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Abstract: Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method
for near-atomic structure determination, shedding light on the important molecular mechanisms of
biological macromolecules. However, the inherent dynamics and structural variability of biological
complexes coupled with the large number of experimental images generated by a cryo-EM experiment
make data processing nontrivial. In particular, ab initio reconstruction and atomic model building
remain major bottlenecks that demand substantial computational resources and manual intervention.
Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep
learning, have the potential to overcome the limitations that cannot be adequately addressed by
traditional image processing approaches. Here, we review newly proposed AI-based methods for
ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We
highlight the advancements made by the implementation of AI methods, as well as discuss remaining
limitations and areas for future development.

Keywords: cryo-electron microscopy; cryo-EM; deep learning; machine learning; artificial intelligence;
AI; neural networks; AlphaFold2

1. Introduction

Cryo-EM and single particle analysis (SPA) have become the preferred method for
structure determination of biological complexes at near-atomic resolution [1–6]. Such
level of detail not only provides crucial insight into molecular mechanisms employed
by biological macromolecules, but also may facilitate the design and development of
new drugs and therapeutics. The widespread adoption of cryo-EM is primarily credited
to recent technological advances, including the introduction of direct electron detectors
and improvements in computer hardware and image-processing software [7] that have
enabled routine structure determination at high-resolution (reviewed in [8]). In contrast
to traditional structural biology techniques, such as X-ray crystallography and Nuclear
Magnetic Resonance (NMR), cryo-EM requires very small amounts of purified protein in
the range of 0.1 to 5 mg/mL [9]. Additionally, SPA has proven to be a powerful tool for
determining the structures of large and dynamic biological complexes that exhibit a range
of compositional and conformational heterogeneity [10–12].

The goal of SPA is to calculate a high-resolution 3D structure from the noisy, 2D projec-
tions of the specimen produced on the direct electron detector by the beam of high energy
electrons. Multiple software packages have been developed to facilitate this process [13–20],
and a typical SPA workflow is described in Figure 1. However, several factors complicate
image processing: (1) due to advancements in microscope optics, detector technology, and
data storage hardware, a single cryo-EM experiment can generate thousands of micro-
graphs with millions of particle images [21,22]; (2) biological assemblies are often dynamic
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and flexible molecular machines that adopt a variety of structural states; (3) cryo-EM mi-
crographs have a low signal-to-noise ratio (SNR), and they are susceptible to artifacts, such
as ice contaminations, radiation damage, and preferred orientation of imaged particles,
which can obscure underlying structural information. While the application of traditional
machine learning (ML) techniques has already enabled the automation of many stages of
the workflow [23–28], ab initio reconstruction and atomic model building remain major
hurdles in need of robust methodologies to minimize the extensive computational resources
and manual user input they currently demand. 
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Figure 1. A typical SPA workflow. Movies collected with an electron microscope are first motion-
corrected. In this step, frames are aligned and averaged to account for beam-induced motion, which 
increases the SNR of images. The resultant micrographs undergo contrast transfer function (CTF) 
estimation to calculate the effects of defocus and microscope aberrations. This step is followed by 
particle picking and extraction, in which particles are selected and extracted from micrographs. The 
extracted particles are sorted based on orientation into discrete, 2D classes, and the user removes 
classes containing non-particles, noise, and artifacts. Such filtered particle stacks are used to gener-
ate one or more low-resolution ab initio reconstructions that are iteratively refined through 3D clas-
sification and 3D refinement to yield final Coulomb potential maps. Given sufficient map resolution 
and quality, atomic models can be built and validated. 

Recently, deep learning (DL) techniques have emerged as promising tools to tackle 
these aforementioned challenges because of their capability to learn complicated patterns 
and extract meaningful information from large and complex datasets. Although still in 
their infancy, various fully automated DL-based approaches have already proven useful 
for several image processing tasks, including particle picking [29–35], 3D reconstruction 
[36–47], local resolution estimation [48,49], and model building [50–67]. In this article, we 
explore the applications of new AI-based algorithms for two current bottlenecks of the 
cryo-EM image processing pipeline: ab initio reconstruction and de novo atomic model 
building. First, we briefly introduce the general architecture of several DL networks, 

