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Abstract: Biological macromolecules and assemblies precisely rearrange their atomic 3D structures
to execute cellular functions. Understanding the mechanisms by which these molecular machines
operate requires insight into the ensemble of structural states they occupy during the functional cycle.
Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide
near-atomic resolution, structural information about dynamic biological macromolecules elusive to
other structure determination methods. Recent advances in cryo-EM methodology have allowed
structural biologists not only to probe the structural intermediates of biochemical reactions, but also
to resolve different compositional and conformational states present within the same dataset. This
article reviews newly developed sample preparation and single-particle analysis (SPA) techniques
for high-resolution structure determination of intrinsically dynamic and heterogeneous samples,
shedding light upon the intricate mechanisms employed by molecular machines and helping to guide
drug discovery efforts.

Keywords: single-particle cryo-electron microscopy; cryo-EM; heterogeneity; single-particle analysis;
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1. Introduction

Proteins are dynamic biomolecules that often occupy an ensemble of different con-
formations to carry out their cellular function. Therefore, understanding the mechanism
by which these flexible molecular machines operate requires three-dimensional insight at
multiple functional states. Several biophysical techniques aim to resolve high-resolution
3D structures of biological macromolecules. To-date, X-ray crystallography has been an
extremely powerful tool for structural biologists to produce atomic models, accounting
for over 170,000 depositions into the Protein Data Bank (PDB) [1]. However, successful
application of this technique poses several challenges that restrict its use for certain sample
types. Biomolecular crystallography requires the formation of well-ordered 3D crystals,
making it ill-suited to study proteins and complexes with flexible, unstable, or disordered
regions. In such cases, crystallographers may promote crystallization by providing a stabi-
lizing substrate [2] or by genetically removing flexible regions [3,4], but these approaches
may yield structures that do not represent biologically relevant states of the protein. Fur-
thermore, even after biochemical purification, certain complexes may exist in a variety
of conformational and compositional states, inhibiting the formation of a well-ordered
crystal lattice. In addition, samples must be purified to sufficient purity and milligram
concentrations for crystallization trials, which often poses a formidable challenge.

Single-particle cryo-EM has become the preferred method for high-resolution struc-
ture determination for a variety of protein complexes and biomolecular assemblies. This
technique illuminates structural information of molecular machines in their hydrated
state without the need for crystallization or large amounts of purified protein. As little
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as 0.1 milligrams may be sufficient for structure determination [5]. The past decade has
seen a sharp rise in the use of single-particle cryo-EM largely attributed to the introduction
of novel direct electron detectors (DED), improvements in microscope optics, computer
hardware, and image processing software. Deemed the “resolution revolution”, [6] these
advances have enabled routine structure determination at high-resolution (reviewed in [7])
and have even made it possible to reach atomic resolution in some cases [8,9]. Moreover,
cryo-EM has emerged as an extremely useful technique for the structure determination of
large and dynamic biological macromolecules that adopt different structural states [10–12].

Heterogeneity is often key to understanding the mechanism of action of biological
assemblies, as a single static structure cannot describe the intricate molecular motions
employed by proteins during their functional cycle. Cryo-EM is uniquely poised to study
protein and nucleic acid complexes with a variety of compositional and conformational
states; the nature of sample preparation preserves the native solution protein structure and
captures molecules at random orientations and potentially in varying conformations. Fur-
thermore, a variety of computational approaches have been developed in the past decade
to resolve different structural states present within the same sample [13–19]. Nonetheless,
these techniques present a number of challenges that make determination of multiple,
high-resolution structures far from routine; many are computationally expensive, and
their applicability is largely dependent on the particular dataset and prior knowledge of
heterogeneity [17–19]. Furthermore, newly developed techniques designed to address
the continuous flexibility of biomolecules lack validation methods. This review serves
to describe the recent advances in cryo-EM methodology that provide high-resolution
structural information of heterogeneous samples and, in turn, shed light upon the dynamic
mechanisms of action employed by biological macromolecules. We will first describe a
typical cryo-EM workflow and overview the origins of sample heterogeneity. Next, we
will review the methodology used to analyze biochemical reactions at any given timepoint,
also known as time-resolved cryo-EM (trEM). We will then briefly overview the process
of 3D reconstruction and methods designed to resolve discrete sample heterogeneity, fol-
lowed by a discussion of masked classification and refinement approaches. Lastly, we
will describe recently developed reconstruction methods, including those utilizing deep
learning algorithms, to resolve continuous conformational changes of flexible biological
macromolecules.

2. The Cryo-EM Workflow

After biochemical purification of the sample, the cryo-EM workflow begins with rapid
plunge-freezing of the specimen. Suitable grids for EM contain uniformly distributed
particles at a sufficient concentration suspended in a thin layer of vitreous ice, ideally just
nanometers thicker than the largest dimension of the molecule of interest. Grid prepara-
tion has remained largely unchanged since the development of the rapid plunge-freezing
technique proposed 40 years ago by Jacques Dubochet and collaborators [20]. While
semi-automated plunge freezers are now routinely used for vitrification, including the
Vitrobot [21–23], Leica EM-GP [24], Gatan Cryo-plunge (Gatan Inc., Pleasanton, CA, USA),
and others, their operation still requires meticulous manual manipulation by skilled users.
Furthermore, as several freezing variables are difficult to accurately control, including hu-
midity, blotting force, and tweezer positioning, ice quality can vary greatly between grids.

