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Abstract: Cryogenic electron microscopy (Cryo-EM) has been established as one of the key players in
structural biology. It can reconstruct a 3D model of a sample at a near-atomic resolution. With the
increasing number of facilities, faster microscopes, and new imaging techniques, there is a growing
demand for algorithms and programs able to process the so-called movie data produced by the
microscopes in real time while preserving a high resolution and maximal information. In this article,
we conduct a comparative analysis of the quality and performance of the most commonly used
software for movie alignment. More precisely, we compare the most recent versions of FlexAlign
(Xmipp v3.23.03), MotionCor2 (v1.6.4), Relion MotionCor (v4.0-beta), Warp (v1.0.9), and CryoSPARC
(v4.0.3). We tested the quality of the alignment using generated phantom data, as well as real datasets,
comparing the alignment precision, power spectra density, and performance scaling of each program.

Keywords: Cryo-EM; movie alignment; performance; FlexAlign; MotionCor2; Relion MotionCor;
CryoSPARC; Warp

1. Introduction

The first step in the Cryo-EM processing pipeline is typically referred to as movie
alignment. A movie consists of a sequence of frames produced by the microscope, with each
frame recording projections of tens to hundreds of particles. By averaging these frames, a
micrograph is generated, which is subsequently used for particle picking, contrast transfer
function (CTF) estimation, and other stages of the image processing pipeline. However,
due to factors like beam-induced motion and other alterations within the recorded area
during imaging, simple frame averaging of frames is insufficient.

The causes of these variations may differ from one sample to another, and they are
comprehensively described in [1]. The motion can manifest as both global, affecting the
entire rigid frame, and local, affecting specific areas of the frame, and it is necessary to
correct both types.

The alignment process is challenging due to the extremely low signal-to-noise ratio
(SNR), as the electron arrival is expected to occur following a Poisson distribution; this
means that the most common observations are 0 or 1 electron per pixel.

Typically, we differentiate between two types of alignment. Global alignment aims
to compensate for the apparent movement of the entire frame. While this can result in
incorrect alignment in specific areas, it enhances the overall SNR. Consequently, it is often
employed as the initial step before local alignment.

Local alignment, in contrast, seeks to correct more complex particle movements
caused by factors such as the beam, doming, or another cause. Typically, it operates on
a divide-and-conquer basis: the movie is divided into small patches, and alignment is
independently solved for each patch. Ultimately, both global and local movements are
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corrected by interpolating and summing values from all movie frames, thus producing
a micrograph.

Three factors drive the requirement for fast and precise algorithms for movie alignment.
The first one is speed. The new generation of detectors [2] and acquisition practices
increased the throughput to 300-400 movies per hour [3], with plans to grow to about
1000 movies per hour. It is crucial to be able to process these movies in real time, as potential
problems with the imaging or the sample can be discovered and possibly corrected as soon
as they appear during the acquisition (the access cost to the microscope ranges from USD
1000 to USD 3000 per day).

The second factor is accuracy. The goal of Cryo-EM is to produce near-atomic models
of the macromolecules under study [4]. The last step of the processing pipeline, 3D recon-
struction, has been a hot topic for the past few years with several important studies [5,6].
However, to reach high-resolution models, all the steps in the processing pipeline have to
be looked at carefully. This goal sets an important challenge to all the image processing
steps, especially this one, as the SNR of the micrographs ranges from 1/10 to 1/100 (at the
level of the frame, this SNR has to be divided by the number of frames, typically between
10 and 100).

The third factor is particle tracking for polishing. Being able to track the particles back
to the originating frames accurately is crucial during the polishing phase, which aims to
further improve the resolution of the final 3D reconstruction.

In this article, we compare the most commonly used programs for movie alignment—
more precisely, we compare the most recent versions of CryoSPARC (v4.0.3) [7], FlexAlign
(Xmipp v3.23.03) [8], Relion MotionCor [9] (v4.0-beta), MotionCor2 (v1.6.4) [10], and
Warp [11] (v1.0.9). We tested the quality of the alignment using generated phantom data
and real datasets using various metrics and performance scaling of each program on a
single fat node. Typical facility installations use a fat node or a cluster installation with a
naive work distribution.

The rest of this paper is organized as follows: Section 2 provides additional details on
each movie alignment program. In Section 3, we describe the methodology used. Quality
and performance evaluations are conducted in Section 4. We discuss the results in Section 5.
Finally, conclusions and future work are presented in Section 6.

2. Comparison of Movie Alignment Programs

CryoSPARC allows for the selection between several implementations of movie align-
ment, including the MotionCor2 wrapper, patch, full-frame, and local motion correction [7].
The method used in this paper, as recommended by the manufacturer, is the patch motion
method. This autotuning patch-based method performs full-frame stage drift and local
anisotropic motion correction. It is accelerated on a GPU but is not open source.

MotionCor?2 is probably the most commonly used software for movie alignment [10].
While MotionCor2 provides good performance and precision, to the best of our knowledge,
it does not provide the data needed for particle tracking. It allows for both global and local
alignment and is accelerated on a GPU. It uses cross-correlation (CC) to align frames or
patches of the movie. It is not open source.

FlexAlign performs global and elastic local registration of the movie frames using CC
and B-spline interpolation for high precision [8]. It is accelerated on a GPU and is open
source. Interpolation coefficients are stored to allow for particle polishing.

Relion MotionCor implements Bayesian polishing (also open source) [9]. Internally,
it uses a CPU implementation of the MotionCor2 algorithm. Relion does not have GPU-
accelerated movie alignment, and the CPU code by default uses double precision, which
further penalizes its performance.

Warp also uses CC and is GPU-accelerated [11]. Alignment information, including
local alignment, is stored as an xml file.

A brief overview of the compared programs can be found in Table 1.
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Table 1. Comparison of various movie alignment programs.

Program HW Method + Interpolation
CryoSPARC GPU Proprietary code
FlexAlign GPU CC + cubic B-spline in space and time
MotionCor2 GPU CC + quadratic (space), cubic (time) polynomials
Relion MotionCor CPU CC + quadratic (space), cubic (time) polynomials
Warp GPU CC + cubic B-spline in space and time

As a final note, it is important to highlight that not all movie alignment programs
produce the same type of output. For instance, FlexAlign produces the average of the
input frames, while MotionCor2 produces the sum of the input frames. Additionally, the
interpolation scheme used to generate the aligned frames may also influence the specific
values and power spectra of the output micrographs.

3. Methodology
3.1. Quality—Phantom Movies

As we do not know the ground truth for real data, we opted for using generated phantom
movies, whose properties we fully know. We used the latest version of the xmipp_phantom_movie
program available from the Xmipp suite in version 3.23.03-Kratos. Xmipp is a suite of
image processing programs, primarily aimed at single-particle 3D electron microscopy,
designed and managed by the Biocomputing Unit located in Madrid, Spain [12,13].

The Xmipp_phantom_movie program can generate movies with a specified resolution
size and number of frames. The signal in the frames is represented by either an equally
spaced grid, a disc, or a cross, which is not typical in cryoEM but allows us to easily study
the quality of the alignment. The signal can be translated in each frame using a fixed-step
shift or a more complex function. Additionally, barrel deformation can be applied to
simulate doming (its formal description is given below).

