and image distribution of the laser-radar range profile. The previous section analyzes the
relationship between W and a, which can be expressed by the function FW(·).

The sparse-constraint coefficient µ is the parameter used to measure the fidelity and
sparsity of the signal. It can effectively suppress the influence of scene noise when it is used
in Equation (35), which can be expressed as

µ = σ2γ

σ2 = E
{
(ano)

Hano

}
γ = M/‖a‖1

(37)

where E{·} denotes the averaging operation. The noise unit is extracted from the laser-radar
ranging profile and vectorized to obtain the noise vector ano.

The proposed method transforms the laser-radar ranging into the MAP estimation of
sparse constraints using the Laplace distribution to describe the target signal and consid-
ering the noise of the complex Gaussian distribution. Using statistical modeling, we can
quantify the sparsity and noise of the target signal and accurately select the parameters in
the sparse optimization. The sparse-constraint coefficient depends entirely on the statis-
tical parameters of the target signal and noise, and the mathematical meaning is clear. It
addresses a common challenge encountered in many existing l1 regularization methods,
where the selection of sparse-constraint coefficients poses difficulty and the mathematical
interpretation remains unclear. At the same time, AHRC can better distinguish the influ-
ence of signal and noise when solving the optimization problem, reconstruct the target
range more accurately, and reduce the influence of noise on the solution process. By using
µ and W, a high-resolution range profile and better target-range-estimation results can be
achieved at a low SNR.

3.3.3. Solution of the Optimization Problem

The laser-radar ranging of RIP-OMCS is transformed into the sparse solution problems
of AHRC l1 minimization in Equations (35) and (36). The quasi-Newton method and
conjugate gradient method are used to solve the problem.

Wk = diag

{(
1∣∣ak

m
∣∣2 + ε2

× Pk
m +

1∣∣ak
m
∣∣+ ε

×
(

1− Pk
m

))}
(38)

H
(

ak
)
= (Θ�ΦMCO)

H(Θ�ΦMCO) + µWkΛ
(

âk
)

(39)

H
(

ak
)

âk+1 − 2(Θ�ΦMCO)
HsMCO_g = 0 (40)

Here, âk and âk+1 are the estimates of a in the k-th and (k + 1)-th iterations, respectively.
Wk is the AHRC coefficient corresponding to âk. H

(
ak
)

is an approximated Hessian

matrix. Λ
(

âk
)

is the diagonal matrix, and its m-th element is
(∣∣∣âk

m

∣∣∣2 + τ

)−1/2
, where τ is

a constant small positive number used to overcome the non-differentiability of
∣∣∣âk

m

∣∣∣.
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The conjugate gradient method [23] is used to solve Equation (40), which can effectively
avoid the high amount of computation caused by matrix inversion in the optimization
iteration. The solution of the conjugate gradient method can obtain the reconstructed
laser-radar range profile âk+1 at the (k + 1)-th iteration and through several iterations until
the convergence condition

∥∥∥âk+1 − âk
∥∥∥

2
/
∥∥∥âk
∥∥∥

2
≤ ρ is satisfied, where ρ represents the

preset threshold.
The target-range-estimation method based on AHRC l1 minimization is shown in

Figure 8. The sparse-constraint coefficient µ and the AHRC coefficient W suppress the
influence of noise on target-range information estimation in the process of solving and
can reconstruct the high-resolution range profile and obtain high-accuracy target-range
information under a low SNR.
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4. Discussion

In this section, we conduct experiments on different situations of data to verify the
effectiveness of the proposed method. For further comparative analysis, various types of
methods are used as reference comparison methods [25,57].

4.1. Performance Analysis of RIP-OMCS

This section describes the experiments carried out based on laser-radar data to verify
the effectiveness of RIP-OMCS. Assume that the laser radar transmits an LFM signal with
the parameters shown in Table 1. The selected multi-channel coprime low-sampling com-
bination is shown in Table 2. There are three sets of coprime multi-channel combinations.
The down-sampling rate is the ratio of the sample number of the coprime combination to
the number of Nyquist samplings.

Table 1. Parameters used in the simulation.

Parameter Value Parameter Value

Wavelength 1.55 µm R0 200 m
Pulse width 28 µs Ranging range ∆R 300 m
Bandwidth 1 GHz Fs 89.3 MHz

Table 2. Multi-channel coprime low-sampling combination.