To prepare a cryo-EM specimen, a few microliters of the sample are first carefully
pipetted onto an EM grid made hydrophilic by prior glow-discharging or treatment of the
grid with O2 plasma. Then, nearly 99.9% of the sample is removed by blotting with filter
paper, immediately followed by rapid plunging of the grid into a bath of liquid ethane.
Liquid ethane is preferred over other cryogens (e.g., liquid nitrogen) because its low melting
point (−188 ◦C) and high heat capacity allow for fast grid freezing without the formation
of ice crystals. In many cases, such a procedure produces cryo-EM grids containing a thin
and uniform layer of vitreous ice (<100 nm) suitable for high-resolution imaging. However,
the procedure may lead to a number of artifacts. Blotting drastically increases the surface
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area-to-volume ratio of the sample. Consequently, this process increases the probability of
particle collisions with the interface formed between the hydrophobic air and hydrophilic
aqueous solution, known as the air-water interface (AWI) [25]. Though the chemistry of the
AWI is not relatively well-understood, air exposure nonuniformly disrupts the hydrogen
bond network at the AWI, creating a hydrophobic surface that attracts apolar molecules,
including hydrophobic residues or small hydrophobic patches of biomolecules [25]. Protein
adsorption to the AWI can introduce numerous artifacts to the sample, including partial
particle denaturation, as well as the introduction of preferred orientations and composi-
tional heterogeneity. As particles can adhere to the AWI in milliseconds [25], minimizing
the time between blotting and vitrification is crucial to produce high-quality grids. Several
approaches have been developed to modify protein behavior on grids in order to sequester
particles away from the AWI, including the use of graphene support layers [26,27] and
functionalized films [28–30]. Furthermore, developments in vitrification technology, such
as microfluidic spraying [31,32], pin-printing [33], and piezoelectric dispensing [34], have
been made to reduce the blot-to-vitrification time or cease the need for blotting altogether.

Vitrified samples are visualized in a transmission cryo-electron microscope, where
noisy 2D projections of particles are recorded on a detector. Biological macromolecules
are mainly composed of low-molecular weight atoms, thus they can be considered weak
phase objects that generate very little contrast when in focus. Therefore, to generate image
contrast, the objective lens strength is adjusted to defocus the microscope. The resultant
defocused images are modified by the contrast transfer function (CTF), the effects of which
are compensated for during image processing. To avoid radiation damage to the sample,
images are taken with a low dose of electrons and therefore have a low signal-to-noise ratio
(SNR). Moreover, electron exposure induces motion within the vitrified specimen, leading
to image blurring [35]. The advent of DEDs with high spatial resolution and fast frame
acquisition rates has enabled the collection of movies of the same field of view rather than
a single image. Currently, most cryo-EM microscopes facilitate data collection through
automated data acquisition software [36–39], with typical data collection occurring over
days. These sessions often produce thousands of movies [40] to image enough particle
images for high-resolution reconstruction via single-particle analysis (SPA).

Several different software programs are available for SPA [16,41–47]. Although these
software packages follow a similar workflow for image processing (Figure 1), each program
employs different algorithms in several steps that yield 3D reconstructions of varying
quality and resolution. We have recently developed a robust pipeline combining the
programs cryoSPARC [16], RELION [44], and Scipion [42] for high-resolution structure
determination applicable to a variety of datasets [48]. In a typical SPA workflow, movie
frames are first aligned and averaged to produce micrographs with increased SNR followed
by the correction for aberrational errors imposed by the CTF. Particle selection from these
micrographs is a nontrivial task, as it can be difficult to identify particles within noisy,
low-contrast images. Typically, hundreds of thousands of particle images are needed to
achieve a high-resolution reconstruction. Thus, particle selection is performed through
semi-automated or fully automated approaches, but the performance of these algorithms
varies greatly depending on micrograph quality. Additionally, the results often include
false positives, such as noise, radiation-damaged particles, or partial particles that must
be filtered in subsequent classification steps. However, it is important to note that 2D and
3D classification can never completely remove “junk” from the dataset. In the popular
template-based approach, the user produces templates for automated particle picking by
either manually selecting particles from a subset of micrographs or, in the later stages
of processing, by using 2D projections from a previously determined 3D structure [49].
Such a method, however, might be subject to biased selection [50]. Recently, several deep
learning approaches have been developed for particle picking [51–55], but as most require
manual particle selection or user-provided templates for network training [51–53], they
too are susceptible to bias. Nonetheless, these methods have demonstrated the potential
to improve particle selection from heterogeneous datasets [51–55]. Following picking
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and extraction, particles are sorted into 2D class averages reflective of different specimen
views. 2D classification is iterated until the artifacts from picking are removed, including
contaminations and radiation-damaged particles. The particles from the final round of
2D classification are then used as input for 3D structure calculations of the initial model
or multiple models. The model or models are then refined to produce high-resolution 3D
structures. At this stage in SPA, sample heterogeneity can be addressed through a variety of
iterative 3D classification and refinement methods detailed in a later section of this review.
The resultant refined 3D Coulomb potential maps can be used to build atomic models given
sufficient resolution and map quality.
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Figure 1. Schematic representation of a typical cryo-EM processing workflow. After biochemical
purification, samples are rapidly plunge-frozen in liquid ethane and imaged in an electron microscope.
In time-resolved cryo-EM (trEM) (orange box), biochemical reactions are frozen at different time
points to elucidate structures of reaction intermediates. The schematic in the orange box depicts a
microfluidic mixing-spraying method that utilizes a microfluidic chip to mix, incubate, and spray
reactants onto a cryo-EM grid prior to plunge-freezing. The data is acquired with a cryo-electron
microscope. The resultant data is processed in multiple stages, including image pre-processing,
2D and 3D classification, post-processing, and model building. Image pre-processing steps (left)
include motion correction, CTF estimation, and particle picking, in which particles are selected
for downstream processing. The selected particles are indicated by red circles. Following the 2D
classification of particle images, various strategies can be employed to resolve sample heterogeneity.
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These strategies are outlined in the blue box. Multiple 3D reconstruction approaches are avail-
able to resolve discrete heterogeneity, including projection matching [56], 3D maximum likelihood
(ML3D) [57], ab initio modeling using stochastic gradient descent (SGD) [16], and focused classifica-
tion [58]. Recently, several methods have also been developed to address continuous heterogeneity,
including multi-body refinement [15], 3D variability analysis (3DVA) [17], manifold embedding
(ManifoldEM) [18], and CryoDRGN (Deep Reconstructing Generative Networks) [19]. Image post-
processing, model building, and structure validation complete the workflow.