Depending on the settings, the program can simulate the ice via range-adjusted, low-
pass filtered noise with a normal distribution and the dose using a Poisson distribution
on a per-pixel basis. To ensure the repeatability of the output, a fixed seed for random
generators can be used. Lastly, the program can generate dark and gain images of an
appropriate size, with values of 0 for the dark image and 1 for the gain image, which can
be used for performance testing. The resulting movies and images can be stored in various
formats. For this study, we opted for the mrc format due to its wide support among the
tested programs.

To test various properties of the movie alignment programs, we generated several
types of movies with various numbers of pixels:

e 3838 x 3710 (K2 detector);

e 4096 x 4096 (Falcon detector);

e 5760 x 4092 (K3 detector);

* 7676 x 7420 (K2 detector, super-resolution);
. 11,520 x 8184 (K3 detector, super-resolution).

For each size, we have generated noise and noiseless movies with 6 and 10 frames, as
typical for cryogenic electron tomography, and with 70 frames, as typical for single-particle
analysis. Please note that the term fypical should be understood in a very vague manner,
as the number of frames greatly depends on the experiment setup. These movies assume
that the sampling rate is 1 A per pixel. They contain a grid with a spacing of 150 pixels,
and each line is 5 pixels wide. Also, we generated noisy and noiseless movies with a size
of 4096 x 4096 x 70 frames and a grid step of 300 pixels. On each frame, a fixed shift
was applied so that the total shift of the movie was from 50 to 120 pixels, with a step of
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10 pixels between movies. The shift has been applied to each pixel [x, y] and frame t using
the following formula:

x(t) = ayt + axt? + cos(t)
s M)
y(t) = byt + byt + %

ay, a», b1, and b, are coefficients used to model shifts in two directions. To determine
their default values, we fine-tune them until we obtain the most suitable coefficients for
simulating shifts commonly encountered in cryoEM. To capture basic linear shifts, we
focus on a7 and by, representing the linear components of the shift. These coefficients
dictate the slope or rate of change in the shift along the x and y directions. To capture more
complex shift behaviors, such as parabolic patterns, we introduce coefficients a, and b,.
These coefficients determine the steepness and curvature of the function, allowing us to
represent more intricate and non-linear shifts. We used values of a; = —0.039, a; = 0.002,
b1 = —0.02, and bz = 0.002.

Furthermore, the barrel/pincushion transformation has been applied to each shifted
frame to simulate doming. For normalized coordinates ([—1,1]), the pincushion transfor-
mation changes the radial location of a given pixel as follows:

Tout = rin(l + klrzzn + kzi’?n> 2

where r;, and ro,; represent the radius of a given pixel in polar coordinates of the in-
put (before the barrel deformation) and output (after the barrel deformation) images.
The k values were linearly interpolated between frames, from ki, = ko, = 0.01 to
ki, = ko,,; = 0.015, to make the transformation more prominent in the later frames.

The frame content consists of a phantom signal—either a regular grid, a disc, or a
cross, optionally embedded in ice. The Poisson arrival of electrons can also be simulated
as an optional step. The process starts by creating the ice if included. The ice is simulated
by a random Gaussian field (in our simulation, we used a N(0,1) distribution). Once
the Gaussian field is simulated, it is low-pass filtered (up to 3A) and re-scaled between a
minimum and maximum value (0 and 2, in our case). Subsequently, the signal is added to
the frame.

Next, all frames are generated by applying the deformation patterns described above.
These simulated frames are deterministic, as the ice structure is simulated only once and
it is deformed along the process. At this stage, we may also simulate the Poisson arrival
counting. The values of the deterministic frames described above are treated as mean
values of a Poisson and sampled from these Poisson distributions. The entire process is
visually represented in Figure 1.

Each of these noiseless and noisy movies, with non-uniform and fixed-step shifts
per frame, was processed by all programs using either default settings or the settings
recommended in the documentation.

end
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Figure 1. Phantom movie generation process, noiseless frame, effects of applied noise and dose
models, and a cryo-EM-based simulated movie frame. (A) corresponds to a frame of a noiseless
movie with the aforementioned barrel deformation. (B) represents the same frame, with the upper
half showing the impact of the corresponding applied dose and the lower half displaying the effect of
the noise model simulating ice. (C) depicts the final generated movie frame with the applied dose
and the corresponding noise model. (D) shows a cryo-EM-based simulated movie frame with circular
projections, dose, and noise model. For representation, this frame was enhanced in contrast and
Gaussian blurred to make the simulated particles visible.

3.2. Quality—EMPIAR Movies

In our study, we also incorporated experimental data from three different datasets ob-
tained from the Electron Microscopy Public Image Archive (EMPIAR): EMPIAR 10,288 [14],
10,314 [15], and 10,196 [16].

EMPIAR 10,288 dataset consists of movies with 40 frames, whose size is 3838 x 3710
pixels. The pixel size is 0.86 A and the average exposure was 1.25 ¢/ A%. Data were acquired
using a Gatan K2 SUMMIT camera on FEI Titan Krios. Gain correction images are provided.

EMPIAR 10,314 dataset includes movies with 33 frames, each having a size of 4096 x
4096 pixels. The pixel size is 1.12 A with an average exposure of 1.51 ¢/A2. Data were
acquired using the Falcon 3EC camera on Titan Krios. This dataset does not include gain or
dark correction images.

The EMPIAR 10,196 dataset contains movies with 40 frames, each having a size of
7420 x 7676 pixels and an average exposure of 1.264 ¢/ A2. The pixel size is 0.745 A, which
corresponds to a super-resolution setting. Data acquisition was carried out using a K2
camera on Talos Arctica. Gain correction data are provided, along with specific instructions
for their application (rotation by 90 degrees left and horizontal flip).

The diversity in dataset characteristics and camera models enriched our analysis,
offering valuable insights into the algorithms’ robustness and adaptability to different
experimental setups.
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3.3. Quality—Metrics

For both the phantom data and the real data, we collected multiple metrics for the
resulting micrographs. We collected three windows of 512 x 512 pixels each: one from the
top left corner, one from the center center, and one from the bottom right corner of each
micrograph. Additionally, we generated a normalized center window of 512 x 512 pixels,
along with a histogram of the entire micrograph before normalization. Lastly, we generated
the power spectra density (PSD) plots for each micrograph.

In the case of the real data, we also collected the maximal frequency using two different
methods: xmipp_ctf_estimate_from_micrograph and Gctf, both using the default parameters
as proposed by respective protocols in Scipion [17].

The decision to use two different methods for estimating the limit resolution of the
CTF in real data analysis was made to ensure a more robust comparison. By employing
Xmipp and Gctf methods, we obtain two different ways of measuring the resolution at
which the micrographs contain recoverable information. The Xmipp method estimates this
value by determining the resolution at which the experimental power spectrum density
(PSD) drops below 1/100 of the PSD at the origin. In contrast, the Gctf method measures
the frequency at which the theoretical PSD function has a positive correlation with the PSD
of the image. By using these two different approaches, we can verify that the estimated
limit resolution is consistent across methods, enhancing the robustness of our comparison.