Parameter ADC 1 ADC 2 ADC 3 ADC 4 Downsampling Rate

Coprime Combination 1 Fs/11 Fs/13 — — 16.78%
Coprime Combination 2 Fs/17 Fs/18 Fs/19 — 16.7%
Coprime Combination 3 Fs/13 Fs/29 Fs/37 Fs/40 16.34%
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The performance of the different coprime combinations is shown in Figure 9. Under
the sensing matrix of each coprime combination, the number of strong points K was
traversed from 1 to 100, and 5000 random experiments were performed under each K.
Figure 9a shows the maximum and minimum eigenvalue corresponding to the coprime
combination, and Figure 9b shows the RIC corresponding to the coprime combination.
The RIC of Coprime Combination 2 was the smallest, and its performance was the best.
Therefore, based on the RIP-OMCS strategy, Coprime Combination 2 was selected as the
optimal multi-channel coprime combination for the following analysis.
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In the experimental process, qualitative and quantitative indicators were used to
objectively evaluate the proposed algorithm. The correlation coefficient (CORR) [26,57]
was used to evaluate the target-range-estimation performance of multi-channel coprime
low-sampling. CORR reflects the similarity between two radar-range profiles, which is
expressed as

CORR =
〈a0, â〉√
|a0|2·

√
|â|2

(41)

where a0 and â are the complex vectors. a0 and â are the radar range profiles from the ideal
reference Nyquist sampling and sparse-reconstructed data, respectively.

Figure 10 shows the comparative analysis of the results of the optimal coprime combi-
nation. In this manuscript, ε is considered to be one-thousandth of the average absolute
value of the distance image, and the weight-balance coefficient C is the average absolute
value of the profile range. Figure 10a is the range profile under the ideal Nyquist sampling.
Figure 10b–d are the range profiles under each channel. Figure 10e shows the comparison
of the radar-range profiles between the sparse reconstruction using the proposed method
and the ideal Nyquist sampling. Figure 10f shows the target phase difference between the
ideal Nyquist sampling and the proposed method. Figure 10g shows the two-dimensional
comparison of target-range information and target-phase information between the sparse
reconstruction using the proposed method and the ideal Nyquist sampling. Figure 10h
shows the correlation-coefficient comparison of 3 coprime combinations in 10 scenarios
(different target positions in the scene). Figure 10 shows that the proposed method can
effectively reconstruct the target-range profile with a small sample number. It is worth
noting that the reconstructed target position and phase have very high fidelity in the target
position and phase obtained by Nyquist sampling, indicating the excellent accuracy and
reliability of the range-estimation method based on AHRC l1 minimization. The selected
optimal Coprime Combination 2 had the best performance in multiple scenarios. This
further verifies the reliability and effectiveness of the RIP-OMCS strategy. The RIP-OMCS
strategy can select the optimal multi-channel coprime low-sampling combination, which
can effectively use low-sampling data to reconstruct a high-resolution radar-range profile,
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expand the radar ranging range, and obtain accurate target-distance information. In ad-
dition, the proposed method helps to save data sampling and storage resources, thereby
improving operational efficiency and effectiveness, and the internal sampling of each
channel is uniform and easy to implement on hardware.
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4.2. Performance Analysis of Sampling-Time Error Compensation

To verify the effect of the sampling-time error compensation method, we now show
the sampling-time error-compensation results of the optimal multi-channel coprime low-
sampling combination. Figure 11 compares the results before and after the sampling-time
error compensation of the optimal multi-channel coprime low-sampling combination.
Figure 11a compares the radar range profile between the sparse reconstruction using the
proposed method with sampling-time error compensation and the ideal Nyquist sampling.
Figure 11b compares the radar range profile between the sparse reconstruction using the pro-
posed method without sampling-time error compensation and the ideal Nyquist sampling.
Figure 11c shows a two-dimensional comparison of target range information and target
phase information under sampling-time error compensation, without sampling-time error
compensation and ideal sampling. Figure 11d shows the correlation-coefficient comparison
between sampling-time error compensation and without compensation sampling-time
error in 10 scenarios.
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It can be clearly seen that there was a mismatch in the ranging model with sampling-
time error, and the obtained ranging result had a large deviation from the ideal range and
phase. The sampling-time error estimation and compensation method proposed in this
manuscript can effectively reduce the impact of sampling-time error. The proposed method
can effectively register the ranging model, and the target-range estimation performance
of the compensating sampling-time error is excellent, which is much better than that of
without compensated sampling-time error.