3. Structural Heterogeneity in Cryo-EM Samples

Biomolecular complexes are intrinsically dynamic molecular machines that undergo
functionally relevant compositional and conformational changes to perform their cellular
roles [59]. Even after purification, protein assemblies remain flexible and often have
multiple degrees of freedom in solution. Variation in structural states, usually referred to
as sample heterogeneity, poses several problems for structural study via cryo-EM. Notably,
the presence of heterogeneity in a dataset can severely limit the achievable resolution
of a given sample. During 3D reconstruction, projections with the same orientation are
aligned and averaged to increase the SNR, illuminating high-resolution details of the target
structure such as residue sidechains and ligands. Averaging of regions with structural
variability, however, leads to blurring of Coulomb densities, affecting the resolution of the
final reconstruction.

Structural variability within a sample can be the product of compositional and/or con-
formation heterogeneity. Compositional heterogeneity, the presence of different molecular
species, may arise in multiple stages of the cryo-EM workflow. Firstly, prior to vitrifi-
cation, sample components must be purified or extracted in vivo individually or as a
complex. Because biochemical purification very rarely results in complete purity, samples
usually contain contaminants. These contaminants might either directly interact with the
complex of interest or indirectly interfere with its assembly. Furthermore, the mixing of
protein complex components often results in the presence of multiple molecular species,
each possibly reflecting a different stage of the catalytic cycle the particular protein com-
plex performs under physiological conditions. The molecules may also form different
oligomeric species in vitro, and complexes may vary in subunit stoichiometry depending
upon the strength and stability of binding interactions between individual components.
This type of heterogeneity can often be mitigated with changes to sample preparation
procedures. Complex stability can be improved by optimizing buffer conditions (i.e., pH,
salt concentration, etc.) and the number of molecular species can be assessed using native
polyacrylamide gel electrophoresis (native PAGE). Moreover, subunits can be covalently
linked via chemical cross-linking, though it is important to note that cross-linking can give
rise to non-physiological structures. Gradient Fixation (GraFix) [60] has demonstrated
success in purifying and stabilizing complexes for cryo-EM [61,62] by ultracentrifugation
through a density and cross-linker gradient. As mentioned above, compositional hetero-
geneity may also arise as a result of grid freezing, as particle collision with the AWI formed
during sample blotting can cause partial or complete complex dissociation and/or protein
denaturation [25].

Conformational heterogeneity, which can be described by the presence of flexible pro-
tein components that can adopt more than one structural state, is often much more difficult
to resolve. Conformational heterogeneity may be discrete. It may, for instance, represent
two different conformational states of the protein complex. In such a case, the two different
conformations may likely be sorted out into distinct 3D structures by the process of 3D
classification (Figure 1). However, continuous heterogeneity represents the situation in
which conformations are too similar to be differentiated. In cases of discrete heterogeneity,
each molecule occupies one of multiple distinct structural states in equilibrium, where
the states represent local minima in the energy landscape of protein conformations. Cases
of discrete conformational heterogeneity may include the binding of a ligand [63,64], the
association and dissociation of subunits [65,66], and the opening and closing of channels
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in biological membranes [67,68]. In cases of continuous conformational changes, one or
more flexible regions of the biomolecular assembly adopt a continuum of conformational
states, much exceeding the sorting capabilities of the current 3D algorithms. For example,
ribosomes can adopt multiple ratcheted states in which both subunits undergo continuous
rotations [12]. Currently, the conformational changes detectable by SPA algorithms are
largely limited to domain motions that occur on the timescale of milliseconds; motions
of rotamer sidechains and flexible loops, however, cannot be readily visualized. Taken
together, although cryo-EM analysis may be complicated for biological complexes dis-
playing varying subunit composition that simultaneously occupy different conformational
states, it is often the only available method capable of providing structural insight into such
dynamic bio-machines.

4. Probing Short-Lived Conformational Changes by Time-Resolved Cryo-EM

Proteins perform their functions on a wide timescale, ranging from microseconds to
minutes. Their functional variability often involves structural transitions with transient
intermediates representing only a low percentage of the population at equilibrium. Despite
their importance to understanding the mechanism of action of molecular machines, these
short-lived states have remained elusive to traditional structure determination methods
because their lifetime is several orders of magnitude shorter than the time required for
sample preparation [69]. Time-resolved cryo-EM (trEM) is a rapidly developing branch
of cryo-EM used to study transient structural intermediates by stopping a biochemical
reaction at fixed time points via vitrification.

To prepare a trEM sample, a reaction is initiated by mixing reactants, incubated for a
desired time interval, and stopped by vitrification. For reactions that occur on the time scale
of seconds, this procedure may be achieved by simply mixing reaction components in a test
tube immediately prior to grid freezing [70–72]. However, traditional mixing with a pipette
is rate limiting for much faster reactions that require the time resolution of milliseconds. In
such cases, trEM depends on the rapid diffusion of molecules between two thin layers of
solution for equilibration. Recently, several “fast” mixing methods have been developed,
including on-grid mixing, also known as the spraying-mixing method [73–75], microfluidic
mixing-spraying [32,76], and light pulse delivery [77,78]. On-grid mixing, developed by
Berriman and Unwin [73] and reviewed in [69], requires the direct application of the first
reactant onto a grid, thinning of the solution via blotting, and spraying aerosol droplets of
the second reactant onto the grid just before vitrification (Figure 2A). This approach has been
used to successfully determine cryo-EM structures of the open channel form of acetylcholine
receptor [67], the conformational changes of myosin attached to actin during the ATPase
cycle [74], and vesicle formation [79]. While this method is applicable to probe protein
conformational changes in the presence of small molecules or environmental changes, such
as pH or temperature, on-grid mixing is inefficient for reactions that involve interactions
between multiple large macromolecules [80]. Moreover, because not all regions of the
grid will experience mixing, this technique can introduce compositional heterogeneity
to the sample. A further limitation to on-grid mixing is the requirement for blotting,
which subjects the sample to the multitude of artifacts created by AWI exposure. Several
developments have been made in vitrification technology to overcome this hurdle by
reducing blotting time or by ceasing the need for blotting altogether, including piezoelectric
transducers [34,81,82] and pin-printing and jet cooling [33]. The Spotiton robot [34,82], now
commercially available as the Chameleon system [83], is a newly developed vitrification
device that employs piezoelectric dispensing to precisely deliver a small droplet of sample,
ranging from picoliters to nanoliters, to an EM grid [34]. This process utilizes a piezoelectric
material to propagate an acoustic wave towards the liquid sample, exerting enough pressure
on the liquid’s surface to eject a droplet from a fine-tipped nozzle [84]. The ejected droplet
is delivered to a “self-wicking” grid comprised of nanowires grown on a copper surface.
The nanowires substitute for filter blotting by removing excess liquid from the grid to create
a thin layer of particle-containing solution [82,85]. Utilizing an on-grid mixing approach,
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the Spotiton has recently been used to investigate RNA polymerase promoter binding,
conformational changes of potassium ion channels, and dynamin constriction during GTP
hydrolysis [68]. The VitroJet [33] is another automated freezing device that utilizes pin-
printing to deliver sub-nanoliter volumes of sample to the grid, thereby eliminating the
need for blotting, but currently does not have the capability for time-resolved studies [76].
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Figure 2. Sample mixing techniques for trEM. (A) Schematic of on-grid mixing, in which the first
reactant is pipetted onto the cryo-EM grid, followed by blotting of the grid and spraying of the second
reactant. The grid is then plunge-frozen. (B) In microfluidic mixing-spraying, the reactants (1 and 2)
are injected into separate inlets of the microfluidic chip and mixed via a T-shaped mixer followed by
four-tandem butterfly geometries [32]. The mixed reactants then traverse the reaction channel, whose
length varies depending upon the desired reaction time. After meeting compressed nitrogen gas, the
mixture is sprayed to a cryo-EM grid and plunge frozen. Colored arrows indicate the direction of the
solution flow.