The ultimate test for real data would be to execute the entire processing pipeline till we
achieve the structure’s 3D model. However, such a test is not recommended in this context.
Each movie alignment program uses a different reference frame for alignment. In other
words, the particle’s position differs between micrographs generated by different programs.
While we could re-center each particle and keep the rest of the processing pipeline intact,
we cannot guarantee that the change in the final resolution of the 3D reconstruction comes
only from the substitution of the movie alignment program and not from the re-centering
step and other non-deterministic computations along the way.

3.4. Performance

To evaluate the performance of each program, we conducted multiple executions
using the same phantom input. This scenario represents the best-case situation where the
data are readily available (unlike in a streaming environment where data are continuously
delivered) and may even be cached in RAM. It is worth noting that the processing time for
movies with a high resolution and many frames can be limited by the read speed of the
storage on the processing node (for instance, a movie with a size of 11,520 x 8,184 pixels
and 70 frames in the MRC format consumes 24.58 GB of storage).

For each program, we ran multiple executions on the same input, processing the
movie and providing gain and dark correction images (except for Relion MotionCor and
CryoSPARC patch motion correction, which do not support dark correction images). Ad-
ditionally, we tested scaling using multiple GPUs and different numbers of threads (in
the case of Relion). We also assessed the performance of batch processing in MotionCor?2.
Lastly, an additional experiment was conducted involving placing the data on a solid-state
drive (SSD) for faster reading and writing operations.

As FlexAlign uses an autotuning technique to optimize its performance for specific
combinations of the size of the movie, and settings and used GPU, we also measured the
time of this step. The result of autotuning is stored in a file and reused when possible.

Notice that Relion MotionCor is not GPU-accelerated. By default (as installed by
Scipion), it uses double precision for CPU computation.

It is important to note that direct access to the CryoSPARC method is unavailable.
Therefore, we had to use an alternative approach. We called the main program, created
a project, imported the movies, and connected them to the local movie alignment job.
However, the performance times were measured directly from the log file provided by
CryoSPARC, specifically by tracking the time it took to complete the alignment job. This
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ensured that the performance measurements accurately reflected the time required for the
alignment process in CryoSPARC.

We executed all programs intending to correct the local alignment, and we used the
default or the recommended settings for each program. FlexAlign and CryoSparc set the
number of patches automatically. Still, for MotionCor2 and Relion MotionCor we used
recommended values (5 x 5 for movies smaller than 5000 pixels, 7 x 5 for bigger ones) and
also multiples of 2 and 3, respectively, (i.e., 10 x 10, 15 x 15x, 14 x 10,21 x 15) to see the
quality and performance difference.

We did not record the execution time for experimental movies from the EMPIAR, as
the processing time should be primarily dictated by the number of frames and their size,
rather than the content of the frames.

All scripts generated for these data and the movies are available on Zenodo [18] and
Empiar [19].

4. Results

The results section of our study focuses on evaluating the performance of various
alignment programs in terms of quality and time efficiency. The tests were performed on a
CentOS 7 Linux server with 40 cores (2 x Intel Xeon Gold 6230, 2.20 GHz) and 384 GB of
RAM. The workstation also featured four GPUs (Tesla T4 Driver Version 460.27.04, CUDA
Version: 11.2) with 16 GB each. In terms of storage, it has four 8 TB SATA HDDs in a
RAID 5 configuration for mass storage (where data were stored), two 1 TB SATA SSDs in
a RAID 0 configuration for scratch, and two 240 GB SATA SSDs. This machine is housed
within the Biocomputing Unit data center at the Spanish National Centre for Biotechnology
(CNB-CSIC).

For Warp, we used a different machine with Windows 10 Pro 64-bit (10.0, Build 19045).
The desktop has eight cores (AMD Ryzen 7 1700, 3.0 GHz) and 64 GB of RAM (4 x 16 GB).
The single RTX 2080 Ti with 11 GB of memory uses driver 536.23. In terms of storage, it
has one 500 GB HDD and one 120 GB SSD connected via SATA 600, where the data were
copied before the test. This machine is housed within the Sitola laboratory, a joint facility of
the Faculty of Informatics and Institute of Computer Science at Masaryk University and
the CESNET association at Masaryk University in Brno.

4.1. Quality

The quality assessment of the alignment algorithms involved the analysis of both
simulated and real datasets. For the simulated dataset, we evaluated alignment quality
by examining the aspect of the signal pattern in the resulting micrographs. This allowed
us to assess how well the algorithms handled deformations, noise, and shifts in the simu-
lated data.

In the case of the real dataset, our focus was on measuring the limit resolution criteria of
the CTF estimation using two different programs. This criterion provides information about
the maximum level of detail that can be resolved in the images. Additionally, we examined
the energy decay in the power spectrum density for higher frequencies. This analysis was
conducted on three different datasets, each comprising 30 movies. By evaluating these
parameters, the study aimed to gain insights into the accuracy and effectiveness of the
alignment algorithms in capturing fine details and preserving image quality.

4.1.1. Phantom Movies

Figure 2 presents examples of simulated aligned phantom movies. We used grid-based
phantom movies to examine the grid pattern of the resulting micrographs and evaluate how
well the algorithms handle common issues such as noise, deformation, and shifts. For this
kind of movie, we have both noiseless and noisy versions, with the noisy ones simulating
the ice and dose found in typical cryoEM experiments. Additionally, we included a cryo-
EM-based simulated movie that allows for a comparison in a more realistic cryoEM scenario.
These types of phantom movies were designed to be a middle ground between particle
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projections and a regular grid. Furthermore, all types of movies were subject to barrel
deformation, which was applied to the movie frames to simulate the common dome effect
observed in cryoEM. This results in a more rigid pattern in the center region, gradually
curving towards the edges.

Figure 2. Examples of different aligned phantom movies: (A) shows frames aligned from a noiseless
movie using the FlexAlign program. (B) depicts frames aligned from the same movie, but this one
includes an additional noise model, also aligned using the FlexAlign program. (C) illustrates frames
aligned with the FlexAlign program from a cryo-EM-based simulated movie with disc projections.

By studying the alignment quality of these simulated movies, we aimed to gain
valuable insights into the algorithms’ results and their ability to accurately align movies
with different characteristics and complexities. However, we cannot reject the possibility
that the relative alignment accuracy of the methods may be affected by this particular type
of signal.

The visual analysis presented in Figure 3 provides insights into the quality of the align-
ment algorithms by comparing the alignment results for pristine movies and their noisy
counterparts. This allows for the evaluation of how each algorithm handles deformations,
shifts, and noise present in the phantom movies.

In our experiments, we conducted tests on movies of different sizes and observed
interesting trends in alignment quality. It became evident that all programs successfully
aligned the center region of the movies. However, as we moved towards the edges, the
algorithms encountered difficulties and exhibited poor alignments, resulting in a blurring
effect in the mesh pattern. This blurring effect was also noticeable in the noisy movies,
where incorrect alignment caused the mesh pattern at the edges to appear blurred. This
behavior remained consistent across movies of varying sizes and frame counts. When
comparing the results of different algorithms, FlexAlign, in particular, excelled at achieving
a cleaner pattern in both pristine and noisy images at the edges, indicating superior
alignment capabilities.