Figure 1. A typical SPA workflow. Movies collected with an electron microscope are first motion-
corrected. In this step, frames are aligned and averaged to account for beam-induced motion, which
increases the SNR of images. The resultant micrographs undergo contrast transfer function (CTF)
estimation to calculate the effects of defocus and microscope aberrations. This step is followed by
particle picking and extraction, in which particles are selected and extracted from micrographs. The
extracted particles are sorted based on orientation into discrete, 2D classes, and the user removes
classes containing non-particles, noise, and artifacts. Such filtered particle stacks are used to generate
one or more low-resolution ab initio reconstructions that are iteratively refined through 3D classifica-
tion and 3D refinement to yield final Coulomb potential maps. Given sufficient map resolution and
quality, atomic models can be built and validated.
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Recently, deep learning (DL) techniques have emerged as promising tools to tackle
these aforementioned challenges because of their capability to learn complicated patterns
and extract meaningful information from large and complex datasets. Although still in their
infancy, various fully automated DL-based approaches have already proven useful for several
image processing tasks, including particle picking [29–35], 3D reconstruction [36–47], local
resolution estimation [48,49], and model building [50–67]. In this article, we explore the
applications of new AI-based algorithms for two current bottlenecks of the cryo-EM image
processing pipeline: ab initio reconstruction and de novo atomic model building. First, we
briefly introduce the general architecture of several DL networks, followed by a discussion
of conventional and DL-based techniques for ab initio 3D reconstruction. We then outline
the existing challenges associated with atomic model building and present novel strategies
for protein structure determination from cryo-EM maps. Finally, we discuss the utilization
of DL-based protein structure prediction tools, including AlphaFold2 [68].

2. DL Algorithms

ML refers to a broad range of algorithms that learn patterns from data to make
predictions, typically by using statistical and optimization methodologies. DL, on the
other hand, is a subset of ML that utilizes so-called layered neural networks (NNs) to
automatically learn, extract, and represent hierarchal patterns from complex and high-
dimensional data, allowing for more sophisticated modeling and feature extraction (Table 1).
DL algorithms have recently gained popularity for cryo-EM data processing due to the
following factors. First, advances in data acquisition technology have enabled the collection
of cryo-EM datasets containing tens of thousands of micrographs and millions of particle
images. Such large datasets are required for training DL algorithms. Consequently, this has
led to improved accuracy and performance of DL techniques for cryo-EM image processing.
In addition, developments in computer hardware, particularly of graphic processing units
(GPUs), enable computationally intensive DL algorithms to run faster and more efficiently.
Moreover, significant innovations have been made in the design of DL architecture itself,
notably by the development of convolutional neural networks (CNNs) that are ideally
suited for image processing tasks.

Table 1. Comparison of machine learning and deep learning.

Machine Learning Deep Learning

Architecture Learn data patterns through feature engineering
and statistical methods Learn hierarchal data patterns through NNs

Training Requirements Requires relatively smaller dataset
Less time to train

Requires larger dataset
More time to train

Hardware Requirements Can be trained on standard hardware, CPUs Requires more powerful hardware, GPUs

Complexity Less complex, logic easier to understand More complex, logic harder to understand

Examples Linear regression, SVM, k-NN, k-means clustering CNN, U-net, GAN, autoencoder

DL algorithms consist of artificial neural networks (ANNs), powerful computational
methods used to approximate non-linear functions. This ability enables DL algorithms to
perform the various image processing tasks, including classification, pattern recognition,
and optimization needed to recognize and model the complex relationships present within
cryo-EM datasets. The general architecture of ANNs resembles the connected network
of neurons in the brain [69]. ANNs are comprised of artificial neurons that utilize a
mathematical function to convert input to output. To build such a network, the artificial
neurons, also called nodes (Figure 2), are arranged in connected layers, where the output
of one layer is the input to another layer. Each node in the system receives a collection of
weighted inputs, and if the summed input surpasses a specific threshold determined by an
activation function, the node transmits an output. Depending on how layers of the network
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are arranged, the ANN can learn high-level representations for classification tasks [70].
ANNs are trained by a process called backpropagation, in which the output of the ANN is
compared to the expected outcome at each layer. In this iterative process, the calculated
error is distributed from the network’s end to its beginning. As a result, the contributions of
individual nodes to the error are determined based on their respective weights. Weighting
parameters are then adjusted accordingly to minimize error, and after many iterations of
training, predictions made by the ANN can improve.
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Figure 2. Schematic of a basic ANN node. The node receives inputs (x1, x2, x3, . . .xn) from a preceding
layer in the network (yellow). Each input is multiplied by a corresponding weight (w1, w2, w3, . . .wn,
respectively). The node computes the sum of the weighted inputs and applies an activation function
that generates the cumulative output of the node (y). This output is then transmitted to subsequent
network layers for further processing.