Microfluidic mixing-spraying offers a more efficient and controlled approach for
trEM studies, as reactants are mixed prior to grid application. In this technique, both
reactants are injected to a silicon chip where they are mixed, incubated for a defined
time period, and sprayed onto an EM grid (Figure 2B). In one popular variation of this
method, the chip contains a T-shaped mixer followed by a four-tandem butterfly mixing
element that serves to merge the fluid streams of the reactants, forming a large interface
through which reactants can diffuse across [32]. Using this approach, complete mixing
can occur in as little as 0.5 ms [32]. The mixed reactants then traverse through the reaction
channel, whose chip-dependent length is dictated by the desired reaction time, ranging
from 4 to 500 ms [86]. Lastly, the reaction meets compressed nitrogen gas to generate
aerosol droplets that are sprayed onto the grid and immediately plunge frozen. The
time resolution of microfluidic mixing-spraying is limited by the speed of the mechanical
plunging, which can last more than 10 ms [65,87]. As this technique ensures rapid and
thorough mixing of both reactants, it does not have the apparent size-limitations imposed by
on-grid mixing. Microfluidic mixing-spraying has been applied to study multiple protein–
protein interactions, including ribosome subunit association [65,66] and intermediates of
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translation initiation [88]. Notwithstanding, to achieve desired flow rates (~6 µL/s) and
sufficient particle distribution on the grid [69], this approach requires larger volumes of
sample at higher concentrations compared to those needed in traditional blotting methods.
These factors limit the applicability of microfluidic mixing-spraying for macromolecules
that are difficult to purify. Furthermore, the equipment required to facilitate microfluidic
mixing-spraying is currently specialized, expensive, and not widely available.

In a recent study, microfluidic mixing-spraying trEM was used to visualize the confor-
mational changes of release-factor activation during translation termination [89]. During
translation termination, the newly synthesized protein is released from the ribosome upon
encountering a stop codon. The release is facilitated by a class-1 release factor (RF) that
hydrolyzes the ester bond between the tRNA and polypeptide chain. The RFs in bacteria,
RF1 and RF2, recognize stop codons in the ribosome decoding center (DC) via a stop-codon-
reading (SCR) motif and facilitate ester bond hydrolysis in the ribosomal peptidyl transfer
center (PTC) through a GGQ motif. The DC and PTC are separated by a distance of 70 Å,
but previously reported crystal structures show that the SCR and GGQ motifs of RF1 and
RF2 are located just 20 Å apart [90,91]. Fu et al. employed trEM to visualize the confor-
mational changes in RF1 and RF2 immediately after RF-binding to the pre-termination
ribosome [89]. They utilized microfluidic mixing-spraying trEM to capture the termination
complexes 24 ms and 60 ms after binding (Figure 3). For both the 24 ms and 60 ms reactions,
the authors separately injected the purified release complexes and RFs to corresponding
microfluidic chips, followed by mixture spraying onto grids and plunge-freezing. Sub-
sequent SPA revealed that at 24 ms, a quarter of the ribosome-bound RF population is
in the compact form (Figure 3A,C), with a similar orientation as the previously reported
crystal structures [90,91]. At 60 ms, almost the entire population of the ribosome-bound RF
is in the extended form, and the polypeptide is still present in the ribosome exit channel
(Figure 3B,D). These structures indicate that during the transition from the compact to
extended state, the GGQ motif is placed within the PTC and several key DC residues
undergo structural rearrangements. The authors also analyzed a reaction incubated for five
hours using traditional mixing and vitrification techniques and observed the RF in only
the extended state with no density occupying the ribosome exit channel. Based on these
trEM experiments, the authors proposed a stepwise, structure-based mechanism for trans-
lation termination in which the initial binding state is the pre-accommodated RF-ribosome
complex observed at 24 ms, followed by the catalytic accommodated RF-ribosome complex
observed at 60 ms. Finally, at a later time point, the peptide is released from the exit channel.
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Figure 3. TrEM reveals structural intermediates of release-factor activation during translation termi-
nation [89]. (A,B) Cryo-EM structures of the E. coli 70S ribosome bound to RF2 in compact (A) and
extended (B) conformations. After incubating the reaction for 24 ms, 25% of the ribosome-bound
RF population was in the compact form. At 60 ms, the entirety of the observed population was in
the extended form. (C,D) Ribosome-bound RF2 in compact (C) and extended (D) states show the
location of the GGQ motif and domain III. RF2 is shown in red, tRNA in blue, mRNA in purple, and
the tripeptide in green. The compact state map and model can be accessed with the accession codes
EMD-20188 and PDB ID:6OST, respectively. The extended state map and model can be accessed with
the accession codes EMD-20193 and PDB ID:6OT3, respectively.