Furthermore, as we experimented with higher-dimensional images, we simulated a
proportional increase in beam-induced movement (BIM) and drift. Consequently, most of
the algorithms struggled to align the edges correctly and, in some cases, even struggled to
align the central region in the largest dimension. These findings underscore the challenges
alignment algorithms encounter when handling larger image deformations, particularly in
terms of preserving alignment accuracy at the edges.
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Figure 3. Pattern matching. The visual analysis of alignment algorithm results was conducted on
a phantom movie with dimensions of 4096 x 4096 x 70. Each panel (A,B) in the figure displays a
set of images, where each row represents a triplet of images extracted from the top-left, center, and
bottom-right parts of the aligned movies. (A) The left panel showcases the alignment of noiseless
movies, whose frames contain deformed and shifted mesh patterns. Each row corresponds to a run
of a specific algorithm, arranged alphabetically from CryoSPARC (C) to Warp (W) software, showing
the first letter of their name in the middle of the row. (B) The right panel features the alignment of
movies of the same dimensions and mesh pattern but with added noise.

The analysis in Figure 4 allows us to observe the performance of the alignment
algorithms when subjected to a 60-pixel shift. By comparing the aligned movies to the
pristine and noisy versions, we can assess how effectively each algorithm handles shifts in
the phantom movie.

For the experiments, we used movies of the same size (4096 x 4096 x 70) but intro-
duced varying global drift. Specifically, we introduced eight shifts ranging from 50 to
120 pixels, with increments of 10 pixels. Similar to the previous experiment, we observed a
consistent pattern where all programs successfully aligned the center region of the movies.
However, as we moved toward the edges, the algorithms encountered difficulties, resulting
in poor alignment.

It is worth noting that as we increased the drift most of the algorithms struggled to
align the edges correctly. FlexAlign, in particular, was sensitive to these changes, as it typi-
cally expects frame movement within normal cryoEM conditions. It exhibited alignment
failures at shifts over 90 pixels using the default settings. To determine whether FlexAlign
could handle larger shifts, we increased the maximum expected shift parameter in the
algorithm, leading to improved alignment accuracy.

These findings highlight the challenges alignment algorithms face when confronted
with increasing drift levels. They also underscore the importance of parameter optimization
and understanding the specific limitations and sensitivities of each algorithm to achieve
accurate alignment results, particularly in the presence of significant shifts.
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Figure 4. The effect of a 60-pixel total shift on alignment algorithms was analyzed using a phantom

movie with dimensions of 4096 x 4096 x 70. Each panel (A,B) in the figure presents a set of images,
where each row represents a triplet of images extracted from the top-left, center, and bottom-right
parts of the aligned movies. (A) The left panel displays the pristine (noiseless) movies, where frames
contain deformed and shifted mesh patterns. Each row corresponds to a run of a specific algorithm,
arranged alphabetically from CryoSPARC (C) to Warp (W) software, showing the first letter of their
name in the middle of the row. (B) The right panel features movies of the same dimensions and mesh
pattern but with the addition of noise.

Figure 5 enables a comparison in a more realistic cryoEM scenario. These types of
phantom movies were intended to replicate not only cryoEM conditions, such as shifts,
dose, noise, and deformations but also to simulate their main signal, which is particle
projections. This way, the relative alignment accuracy of the methods is not affected by the
particularity of the grid-type signal studied before.

These results corroborated our earlier findings. Despite differences in signal complex-
ity, all programs effectively aligned the central region of the movies. However, as they
approached the edges, the algorithms encountered challenges and produced suboptimal
alignments, resulting in visible blurring in the particle projections at the micrograph’s
periphery. When comparing the outcomes of different algorithms, FlexAlign once again
demonstrated its ability to excel by consistently achieving a cleaner pattern, indicating
superior alignment capabilities at the edges.
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Figure 5. Alignment of cryo-EM-based simulated movies. Visual analysis of alignment algorithm
results was conducted on a phantom movie with dimensions of 4096 x 4096 x 70. The figure displays
a set of images, with each row representing a triplet of images extracted from the top-left, center,
and bottom-right parts of the aligned movies. This movie contains circular projections to simulate
particles, dose, noise, and deformations to fully replicate cryo-EM conditions. Each row corresponds
to a specific algorithm run, arranged alphabetically from CryoSPARC (C) to Warp (W) software, with
the first letter of their name shown in the middle of the row.

4.1.2. EMPIAR Movies

Table 2 compares the CTF resolution limit, expressed in Angstroms (A), for each
EMPIAR entry using the Getf and Xmipp methods. The mean value indicates the average
CTF resolution limit obtained from each respective method, while the standard deviation
represents the variation or dispersion of the CTF criteria around this mean value. By
comparing the mean and standard deviation values between the Getf and Xmipp methods
for each EMPIAR entry, we can gain insights into the consistency and accuracy of the CTF
estimation provided by these methods.

For consistency and to assess the potentially significant differences in quality perfor-
mance among different algorithms, a comprehensive statistical study was conducted. This
study aimed to evaluate the significant differences in means both collectively using an
ANOVA test and individually by comparing all possible program combinations through
paired t-tests.

The ANOVA (Analysis of Variance) test was employed to analyze whether there is
a statistically significant difference among the means of the various programs. This test
allows us to determine if there are significant variations between the groups as a whole and
provides an overall assessment of the statistical significance of the observed differences.

If the ANOVA test yielded a significant result, a post hoc analysis was performed to
compare the means of each pair of programs individually. This approach enables us to
assess the significance of the differences between specific pairs of programs and identify
which programs exhibit statistically different performances.

By conducting the ANOVA test and its subsequent post hoc analysis, we can thor-
oughly investigate the significant differences in means between the programs under con-
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sideration. This statistical analysis enhances our understanding of the variations in quality
performance among the different movie alignment algorithms in cryoEM.

Table 2. CTF Resolution limit (A) comparison. The following table presents the means and standard
deviations of the CTF criteria for the CTF estimation using two different methods, Getf and Xmipp.
The data in the table correspond to 30 image samples per EMPIAR entry, divided into three datasets:
10,196, 10,288, and 10,314.

EMPIAR Entry Program Xmipp Gctf
CryoSPARC 53+0.9 43+0.6
10,196 FlexAlign 52+0.9 41+05
MotionCor2 51+0.7 42 +0.6
Relion MotionCor 51+£07 41+07
Warp 48«1 43+0.6
CryoSPARC 42+0.2 2.8+0.2
10,288 FlexAlign 42+05 2.8+0.2
MotionCor2 42 +0.3 29+02
Relion MotionCor 44 +0.2 29+02
Warp 48+0.2 2.8+0.2
CryoSPARC 50+0.3 3.6+0.2
10,314 FlexAlign 48+03 3.7+0.2
MotionCor2 49+0.3 3.7+0.2
Relion MotionCor 51+0.3 3.6+0.2
Warp 55+0.4 3.7+0.2

Figure 6 presents an analysis of the resolution estimation based on the CTF criteria
for various EMPIAR entries, facilitating a clear comparison of the resolution performance
among different algorithms.