To verify the robustness of the sampling-time error-estimation and compensation
method, we performed Monte Carlo tests to test the target-distance-estimation performance
under different scenarios and different sampling-time error conditions, and 100 random
scene experiments were performed under each sampling-time error. Figure 12 shows
the average of the correlation coefficients of different sampling-time errors between the
compensated sampling-time error and the without compensated sampling-time error. The
performance of the target-range estimation with sampling-time error compensation is much
better than that without sampling-error compensation. The correlation coefficient also
proves that the proposed method is robust.
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Channels 2 and 3 in 0− 0.2 ∗ TP sampling-time error conditions.

4.3. Performance Analysis of the Proposed Algorithm under Different SNRs

To verify the performance of the target-range-estimation method based on AHRC
l1 minimization under different SNRs, white Gaussian noise was added to the echo to
generate different SNR echo data.

Figure 13 shows different algorithms’ target-range-estimation results when the SNR
is 20, 10, 5, and 0 dB, respectively. The target-range information obtained by the FISTA
algorithm is shown in the first column in Figure 13. The target-range information obtained
by the OMP algorithm is shown in the second column in Figure 13. The target-range
information obtained by the BCS algorithm is shown in the third column in Figure 13. The
target-range information obtained by the proposed method is shown in the fourth column in
Figure 13. When the SNR is 20 dB, the target-range information can be obtained by the four
algorithms. With the continuous reduction in the SNR, the target-range estimation results
of OMP, FISTA, and BCS algorithms have strong false points. The proposed method can
still accurately obtain the target-range information without introducing strong false points.
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Figure 13. Target-range-estimation result of different algorithms under different SNRs. 

To verify the effectiveness and robustness of the proposed method, we conducted 
Monte Carlo tests to assess its performance in estimating target distances in different sce-
narios and different SNRs. We conducted 100 random experiments for each SNR, and the 
target positions were randomly distributed in the ranging range in each random experi-
ment. Figure 14 and Table 3 show the average of the correlation coefficients of the four 
methods under different SNRs in multiple scenarios. The target-range-estimation method 
based on AHRC 1l  minimization effectively estimated the target-range information un-
der a low SNR. It is worth noting that it showed high amplitude and phase-estimation 
accuracy. With a decrease in the SNR, the performance of the proposed method was much 
better than that of other reference methods, which further shows that the proposed 
method can estimate the target-distance information with high performance under low-
SNR and small-sample conditions. 
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To verify the effectiveness and robustness of the proposed method, we conducted
Monte Carlo tests to assess its performance in estimating target distances in different
scenarios and different SNRs. We conducted 100 random experiments for each SNR,
and the target positions were randomly distributed in the ranging range in each random
experiment. Figure 14 and Table 3 show the average of the correlation coefficients of the
four methods under different SNRs in multiple scenarios. The target-range-estimation
method based on AHRC l1 minimization effectively estimated the target-range information
under a low SNR. It is worth noting that it showed high amplitude and phase-estimation
accuracy. With a decrease in the SNR, the performance of the proposed method was much
better than that of other reference methods, which further shows that the proposed method
can estimate the target-distance information with high performance under low-SNR and
small-sample conditions.

Table 3. Average of the correlation coefficients under different SNRs in multiple scenarios.

20 dB 18 dB 16 dB 14 dB 12 dB 10 dB 8 dB 6 dB 4 dB 2 dB 0 dB

Proposed method 94% 94% 94% 94% 93% 93% 93% 92% 90% 89% 86%
BCS 90% 90% 90% 90% 90% 90% 89% 88% 86% 84% 80%
OMP 95% 95% 94% 92% 90% 88% 83% 78% 72% 64% 55%
FISTA 90% 90% 90% 88% 87% 85% 81% 76% 69% 62% 54%
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Figure 14. Average of the correlation coefficients of four methods under different SNRs in multi-
ple scenarios.