5. 3D Classification & Refinement: Approaches to Modeling Discrete Heterogeneity

There are a variety of reconstruction methods used to obtain a 3D density map from
2D particle projections. One traditional approach utilizes the 3D Radon transform (RT), in
which RTs of 2D projections are used to recover the 3D RT, whose inverse is the density
map of the target structure [92]. Other widely used methods employ the projection-slice
theorem [93] to calculate a 3D volume from 2D projections in Fourier space. Cryo-EM
data suffers from multiple limitations that make 3D reconstruction a difficult task. Firstly,
particles have random and unknown orientations that must be computationally resolved
in order to obtain an accurate reconstruction. Moreover, as noted previously, images are
collected with a low SNR and thousands to millions of individual particle images with
the same orientation must be averaged to achieve sufficient signal. A third obstacle and
the focus of this review is the presence of structural heterogeneity in the cryo-EM sample.
Datasets with heterogeneity contain 2D projections corresponding to multiple different 3D
structures [93]. Classifying projections from different structures is difficult in 2D because
one cannot discern with high confidence different conformational states from different
orientations. Therefore, heterogeneity is often addressed through 3D classification.

Initial 3D classification methods were reference-based or so-called “supervised” [94].
Conventionally, these methods apply a projection-matching approach [56], in which a
similarity measurement, most commonly the cross-correlation coefficient, is used to com-
pare experimental particle projections with 2D projections of one or more 3D reference(s).
Classes and projection angles are then assigned to particles given the orientation of the
refence yielding the highest similarity measure. If all projection directions are present in the
sample, refinement should result in an improved structure in comparison to the reference
model. Thus, this process is iterated until the model no longer improves. Choosing an
appropriate initial model is crucial to this approach. Because projection-matching algo-
rithms converge to the nearest local minimum, the initial model must be sufficiently close
to the true structure to arrive at the correct reconstruction. In the case of a dataset with
structural variability, projection-matching can be applied using multiple 3D references, but
this approach requires prior knowledge of the heterogeneity present in the sample [94,95].



Micromachines 2023, 14, 118 10 of 24

To circumvent issues described above, multiple alternative classification techniques have
been developed that do not require prior knowledge of sample heterogeneity [16,44,57,96–99],
the most utilized of which are “unsupervised” methods based on maximum-likelihood
(ML) procedures [5,57]. ML estimation has been used by x-ray crystallographers to refine
electron density maps for decades [100] and was first proposed for 2D alignment of EM
images by Sigworth in the late 1990’s [101]. ML approaches have since been extended
to classify 3D reconstructions [102], known as 3D maximum likelihood (ML3D) [57], and
have been implemented in multiple software packages, including Xmipp [41], Frealign [97],
cryoSPARC [16], and RELION [44]. Unlike conventional projection matching, the ML
approach does not assign each projection a best-fitting orientation. In brief, ML refinement
utilizes an expectation-maximization algorithm to find the most likely reconstructions that
describe a heterogeneous dataset by iteratively integrating over all possible probabilities of
particle orientations and class assignments [103]. ML3D has been applied to solve multiple
structures present in the same sample, revealing intermediates of mRNA-tRNA translo-
cation [104] and different rotational states of the human mitochondrial ribosome [105].
Despite its successes, ML methodologies have several shortcomings. The search for all
possible 3D volumes is computationally expensive and does not guarantee convergence.
Furthermore, ML algorithms can suffer from model bias, especially in cases of datasets with
low SNRs, if the initial reference does not accurately describe the heterogeneity in a given
dataset [13]. Ab initio methods that utilize a stochastic gradient descent (SGD) algorithm
have been implemented in cryoSPARC [16] to alleviate model-bias, but this approach does
not converge to a global minimum and thus requires subsequent refinement to yield a
high-resolution reconstruction [106]. Moreover, both ML and SGD methods are designed to
find discrete conformations and are limited to the discovery of a small number of different
structural states, as these approaches require the user to define the number of 3D classes
empirically. If too few classes are used, artificial classes with combined features will form
and relevant structural states present in the dataset may go unnoticed. On the other hand,
the use of too many classes requires excess computational expense and might lead to
separation of different views of the same target complex into different classes. Additionally,
specimens that undergo continuous molecular movement cannot be accurately described
by these methods, as modeling a continuum of structures in a finite number of classes
leaves unresolved heterogeneity within each individual class.

6. Masking-Based Approaches to Resolve Discrete Structural States and
Continuous Flexibility

As noted previously, cryo-EM datasets often contain multiple types of structural
heterogeneity. For example, particles may vary in subunit stoichiometry or select regions
of the target complex may undergo conformational changes relative to one another. In such
cases, masked 3D classification, or focused classification, can be a useful method to sort
the multitude of conformers present in the dataset and improve the resolution of flexible
regions [14]. In this approach, the user designs and applies a 3D mask to the region of
interest in the 3D structure. The mask excludes all other regions of the structure. The
particles are then aligned with only the masked area and every iteration of classification is
applied to this selected region. The resultant 3D reconstruction excludes all parts of the
structure that do not lie within the mask, thereby sorting the data into subsets that vary
only in the user-defined area. The same principal can also be applied to 3D refinement,
called a focused refinement, to improve the resolution of flexible components [14]. When
generating masks for this approach, it is important that the reference volume is low-
pass filtered as to not include high-resolution details that may lead to overfitting and
thereby overestimation of resolution during gold-standard Fourier shell correlation (FSC)
calculations. Additionally, the mask should have smooth edges to prevent overfitting [14].