For EMPIAR entry 10,196, the ANOVA test conducted on the group means did not
reveal any significant differences.

For EMPIAR entry 10,288, the ANOVA test detected a significant difference in the
group means obtained from the Xmipp program at a confidence level of 0.05. Additionally,
the post hoc analysis indicated a significant difference between the movie alignment
program Warp and the other programs, signifying a poorer quality performance by Warp
in this test. Furthermore, CryoSPARC and MotionCor2 exhibited a statistically significant
better resolution limit than Relion MotionCor. Regarding the Gcetf metric, the ANOVA test
did not identify any significant differences.

For EMPIAR entry 10,314, the ANOVA test found a significant difference only for the
Xmipp criteria, indicating that different algorithms performed significantly differently for
this dataset. The post hoc analysis further revealed a significant difference between all
programs and Relion MotionCor and Warp, with the latter two generating micrographs
with lower resolutions than the others.
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Figure 6. Resolution based on CTF Criteria. The bar plots in the first row depict the mean CTF criteria
obtained with the Gctf program for EMPIAR entries 10,196, 10,314, and 10,288. Each bar corresponds
to the specific alignment algorithm result, arranged alphabetically: CryoSPARC (C), FlexAlign (F),
MotionCor2 (M), Relion MotionCor (R), and Warp (W). Similarly, the second row contains bar plots
for each entry, but, in this case, the mean critical resolution is estimated using the Xmipp program. A
triangle symbol indicates a significant difference between means (ANOVA, confidence value 0.05).

Figure 7 visually represents the observed PSD trends for each program and EMPIAR
entry, enabling an analysis of how different alignments affect the PSD pattern. These
plots illustrate the distribution of energy across various frequencies. Ideally, with correct
alignment, different algorithms should not alter the PSD patterns. The occurrence of such
alterations suggests that the algorithm introduces bias to the image.

Regarding the attenuation of PSD energy at higher frequencies, we observed varying
degrees of damping among the programs. CryoSPARC and MotionCor2 exhibited minimal
damping as they reached higher frequencies. Conversely, FlexAlign and Warp showed
slight damping at higher frequencies. It is important to note that this damping occurs
close to the Nyquist frequency, at which point the signal’s energy has largely dissipated.
Therefore, this energy reduction has a minimal impact on noise reduction. Additionally, it
is worth mentioning that for dataset 10,196 Warp exhibited an unusual behavior, displaying
different and less favorable energy decay compared to the others. We believe this issue
may be associated with Warp’s difficulty in processing this particular dataset.

Finally, Relion MotionCor appeared to lose energy across frequencies. These differ-
ences can be attributed to the interpolation function used to generate the output micrograph.
CryoSparc and Motioncor2 likely use Fourier cropping, FlexAlign and Warp employ B-
spline interpolation, and Relion uses linear interpolation. Relion’s damping begins at lower
frequencies than those detected by XMIPP and Gctf. This observation suggests that we
may have had sufficient energy to accurately estimate the CTF and extract the resolution
limit at higher frequencies. Furthermore, the XMIPP criteria appear to be more consistent
with the damping value since its resolution limit is based on the experimental PSD decay
rather than the correlation of the theoretical PSD function with the experimental PSD.
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Figure 7. Power spectrum density (PSD) trends for all the programs are depicted in the figures.
Each figure corresponds to one of the EMPIAR entries and illustrates the PSD plots of a single
micrograph aligned using different algorithms. It is worth noting that we observed a consistent
trend for each program across all the micrographs in our datasets. To illustrate this behavior, we
randomly selected one image per entry to represent the overall trend. (A) displays the PSD plots,
presented in a logarithmic scale, of a sample image from EMPIAR 10,196 utilizing various algorithms.
(B) showcases the PSD plots of a sample image from EMPIAR 10,288. (C) exhibits the PSD plots of a
sample image from EMPIAR 10,314.

To observe how the alignment by various algorithms impacts image content in real
space, Figure 8 visually illustrates the distribution of pixel values in the aligned movies
generated by various algorithms, providing a means for comparative analysis of pixel value
distribution across different alignment programs. Our experiments revealed variations in
the pixel values of the resulting aligned images, depending on the specific algorithm used.

To assess whether there were statistically significant differences in pixel value distri-
bution, we normalized images produced by different alignment algorithms and conducted
pairwise Kolmogorov-Smirnov tests to compare them. This non-parametric test evaluates
whether two datasets share the same underlying distribution. In most cases, the test rejected
the null hypothesis, indicating that the two datasets originated from distinct distributions.
This highlights that achieving consistent information content from the alignment of the
same image with different algorithms is not as straightforward as image normalization.
Instead, it underscores that different alignment algorithms can yield statistically distinct
pixel value distributions.

The coefficients of variation (CV) reveal the extent of variability around the mean of
all pixel values, even when considering outliers. Across all distributions, we observed low
to moderate CV values, indicating that pixel values are relatively close to the mean and
exhibit low variability, despite their statistically different distributions.

One possible explanation for these variations is that different algorithms output
distinct representations of mean electron impacts or electron impact counts, even after
normalization. This can result in differences in observed pixel values in the aligned images
and can affect pixel value distribution.
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Figure 8. Aligned movies’ pixel values histograms are presented for the same aligned movie from
the EMPIAR entry 10,288: (A) Cryosparc; (B) FlexAlign; (C) Motioncor2; (D) Relion MotionCor;
(E) Warp. CV stands for coefficients of variation (standard deviation as a percentage of the mean). For
representation, we removed the outliers by means of the interquartile range (IQR of 80%) method.

4.2. Performance

The time performance of the programs was evaluated by calculating the mean ex-
ecution time based on 10 runs of the same simulated movie. Various movie sizes and
conditions, including the number of GPUs for parallel computing, multi-threading, batch
processing, and SSD storage, were considered to assess the efficiency of the algorithms in
terms of processing speed.

Table 3 provides an overview of the mean performance of each algorithm based
on 10 trial runs across three different Cryo-EM movie sizes. Please note that Warp was
executed on a different machine than the other programs, making an absolute comparison
challenging.

For the smallest movie size (4096 x 4096) with 10 frames, suitable for tomographic
tilt movies, MotionCor2, FlexAlign, and Warp were the fastest, with MotionCor2 leading.
In contrast, Relion MotionCor lagged, and CryoSPARC was the slowest. With 70 frames,
which is common for single-particle analysis (SPA), the three fastest algorithms maintained
their superiority, with Warp leading, while Relion and CryoSPARC delivered comparable
performances.

As the movie size increased to 7676 x 7420, which is typical of larger movies, process-
ing times increased significantly for all programs. In 10-frame tomographic tilt movies, the
fastest algorithms’ performances resembled those of the first movie size, with MotionCor2
as the fastest. Relion MotionCor struggled the most with the larger data, while CryoSPARC
was less affected but still notably slower. With 70 frames, MotionCor2’s performance
declined compared to FlexAlign and Warp, being almost 10 s slower. CryoSPARC also had
a notable processing time increase, while Relion MotionCor was the slowest.
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Table 3. This table provides the time performance comparison of different movie alignment software
for CryoEM. It presents the mean and standard deviation of the time in seconds required to align
movies of various sizes (4096 x 4096, 7676 x 7420, and 11,520 x 8184). The data in the table represent
the results obtained from performing the alignment process 10 times. The movie sizes are based
on three sizes commonly encountered in cryo-electron microscopy tomography and single-particle
analysis (SPA), each with a different number of frames, 10 and 70 frames, respectively.