To further evaluate the performance of the proposed method, the performance of the
target-range-estimation results under the SNR were compared and analyzed in combi-
nation with the sampling-time error. Figures 15–17 show the distance-estimation results
obtained by different methods under 10 dB SNR when the sampling-time error is 0.02 ∗ TP,
0.1 ∗ TP, and 0.2 ∗ TP, respectively. The target-range information was obtained by differ-
ent algorithms without sampling-time error compensation and is shown in the first row
in Figures 15–17. The target-range information obtained by different algorithms with
sampling-time error compensation is shown in the second row in Figures 15–17. It can be
clearly seen that the performance of the different algorithms with sampling-time error com-
pensation was significantly higher than that of the algorithm without error compensation
under a 10 dB SNR. The effectiveness of our proposed sampling-time error-compensation
method is further illustrated. The distance estimation results of the proposed method were
obviously better than those of the other reference methods, showing that it can accurately
estimate the target-distance information without introducing false points.
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Figure 15. Target-range-estimation result of different algorithms under 10 dB SNR when the sampling-
time error is 0.02 ∗ TP.
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Figure 16. Target-range-estimation result of different algorithms under 10 dB SNR when the sam-
pling-time error is 0.1 * PT . 
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Figure 17. Target-range-estimation result of different algorithms under 10 dB SNR when the sam-
pling-time error is 0.2 * PT . 

We performed Monte Carlo tests to determine the target-distance-estimation perfor-
mance in different scenarios and SNRs with sampling-time error compensation, and 100 
random scene experiments were performed under each SNR. Figure 18 shows the average 
of the correlation coefficients of the four methods under different SNRs in multiple sce-
narios with the sampling-time error compensation. With the decrease in the SNR, the cor-
relation coefficient of the OMP and FISTA algorithms decreased rapidly, and the correla-
tion coefficient of the BCS algorithm was also lower than that of the proposed algorithm. 
This further shows that the proposed algorithm performed better under a low SNR with 
sampling-time error. The target distance and phase estimation were more accurate, and 
the proposed algorithm has strong noise robustness. 
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Figure 17. Target-range-estimation result of different algorithms under 10 dB SNR when the sam-
pling-time error is 0.2 * PT . 

We performed Monte Carlo tests to determine the target-distance-estimation perfor-
mance in different scenarios and SNRs with sampling-time error compensation, and 100 
random scene experiments were performed under each SNR. Figure 18 shows the average 
of the correlation coefficients of the four methods under different SNRs in multiple sce-
narios with the sampling-time error compensation. With the decrease in the SNR, the cor-
relation coefficient of the OMP and FISTA algorithms decreased rapidly, and the correla-
tion coefficient of the BCS algorithm was also lower than that of the proposed algorithm. 
This further shows that the proposed algorithm performed better under a low SNR with 
sampling-time error. The target distance and phase estimation were more accurate, and 
the proposed algorithm has strong noise robustness. 

Figure 17. Target-range-estimation result of different algorithms under 10 dB SNR when the sampling-
time error is 0.2 ∗ TP.

We performed Monte Carlo tests to determine the target-distance-estimation per-
formance in different scenarios and SNRs with sampling-time error compensation, and
100 random scene experiments were performed under each SNR. Figure 18 shows the
average of the correlation coefficients of the four methods under different SNRs in multiple
scenarios with the sampling-time error compensation. With the decrease in the SNR, the
correlation coefficient of the OMP and FISTA algorithms decreased rapidly, and the correla-
tion coefficient of the BCS algorithm was also lower than that of the proposed algorithm.
This further shows that the proposed algorithm performed better under a low SNR with
sampling-time error. The target distance and phase estimation were more accurate, and the
proposed algorithm has strong noise robustness.
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5. Conclusions

In this manuscript, we proposed a novel high-resolution ranging frame for laser radar
with a small sample number under a low SNR utilizing the RIP-OMCS strategy and AHRC
l1 minimization. The RIP-OMCS strategy was designed to effectively reduce the amount of
sampling. Aiming to cancel the sampling-time error, error estimation based on the cross-
correlation function was proposed, and the ranging model was registered according to the
estimated sampling-time error. High-resolution range-profile and target-range-estimation
results were obtained by solving an optimization problem. The prior information about
the target signal and features provides sparse constraints and AHRC for the optimization
problem. AHRC takes into account the features of signals in different regions, which can
better distinguish between the target and noise. The iterative solving procedure gradually
corrects the AHRC l1 minimization model to improve the accuracy of the solution at a low
SNR. The experimental results show that the proposed method can effectively reduce the
sampling data and estimate the target-range information at a low SNR.

This proposed method showed satisfactory performance in an environment with a
large bandwidth, large ranging range, and low SNR, especially in the case of a limited
sampling rate and storage space. However, it is worth noting that when the SNR was lower
than 0 dB, the performance of the proposed method was poor. Therefore, future research
directions can focus on laser-radar ranging methods under ultra-low SNR and ultra-low
sampling conditions to improve performance.
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