During masked classification and refinement, particle images are compared with 2D
projections of the masked reference. While the projections of the masked 3D reference only
contain the target area of interest, the experimental projections contain information about
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the entire particle, including the densities that lie outside of the masked region. During
the comparison of the masked projections and experimental images, the signal from these
unmasked densities in the experimental images acts as noise [14,58,107]. The impact of this
additional noise on refinement largely depends on the SNR of the images, as well as the size
of the entire complex and subunits subjected to masked refinement [12,58]. To resolve this
issue and improve the alignment of the target area, a so-called signal subtraction protocol
can be applied in which the signal excluded from the masked density is subtracted from the
experimental 2D projections [58]. Signal subtraction approaches in cryo-EM were first used
to address symmetry mismatches of bacteriophage ϕ29 [108] and flaviviruses [109], and
similar approaches have since been developed in EMAN [110] and RELION [58]. To per-
form signal subtraction, two masks must be designed, where one encapsulates the regions
that will be used for subsequent focused classification or refinement and the other contains
the entire complex except for the area that lies within the first mask [14]; projections of the
initial map with the second mask applied are subtracted from the experimental images.
Because the experimental images are affected by the CTF, projections of this masked density
must first be convoluted with the CTF prior to subtraction [14]. After subtracting these
CTF-affected projections from the experimental images, focused classification or refinement
can be performed; parameters like orientational searching may need adjustment to improve
particle alignment [14]. Signal-subtracting and focused refinement have been applied to
probe the mobility of human γ-secretase [58], investigate conformational heterogeneity
within the individual subunits of GroEL [111], and resolve the binding between SARS-CoV2
variants and the angiotensin-converting enzyme 2 (ACE2) receptor [112] (Figure 4).

These approaches can be further extended to describe the continuous flexibility of a
system through a method called multi-body refinement [15,113,114]. This recently devel-
oped approach implemented in RELION [15] models flexible components as multiple, rigid
bodies, whose preserved structures vary in orientation relative to each other. Multi-body
refinement assumes compositional homogeneity of the target complex (i.e., individual
molecules have the same subunit stoichiometry) and that motion is resigned to a finite num-
ber of two or more bodies that move independently of one another [15]. For instance, when
applying this approach to a dataset of the Plasmodium falciparum cytoplasmic ribosome [12],
Wong et al. observed independent motion in the head and body domains of the ribosome,
and thus defined these regions as two separate bodies. Furthermore, multi-body refine-
ment assumes that each body is present in every particle in the dataset with their relative
orientation subject to change from particle to particle. First, a consensus refinement is per-
formed to generate an initial map from which the user designs separate masks that contain
each independent body. For every iteration of multi-body refinement, 2D projections are
generated for each masked body and the signal from the surrounding bodies is subtracted;
particles are separately aligned against the densities of each independent body and the
relative orientation of all bodies are recorded. In doing so, signal subtraction is improved
for each iteration. To visualize the motion within the dataset, principal component analysis
(PCA) is performed on the relative orientations of each body to produce movies of 3D
volumes that describe the largest variability in the system [15]. Multi-body refinement was
first applied to resolve conformational heterogeneity of the tri-snRP complex [114] and has
since been used to investigate the dynamics of a multitude of complexes and assemblies,
including the conformational dynamics of G protein-coupled receptor (GPCR) and arrestin
protein binding [115] and the mechanism by which SARS-CoV-2 Nsp1 binds to the human
40S ribosomal subunit to inhibit translation [116].

It is important to note that each target region for multi-body or focused refinement
must be sufficiently large, typically greater than 150 kDa [15], for poses to be accurately
assigned, limiting their applicability to complexes with smaller flexible regions. Further-
more, there is currently no standardized method for atomic model building from the
multiple, independently refined maps produced by these approaches. Programs such as
UCSF Chimera [117], Phenix [118], and Coot [119] offer tools to combine maps generated
from multi-body refinement to produce a composite structure. However, artifacts may
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be present at the interfaces between subunits, as the rigid body assumption no longer
holds where interface residues undergo conformational changes [14,15]. For example,
multi-body refinement of a pre-catalytic spliceosome shows a chemically unfeasible broken
helix connecting the spliceosome core and Sf3b body [15]. In another case, after applying
a focused refinement approach to determine a high-resolution structure of the bacterial
ribosome, Watson et al. observed degradation of the highest resolution components at the
interfaces of maps [120].
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Figure 4. Focused refinement of the SARS-CoV-2 spike protein receptor binding domain (RBD)
and ACE2 improves the resolution of the RBD-ACE2 interface [112]. (A) Consensus refinement
of the SARS-CoV-2 D614G mutant spike protein in complex with the human ACE2 ectodomain
resulted in a reconstruction with global resolution of 2.66 Å, but the RBD-ACE2 interface had a
local resolution of 6.2 Å. Focused refinement of the RBD (dark blue) and ACE2 (red) substantially
improved the resolution of this region to 2.79 Å and allowed for (B) the visualization of sidechain
rotamer arrangements at the interface fitted with atomic coordinates (PDB ID: 7SXX). The global
refinement and focused refinement maps can be accessed with the accession numbers EMD-25509
and EMD-25510, respectively.



Micromachines 2023, 14, 118 13 of 24

7. Focused Classification and Multi-Body Refinement of Ribosomal Complexes

Ribosomes are molecular machines that facilitate protein synthesis by converting
messenger RNA (mRNA) into chains of amino acids. These large macromolecules are com-
posed of up to 80 different proteins and three to four RNA molecules, forming a small and
large subunit that both undergo conformational changes to facilitate the functional cycle of
translation. The ribosome is an ideal target for cryo-EM analysis, as its large size (2.7 MDa in
E. coli) generates sufficient contrast needed for the accurate alignment of particle projections.
Furthermore, because ribosomes undergo numerous conformational changes throughout
translation initiation, elongation, and termination, there are often multiple structural states
present in the same sample. Due to the aforementioned computational advances to address
sample heterogeneity, the past few years have seen a surge in ribosome structures at near-
atomic resolution (reviewed in [121]). In particular, focused refinement and classification
techniques and multi-body refinement have enabled many high-resolution reconstructions
that facilitate the study of transcription-translation coupling [122,123], as well as riboso-
mal interactions with translation factors [124–129]. Furthermore, these techniques have
allowed for the identification of chemical modifications [120,130–132], analysis of potential
drug interactions with protein side chains and nucleic acids [12,63,64,130,133–136], and the
visualization of ribosomal complexes at high-resolution in situ [137,138].