Movie Size Program 10 Frames 70 Frames
CryoSPARC 159 +1.1 302+34
FlexAlign 38+0.1 155+0.9
4096 x 4096 MotionCor2 3202 122+ 1.0
Relion MotionCor 79 +0.7 33.8+5.0
Warp 39+05 11.6+1.5
CryoSPARC 27.8+24 92 + 6.7
FlexAlign 9.8 +0.5 377+ 1.1
7676 x 7420 MotionCor2 7.8+0.3 469+19
Relion MotionCor 371+23 164 +7.8
Warp 10.7 £ 1.5 36.7+29
CryoSPARC 422 +2.6 128.3 + 8.8
FlexAlign 14.1 £ 0.8 58.1+2.1
11,520 x 8184 MotionCor2 119+04 755+ 3.8
Relion MotionCor 464 + 3.1 202.6 +£22.2
Warp 169 +2.1 130.9 £ 4.0

For the third movie size, the increase in processing time was not as significant for all
programs. In 10-frame movies, MotionCor2, FlexAlign, and Warp remained the fastest,
with MotionCor?2 slightly ahead. CryoSPARC ranked fourth, and Relion MotionCor was
marginally slower. With 70 frames, all programs except FlexAlign and MotionCor2 experi-
enced a substantial loss in performance, indicating difficulty in handling super-resolution-
sized movies. FlexAlign consistently outperformed its peers in this scenario.

Figure 9 offers valuable insights into the scalability of alignment algorithms when
utilizing GPU parallel processing. The mean processing times for different movie sizes
and GPU configurations enable us to assess how efficiently these algorithms make use
of parallel computing resources, which is especially important when dealing with large
datasets in single-particle analysis (SPA) experiments. Three different movie sizes were
tested on a machine with four GPUs.

For movie size 4096 x 4096 x 70, both FlexAlign and MotionCor2 demonstrated excel-
lent scalability. The processing time remained nearly constant as the task was parallelized
across multiple GPUs. In essence, processing one movie on one GPU took approximately
the same time as processing four movies on four GPUs. However, CryoSPARC exhibited a
slight decrease in performance when parallelizing the processing.

Moving to movie size 7676 x 7420 x 70, all algorithms showed a minor trade-off in
performance when increasing the number of GPUs for parallel processing. This trade-off
implies a small increase in processing time when using multiple GPUs compared to the
ideal condition, where processing one movie on one GPU would be as fast as processing
two or three movies on two or three GPUs when parallelizing. Therefore, parallelization
had a minimal impact on the overall processing time for all algorithms.

For movie size 11,520 x 8184 x 70, CryoSPARC and FlexAlign continued to exhibit a
slight trade-off in performance when increasing the number of GPUs, as observed in the
previous sizes. However, MotionCor2 displayed a consistent pattern with no trade-off when
processing more movies, indicating stable performance with parallelization. These results
highlight that the scalability of alignment algorithms can vary depending on the movie
size, and some algorithms may exhibit minor trade-offs in performance when parallel
processing is employed.
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Figure 9. Scalability of parallel GPU processing. The plots represent the mean processing time in
seconds (y-axis) required to process a single movie on one GPU. The x-axis represents the number of
GPUs, which is increased in parallel with the number of movies to process. This figure demonstrates
the scalability of the algorithm with GPU parallel processing. The scalability analysis was performed
on three different movie sizes commonly encountered in single-particle analysis (SPA) experiments.
These movie sizes are as follows: (A) corresponds to the 4096 x 4096 x 70 experiment, which
represents a movie size typically observed in lower-resolution SPA experiments; (B) represents the
7676 x 7420 x 70 experiment; (C) corresponds to the 11,520 x 8184 x 70 experiment, which is a
movie size commonly used in super-resolution acquisitions. To ensure reliable results, each algorithm
was executed 10 times per movie size, thereby avoiding unstable runs and obtaining more accurate
measurements.

Apart from GPU parallel computing, another approach to accelerating processing
times is the use of multi-threading, a feature implemented in Relion MotionCor. Multi-
threading involves allocating more CPU cores specifically for the alignment task, allowing
the algorithm to leverage the computational power of multiple cores simultaneously. This
can lead to improved performance and faster processing times. By optimizing the number
of threads to distribute the workload efficiently across the available CPU cores, significant
reductions in processing time were achieved for movies of different sizes.

For movie size 4096 x 4096 x 70, the most efficient configuration involved using one
process and 36 threads, distributing the workload across 36 out of the 40 available CPU
cores. This configuration reduced the processing time from 33.8 + 5s to 14.8 + 0.2 s, more
than halving the time required to process a movie of this size.

In the case of movie size 7676 x 7420 x 70, a similar configuration proved to be
the most efficient, utilizing one process and 37 threads for workload distribution. This
configuration reduced the processing time from 164 + 7.9 s to 79.3 + 1.1 s, again cutting the
time by more than half.

Finally, for movie size 11,520 x 8184 x 70, a similar optimization was applied, reducing
the processing time from 202.6 + 22.2 s to 110.8 + 1.2 s. This configuration involved using
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one process and 35 threads, decreasing the processing time by approximately a minute and
a half.

Certainly, optimizing the use of around 35 threads for processing movies with 70 frames
aligns well with the manufacturer’s recommendation and system capabilities. Dividing the
number of movie frames (70) by the number of threads (35) results in an integer value of 2,
indicating that each thread can efficiently process two frames simultaneously. This level of
parallelization is the maximum achievable with the available 40 CPU cores in the system,
ensuring an efficient utilization of resources.

Fine-tuning the multi-threading option in Relion, specifically for movies with 70 frames,
led to a significant improvement in time performance. This optimization brought Relion
MotionCor’s processing times into the same range as the faster algorithms for movie
size 4096 x 4096 x 70 and significantly reduced the gap for other movie sizes. While
it remained slightly slower than the fastest algorithms, this optimization made Relion
MotionCor a more competitive choice in terms of processing time. These results underscore
the significance of exploring alternative approaches like multi-threading to enhance the
efficiency of movie alignment algorithms.

MotionCor?2 offers a batch-processing feature, which can be particularly advantageous
when dealing with large datasets. For this experiment, we measured the processing time of
MotionCor2 for datasets comprising 20 movies of three different sizes (4096 x 4096 x 70,
7676 x 7420 x 70, and 11,520 x 8184 x 70) both using the batch processing flag and without
it. Since MotionCor2 is the only algorithm that offers this option, the comparison was
limited to MotionCor?2 itself.

In Table 4, we can observe that batch processing significantly improves the alignment
time compared to regular processing with MotionCor2.

Table 4. This table compares the time performance in seconds for processing data with and without
the MotionCor2 batch processing option. The size of the batch is managed internally by the program;
it only requires the directory where the movies are located. The mean and standard deviation
of the time required to align an entire dataset of movies with different sizes (4096 x 4096 x 70,
7676 x 7420 x 70, and 11,520 x 8184 x 70) are presented. The data in the table represent the results
obtained from performing this process five times.

Q
=
c

Movie Size Regular Processing Batch Processing

170.6 + 3.5 100.7 + 7
821+12
84.1+51
89.4+27

740.5 + 38.8 509.7 £ 71.9
279.6 £2.2
2457 +£94
258.2 + 8.8

2288.7 + 127.9 1309.4 + 20.2
1442.7 + 137
1317.6 +29.2
1331.8 + 18.6

4096 x 4096 x 70

7676 x 7420 x 70

11,520 x 8184 x 70

BN R W= W=

For movies sized 4096 x 4096 x 70, using batch processing with one GPU reduced the
processing time from 170 s to 100 s for the 20-movie dataset. This equates to an alignment
pace of approximately 5 s per movie compared to 9 s per movie without batch processing.
Further performance gains were achieved by increasing the number of GPUs to two, with a
pace of 4 s per movie. However, adding more GPUs beyond this point did not yield further
improvements.

As movie sizes grew to 7676 x 7420 x 70, the advantages of batch processing became
even more evident. The best-case scenario, using batch processing with three GPUs, halved
the pace from 25 s per movie to 12 s per movie, reducing the processing time from 740 s to
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245 s. Yet, we reached a machine limit at three GPUs for this size, with no additional gains
observed from further GPU additions.

For the largest movie size, 11,520 x 8184 x 70 (super-resolution size), the performance
difference was even more substantial. Batch processing reduced the processing time from
38 min to 20 min, lowering the pace from 114 s per movie to 65 s per movie. Remarkably,
the machine limit was reached at just one GPU for this size, indicating that the processing
time was constrained by the machine’s data reading and writing capabilities, particularly
when handling larger movies.

In summary, batch processing clearly accelerates the alignment process, particularly
for larger movie sizes. However, it is crucial to account for machine limitations when
scaling up the number of GPUs, as there may be no further performance gain beyond a
certain point.

Lastly, an additional experiment was conducted involving placing data on a solid-state
drive (SSD) for faster reading and writing operations. This approach aimed to further
enhance the overall processing speed by leveraging the faster data transfer capabilities of
an SSD.

Table 5 clearly illustrates the significant performance improvement gained by storing
data on an SSD as opposed to an HDD. The alignment process demonstrated a notable
speed increase, approximately 30%, which remained consistently stable. This improvement
was most evident for larger movie sizes or those with more frames.

Table 5. This table presents a time performance comparison in seconds between processing data
stored in HDD (hard disk drive) and SSD (solid-state drive) storage using the FlexAlign movie
alignment program. The mean and standard deviation of the time required to align movies of various
sizes are provided, specifically for movies of 4096 x 4096, 7676 x 7420, and 11,520 x 8184. The data
in the table represent the results obtained from performing the alignment process 10 times. The
movie sizes are based on three standard sizes commonly encountered in cryo-electron microscopy
tomography and single-particle analysis (SPA), with different numbers of frames (10 and 70 frames,

respectively).
Movie Size Frames HDD SDD
4096 x 4096 ;g 13552 %.19 13(5.261 0&3
7676 x 7420 ;8 397?72 01~i 276.%82 01.%2
11,520 x 8184 ;8 égzi : 32213 1(1):421 - 2:2

For the 4096 x 4096 movie size with 10 frames, the performance difference between the
SSD and HDD was minimal, with differences in the order of tenths of seconds. However, as
the number of frames increased to 70, the performance difference became more substantial,
with an approximate difference of 5 s.

As the movie size increased, the performance gap between the SSD and HDD became
more pronounced. For the 7676 x 7420 movie size with 70 frames, the difference was
almost 10 s, highlighting the substantial advantage of SSD storage. The most significant
difference was observed with the largest movie size, which is typically used for super-
resolution applications. The performance gap reached approximately 20 s, underscoring
the substantial impact of the data reading speed on the overall processing time.

These findings emphasize the importance of considering storage options, especially
when processing data in real time or at a fast acquisition pace, and prove that utilizing an
SSD for data storage can greatly enhance processing efficiency.
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5. Discussion

Through an examination of both quality and time performance aspects, we achieved a
comprehensive evaluation of the alignment programs, providing valuable insights for their
practical application in cryoEM studies.

Several key points stand out based on the quality assessment of movie alignment
algorithms using simulated movies (phantom movies) and real datasets (EMPIAR entries).
Pattern-matching analysis on phantom movies revealed no significant differences among
the algorithms in the central sections of the aligned images. However, at the edges FlexAlign
consistently exhibited a cleaner pattern in both pristine and noisy images, indicating
superior alignment quality. This observation was held across movies of varying sizes
and frame counts. Furthermore, our findings were reinforced by results obtained using
cryo-EM-based simulated movies, which replicated the same outcomes but with a cryo-
EM-based signal.

The observed higher alignment quality in the central region of the movie could be
attributed to factors such as the barrel deformation that gradually curves towards the edges.
If this finding holds for real datasets, it could carry significant implications for cryo-EM
data processing and 3D reconstruction. This improved alignment quality in the central
region might lead to higher resolutions and better-quality particles, ultimately resulting in
improved 3D reconstructions.

If this practical implication of the finding is confirmed, researchers could benefit
from concentrating their particle selection on the central region of the image during data
processing. Prioritizing particles from this area may enhance the overall alignment quality
and increase the likelihood of achieving high-resolution reconstructions with superior-
quality particles. However, further investigation and analysis would be necessary to
pinpoint the specific reasons behind this observation.

The comparison of algorithms based on the maximum frequency of the CTF criteria
on real data (EMPIAR datasets) did not reveal any consistent and significant differences
when considered as a group. The ANOVA tests that showed statistical significance were
not consistently reflected in both Xmipp and Getf criteria, and these differences were
not observed across all datasets. While we did not identify any statistically significant
distinctions, it remains important to present these test results. Additionally, it is crucial to
note that the absence of significant differences in Fourier space does not guarantee identical
alignment quality in real space. Certain issues, such as misalignment along borders or at
the edges, are not fully represented in the Fourier space analysis.

Analysis of the power spectrum density (PSD) trends revealed significantly greater
energy dampening at high frequencies for Relion MotionCor compared to the other algo-
rithms in all three datasets. This suggests that, regarding energy decay at higher frequencies,
all algorithms except for Relion MotionCor perform similarly. Ideally, if the alignment
is correct, different algorithms should not alter the PSD patterns. Therefore, when most
algorithms produce similar PSDs with consistent energy decay, any algorithm that deviates
introduces a bias that will propagate into subsequent 3D reconstruction steps.

When analyzing the image content in real space, we observed statistically different
pixel value distributions in the aligned images when various alignment algorithms were
employed. These disparities can arise from various factors, including the reference frame
used by each algorithm and absolute pixel value normalization. Although the pixel value
distribution does not directly impact alignment quality, it does affect the output. This
complexity suggests that comparing these images is not as straightforward as simple nor-
malization, and these differences could potentially influence subsequent processing steps,
including the final reconstruction. Consequently, micrographs from different programs
cannot be easily integrated into the processing pipeline. This highlights the importance of
evaluating the output characteristics of each alignment algorithm when interpreting and
comparing results in 3D reconstructions.