In an interesting example, Khawaja et al. utilized focused 3D classification and multi-
body refinement to calculate two high-resolution structures of distinct pre-initiation states
of mitochondrial translation and investigate the conformation changes that occur during
complex assembly [139]. Translation initiation in the human mitochondria requires the
assembly of the mitochondrial ribosome with mRNA and mitochondrial initiation factors
2 (mtIF2) and 3 (mtIF3). To elucidate the mechanism of complex assembly, Khwaja et al.
applied cryo-EM and SPA to study a sample containing the mitochondrial ribosome small
subunit (mtSSU), mtIF2, and mtIF3. After initial pre-processing and preliminary 2D and
3D classification of the dataset, Khawaja et al. performed focused classification and signal
subtraction on the mtIF3 binding site to isolate particles containing mtIF3. To further
separate complexes containing only mtIF3 from those bound by both mtIF2 and mtIF3, the
authors applied focused 3D classification and signal subtraction on the mtIF2 binding site
(Figure 5A). This workflow resulted in two maps representing mitochondrial preinitiation
steps 1 and 2 (mtPIC-1, mtPIC-2) at 3.0 Å and 3.1 Å resolution, respectively (Figure 5A).
Khawaja et al. also performed masked local refinement on the head core, body core, tail,
and ms39 regions of both maps to improve local resolution of these regions. Initial rounds
of 3D classification revealed multiple, similar conformations of the mtSSU head indicative
of a continuous conformational change. Thus, the authors used multi-body refinement
to elucidate the relative orientations of the mtSSU head and body, applying soft masks
to the head and body regions. Multi-body refinement and subsequent PCA revealed a
head-swiveling motion (Figure 5B). Analysis of 3D volumes corresponding to different
head swiveling states suggested that the positioning of mS37, a 13.5 kDa protein bound to
the mRNA exit channel, serves to restrict head swiveling and allows for the accommodation
of mtIF2 in the second step of translation initiation.
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Figure 5. Focused classification elucidates two high-resolution intermediates of human mitochon-
drial translation and multi-body refinement reveals mtSSU head-swiveling motion during complex
assembly [139]. (A) Workflow of focused classification. After 3D refinement, Khwaja et al. performed
two rounds of focused refinement and signal subtraction masking the mtIF3 and mtIF2 regions to
separate mtIF3 only (mtPIC-1) and mtIF3-mtIF2 bound (mtPIC-2) complexes. mtSSU is shown in
gray, mtIF3 and its mask in orange, and mtIF2 and its mask in green. Maps of mtPIC-1 and mtPIC-2
can be accessed with accession numbers EMD-10021 and EMD-10022, respectively. (B) Multi-body
refinement and subsequent PCA of mtPIC-1 revealed a head swiveling motion emanating from the
rotation of rRNA h28. Depicted maps only serve to represent motion and were not experimentally
determined. The mtSSU head is shown in light purple, body in purple, and mtIF3 in orange. The
pink arrow indicates the direction of motion and pink dot represents the axis of rotation.

8. Approaches to Modeling Continuous Heterogeneity

As detailed above, many developments have been made to successfully reconstruct a
small number of discrete conformations present within the same cryo-EM dataset. Solving
high-resolution structures of systems that exhibit a continuum of functional states, how-
ever, poses challenges and is currently an area of rapid development (Table 1). Several
PCA-based techniques [140–142] have been proposed to model continuous heterogeneity,
including 3D variability analysis (3DVA) [17] implemented in the popular software package
cryoSPARC [16]. 3DVA can be used to resolve both continuous flexibility and discrete
heterogeneity without size limitations or the need for an underlying model for motion.
Based upon the work by Tagare et al. [142], 3DVA is a linear subspace model that uses an
expectation-maximization algorithm for probabilistic PCA, with the goal of finding the top
principal components, or eigenvectors, that correspond to the molecular variability within
the dataset. Together, the principal components describe the linear subspace comprised of
the conformers present in the dataset. 3DVA requires a previous consensus reconstruction
to generate poses of the experimental projections, as the algorithm assumes that the changes
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in conformation are small enough such that the correct projection directions can be assigned
using a single consensus structure. Consequently, it is recommended to perform prior 3D
classification in cases where large compositional heterogeneity is known or expected in
the dataset [17]. The algorithm then determines the position of each particle along the
trajectory of each principal component and represents the particle positions as reaction
coordinate plots. The molecular motion within the dataset is visualized through “movies”
of 3D volumes along a given principal component. However, because 3DVA is a linear inter-
polation along eigen volumes, motion is visualized by the appearance and disappearance
of densities. 3DVA has been used to resolve large molecular motions of the pre-catalytic
spliceosome [17], ratcheting motions of the ribosome [17], and the flexibility of small com-
plexes, including a 53-kDa region of a GPCR complex [17] and the Stx2a-ribosomal P-stalk
complex [143]. Furthermore, 3DVA has been instrumental in investigating the dynamics of
SARS-CoV-2 proteins [144–149].

Machine learning approaches have also gained traction in the past few years for de-
scribing the continuous flexibility of various complexes and assemblies, a subject of another
review in this volume entitled “Novel artificial intelligence-based approaches for ab initio
structure determination and atomic model building for cryo-electron microscopy” [150].
Recently developed methods include ManifoldEM [18,151–153], CryoDRGN [19], Cryo-
GAN [154,155], e2gmm [156] and 3DFlex [157]. ManifoldEM [18] is a nonlinear manifold
embedding method used to describe flexible variation of a system across its energy land-
scape. As in 3DVA, this approach requires a consensus reconstruction to determine particle
orientations [86]. In ManifoldEM, the 2D images with similar projection directions are
combined to form a conformational manifold that is represented in the low-dimensional
space of principal components. The dimensionality of the space is dictated by the degrees
of freedom of the specimen. A 3D movie is produced to show the conformational change
along any given projection directions. The manifolds corresponding to each projection
direction must be stitched together to form a single map that describes the spectrum of
continuous conformational changes of the system [158,159]. The consolidated map is used
to generate a free energy landscape of the system. For any selected point in the map,
conventional reconstruction methods can be applied to yield a 3D volume. ManifoldEM
has been used to investigate conformational variability in a large dataset of the 80S yeast
ribosome [153], as well as the SARS-CoV-2 spike protein [160]. Similar manifold learning
strategies have also been employed to analyze synthetic datasets [161]. ManifoldEM uses
raw images as input and ceases the need for preliminary classification or prior knowledge
of the number of different structural states present within the dataset. However, it should
be noted that this method requires a large number of datasets as well as the fine-tuning of
parameters at several steps for successful execution.