The time performance analysis of various movie alignment algorithms revealed several
significant findings. Firstly, when considering individual processing times, two distinct
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groups of algorithms emerged based on their speed. The first group, comprising FlexAlign,
MotionCor2, and Warp, exhibited significantly faster processing times compared to the
second group, which included Cryosparc and Relion MotionCor. While there were no
significant differences within each group, the overall performance difference between the
two groups was notable, with the second group being two to four times slower.

Furthermore, when testing the algorithms with super-resolution movies, most of them
experienced a significant loss in performance. FlexAlign consistently displayed the fastest
performance in this scenario, being approximately 20 s faster than the closest competitor.
MotionCor2 took over a minute to process such movies, while Cryosparc and Warp required
over two minutes. Relion MotionCor exhibited the slowest performance, with a processing
time of more than three minutes. These results indicate the challenges the algorithms face
when processing larger movie sizes.

Regarding scalability, the study revealed varying degrees of scalability for differ-
ent movie sizes and algorithms. Some algorithms, such as FlexAlign and MotionCor2,
demonstrated excellent scalability with parallel processing. However, Cryosparc exhibited
minor trade-offs in performance when parallelizing the processing. With the alternative
of multi-threading, by fine-tuning the number of threads, Relion’s time performance sig-
nificantly improved. Although it remained slower than the fastest algorithms for large
movies, this optimization made Relion MotionCor a more competitive option in terms of
processing time, highlighting the importance of exploring alternative approaches, such as
multi-threading, to enhance the performance of movie alignment algorithms.

Another alternative approach was batch processing with MotionCor2. This feature
demonstrated a clear advantage in accelerating the alignment process, particularly for
larger movie sizes. However, it is crucial to consider machine limitations when scaling up
the number of GPUs, as there may be no further increase in performance beyond a certain
point. Understanding the interaction between the algorithm and machine resources is vital
for optimizing the alignment process and efficiently processing large-scale cryo-electron
microscopy datasets.

Additionally, the performance significantly improved when data were stored in an SSD
compared to an HDD. The alignment process demonstrated notable speed enhancements
and consistent stability when utilizing SSD storage. This improvement was particularly
pronounced for larger movie sizes or those with more frames. The largest movie size,
which is commonly used for super-resolution applications, showed the most substantial
performance difference, with an approximately 20-second-per-movie advantage for SSD
storage. These findings underscore the importance of considering storage options, espe-
cially in real-time processing or situations with high data acquisition rates. The utilization
of SSD storage can significantly enhance processing efficiency, enabling researchers to keep
pace with the demanding acquisition pace of cryo-electron microscopy data.

The execution time of a single movie alignment helps determine the required compu-
tational power for facilities. For example, if the average alignment time for typical movie
sizes (let us say of size 4096 x 4096 x N) is about 13 s and the microscope produces a movie
every 5 s then we would need at least 3 GPUs (3 > 13/5), just to cope with the movie
alignment. If we also want to perform more image-processing steps along the pipeline, we
may need additional GPUs. To make efficient use of the GPUs, it is important to consider
implementing a queueing system to minimize idle times between movies. However, this
straightforward scaling approach may not yield the expected results if the machine encoun-
ters other bottlenecks, such as insufficient CPU performance or an inadequate number of
PCl-e lines to fully utilize the GPUs.

While the selection of the optimal alignment algorithm and strategy depends on
multiple factors, such as the movie and dataset sizes, the trade-off between quality and
performance, and the available computational capacity, we can categorize the choice into
two scenarios: on-the-fly processing for cryo-EM facilities, where performance often takes
precedence over quality, and structural processing, where achieving the highest quality
results outweighs performance considerations.
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For both scenarios, we recommend using SSD storage; however, it should be noted
that for large cryo-EM projects SSD capacity may quickly become insufficient due to its
typically smaller size, which, of course, depends on each specific case. Additionally, we
recommend GPU computing with parallelization limited to 2-3 GPUs, as it is likely to reach
the machine’s limit regardless of the number of GPUs used.

Regarding algorithm selection, in the context of real-time processing, our recommen-
dation leans towards MotionCor2 with batch processing due to its faster performance.
However, for more complex structural processing, if you must make a single choice, we
suggest FlexAlign. It appears to deliver superior alignment across all movie regions.

When it comes to complex structural processing, it is worth noting that movie align-
ment algorithms exhibit diverse error patterns. Some, like Relion MotionCor, Warp, or
FlexAlign, demonstrate independent errors, such as energy dampening at high frequencies,
specific issues with certain datasets, or sensitivity to high drift, respectively. In such cases,
the mistakes made by one algorithm are not necessarily related to the mistakes made by
another and experimenting with different algorithms can help uncover these unique issues.

However, there are situations where multiple algorithms make correlated mistakes.
For example, most algorithms tested in this article struggled with aligning the movie edges
of the phantom movies. When several algorithms encounter the same underlying issue,
comparing their outcomes might not provide a solution if the same underlying issue is
affecting all of them. However, exceptions can occur, as observed with FlexAlign’s superior
alignment at the edges.

For both contexts, consensus algorithms hold value but face challenges in merging
results due to varying pixel value distributions in aligned images. Instead, practicality lies
in comparing results and evaluating the alignment agreement. Any disparities may suggest
errors or a superior performance by one algorithm. In practice, relying on consensus
algorithms should be based on empirical testing. It is essential to ensure that the results
from multiple algorithms align with your findings, especially in cryo-electron microscopy,
where the ground truth is often unknown.

Finally, we believe that the algorithms discussed in this article have undergone ex-
tensive development, taking years to refine and correct errors while enhancing their capa-
bilities. These algorithms are among the most well known and widely used worldwide,
and they are continually evolving. Therefore, we believe that investing substantial time
in developing entirely new movie alignment algorithms may not be the most efficient
approach. Instead, contributing to the ongoing improvement of existing methods would be
a more valuable way to advance the field.

6. Conclusions

Overall, our study provides critical insights into the strengths and weaknesses of
various movie alignment algorithms in cryoEM, contributing to the understanding and
selection of suitable algorithms and the most efficient approach for cryo-electron microscopy
studies. Additionally, we recommend considering alternative approaches, such as multi-
threading and batch processing, to optimize alignment performance and improve efficiency
in large-scale data processing. Moreover, attention to machine resources and storage
options is crucial for successful cryoEM data processing, ensuring researchers can keep up
with the demanding pace of data acquisition.

As future research lines, it would be interesting to extend the study and investigate
how different file formats may affect the performance of movie alignment algorithms.
Different movie file formats may have distinct compression methods, data organization,
and metadata, which can influence the processing time.

We also provide all scripts and data used for this study with the hope that they can be
used as a reference point for comparison of future versions of movie alignment software. As
we do not consider ourselves experts on the behavior of all tested programs, their authors
can, for example, use our data to explain different options and provide presets for different
movie sizes, optimizing both the quality of the alignment and the execution time.
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