Table 1. Recently developed methods for heterogeneous reconstruction of biomolecular structures
displaying continuous conformational changes.

Method Advantages Disadvantages Reference

ManifoldEM Generates free-energy landscape
of the system Fine tuning of hyperspace parameters Frank & Ourmazd, 2016

[18]

AlphaCryo4D Applicable to small proteins Requires large dataset
Oversamples conformational space

Wu et al., 2022
[162]

CryoDRGN

New version [159] does not
require initial model or

pose information
Resolves discrete and

continuous conformations

Long training time
Empirical optimization of latent space

Zhong et al., 2021
[19]
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Table 1. Cont.

Method Advantages Disadvantages Reference

CryoGAN

Does not require initial model or
pose information

Resolves discrete and
continuous conformations

Limited resolution of reconstructions Gupta et al., 2021
[154]

e2gmm

Reduces parameters needed to
represent particles

Intuitive interpretation by
Gaussian parameters

Requires large amount of
GPU memory

Limited to small proteins for
high resolution

Chen & Ludtke, 2021
[156]

3DVA

Resolves discrete and
continuous motion

No fine-tuning of parameters
Applicable to small proteins

Not applicable to systems with
nonlinear geometry

Artifact of
appearing/disappearing densities

Punjani et al., 2021
[17]

3DFlex Models motion directly instead of
3D volume

Auto-decoder is
computationally expensive

Punjani et al., 2022
[157]

Multi-body refinement
Automated implementation in

RELION [44]
Improves subdomain resolution

Interfaces between bodies
poorly resolved

Size limitation for densities < 150 kDa

Nakane et al., 2018
[15]

CryoDRGN (Deep Reconstructing Generative Networks) [19] is another popular
machine-learning method that employs two deep-learning neural networks to resolve con-
tinuous heterogeneity in a cryo-EM dataset. CryoDRGN uses particle images and poses to
train an image-encoder-volume-decoder architecture based on a spatial variational autoen-
coder (VAE). The algorithm encodes the 2D particle projections into the low-dimensional
latent space, learns the structural variability within the system, and based on the Fourier
projection-slice theorem, decodes slices of corresponding 3D volumes [19]. Similar to Man-
ifoldEM, the user-defined dimensionality of the continuous manifold in the latent space
describes the heterogeneity of the system. As a consequence of the deep-learning neural
network architecture, the ability to resolve continuous conformational changes directly
depends upon the parameters defining the latent space. Thus, the latent space is subject to
empirical fine-tuning [19]. The most recent version of CryoDRGN has implemented an ab
initio algorithm to determine particle orientations during image encoding [163]. In contrast,
the original version of the program relies on a previous consensus refinement to solve for
poses. CryoDRGN presents the resultant reconstructions as the parameters of the neural
network that can be visualized as a voxel array of points. CryoDRGN has been used to
probe molecular motions of the spliceosome [19], the 80S ribosome [19], and non-ribosomal
peptide synthetases [164]. A recent study utilized CryoDRGN to reveal a tilting motion of
the radial spokes of dynein motors [165].

While the above-described approaches show great promise in resolving molecular mo-
tions of large macromolecular machines, they rely on expert knowledge and experimental
methods to attribute biological significance to the calculated motion and lack standardized
and robust methods for validation. Traditional reconstruction methods may be performed
to verify the presence of structural states obtained from these methods [19], or multiple
techniques may be used in conjunction to validate the observed movements [165,166].
For example, the same “twisting” and “hinging” motions observed in human recognition
complex structures by multi-body refinement were also shown in the top principal compo-
nents of 3DVA (Figure 6) [166]. Furthermore, attributing biological significance to motions
learned from cryo-EM data still requires confirmation by biophysical and biochemical
experiments (e.g., NMR or other spectroscopy methods, single-molecule analysis, etc.).
Additionally, there is the risk of over-interpreting motion within the dataset that has no
biological meaning.
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Figure 6. Twisting (A) and pinching (B) movements of the open human recognition complex (ORC)
were revealed by PCA employed by multi-body refinement in RELION and 3DVA in cryoSPARC [166].
Both motions emanate from a hinge at the interface of the ORC3 and ORC5 subunits. The cryo-EM
map shown in the figure is the map of the open ORC, (EMD-22417).

9. Conclusions

Cryo-EM is a rapidly developing tool for high-resolution structure determination
with the capability to resolve the structural variability of biological macromolecules and
assemblies. Developments in sample preparation and vitrification methodologies have
enabled the structural study of biochemical reactions at specific time points, allowing
structural biologists to visualize elusive structural intermediates and gain insight into the
function of dynamic assemblies. However, improvements are still needed to facilitate
widespread adoption of trEM, namely efforts to minimize the amount of sample required
for study and the development of affordable and reliable devices for sample preparation.
Furthermore, advances in computational methods have enabled users to extract multiple
structural states from a cryo-EM sample in silico. There are now many software packages
available to obtain high-resolution structures, as well as multiple different classification and
refinement strategies that can be applied to study heterogeneous samples; however, their
applicability largely depends on the specifics of the dataset. For example, masking-based
approaches have demonstrated the ability to resolve multiple discrete structural states, as
well as improve the resolution of flexible densities. While major strides have been made to
address continuous motion, including deep learning-based approaches, these methods are
still very much in their infancy and lack standardized validation.
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