CNNs are specialized ANNs that have gained significant popularity as unsupervised
DL algorithms for 3D reconstruction [36–45] and atomic model building [50–57]; both are
discussed in detail in later sections. CNNs utilize the convolutional operation to capture
and analyze features from spatially organized data, such as 2D images and 3D volumes.
The extracted information is then used to predict underlying properties of the data, for
example, matching and classifying voxels of a 3D map as particular amino acid types [71,72].
The CNN architecture is made up of three connected layers: convolutional layers, pooling
layers, and fully connected layers (Figure 3A). Convolutional layers serve to extract local
features by convolving filters, also known as kernels, with the input data. If the input to
the CNN is an image, the output of ‘sliding’ kernels over all pixels of the image is an array
of image features, called a feature map. The feature map is then downsampled by the
pooling layer to reduce both the spatial dimensions of the map and computational costs.
By applying convolutional and pooling operations, the network learns to detect features
at different scales and levels, capturing both low-level details and high-level semantic
information. Lastly, the downsampled map is supplied to the fully connected layers, where
learned features are combined and high-level predictions occur. By adding or “stacking”
multiple convolutional, pooling, and fully connected layers on top of each other, CNNs
can learn more nuanced information from the input data; as each layer in the network
processes input and provides output to the next layer, the subsequent layers can build upon
the representations learned in previous layers and extract higher-level features.
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Figure 3. Schematic of different DL architectures. (A) Convolutional Neural Network. In a CNN, a
convolutional filter, or kernel, (red box) slides over the input data and extracts different features of
the data, generating a corresponding feature map. Many maps are generated. These feature maps are
then downsampled in the pooling layer to produce a “flattened” 1D image vector, which subsequently
serves as the input to the fully connected layer where classification occurs. (B) Autoencoder. In the
autoencoder architecture, the encoder NN (blue circles representing individual nodes in the network)
transforms input data to a lower-dimensional, simplified latent representation (green circles). The
decoder network (shown in purple) converts the latent representation back to the original dimension
and form of the input. (C) Generative Adversarial Network. In a GAN, the generator aims to produce
synthetic images that closely resemble the input data. The generator initiates this process with a
latent variable (orange), which consists of a vector of random values. By adjusting the values of the
latent variable, the generator can produce an array of synthetic outputs, thereby exploring different
variations in the generated samples. The real, experimental images and the generated images are
both provided as inputs to the discriminator network, which evaluates whether the images are real
or not. During training, both networks update their weights based on the generator’s ability to
produce realistic images and the discriminator’s ability to accurately decipher between the real and
synthetic images.

Another widely used DL method for cryo-EM data processing is the autoencoder
(Figure 3B), a type of ANN that has been implemented in many recently developed ab
initio [36–45] and heterogeneous reconstruction [38–40,42] algorithms. The autoencoder
aims to accurately reconstruct its own input by encoding the input data into a lower-
dimensional representation and then by decoding it back to its original form (Figure 3B).
In the context of 3D reconstruction, the encoder network uses the input particle images
to produce a lower-dimensional encoding, or latent variable, that serves as a compressed
representation of the 3D structure. Here, the latent variable refers to a vector in which
each element represents specific features of the underlying structure, such as particle poses.
Based on the latent representation, the decoder generates reconstructed 2D images. The
autoencoder is trained by minimizing the difference between the experimental and encoder-
generated data. The Generative Adversarial Network (GAN) is yet another popular DL
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technique for 3D reconstruction [44,45]. GANs are unsupervised DL algorithms that use
two CNNs, a generator and a discriminator, to model the distribution of the input data
(Figure 3C). In the case of 3D reconstruction, the generator predicts a 3D map and produces
2D projections of the predicted volume. The discriminator then attempts to distinguish
between the predicted 2D projections and the experimental projections (i.e., input particle
images). GANs are trained with the aim of finding an equilibrium between the generator
and discriminator, where the generator-produced images cannot be distinguished from the
experimental images.

3. Conventional Approaches to Ab Initio Modeling and 3D Reconstruction

During 3D reconstruction, 2D particle images corresponding to different specimen
views are computationally combined to obtain a 3D structure of the target macromolecule.
Determining the true structure of the target specimen requires the accurate assignment
of the experimental 2D images to particular 2D projections of the calculated 3D volume.
Particle assignment, however, requires the calculation of the particle pose parameters (three
Eulerian angles and two in-plane translations) that are not provided by the experimental
images. This process is further complicated by several inherent factors of cryo-EM data:
(1) artifacts are often present in samples and can be introduced during multiple stages
of the EM workflow; (2) particle images have a very low SNR; (3) samples often have
molecules of varying compositional and conformational states, and thus datasets contain
2D projections that correspond to multiple 3D structures (reviewed in [1]). Many existing 3D
reconstruction algorithms use a low-resolution, initial map representing the best estimate
of the target protein to assign projection directions to the experimental projections [73].
The projections and their corresponding poses are then used to update the reference map,
and the process is iterated until the volume no longer improves. However, convergence to
the correct solution is only guaranteed if the provided initial map is sufficiently close to
that of the true structure. Furthermore, manual intervention is still required to evaluate
the quality of the initial volume. Thus, obtaining a reliable initial model from any given
dataset represents a challenge in cryo-EM.

There are several existing methods to obtain initial volumes for SPA, including the
use of similar, previously determined structures [74], geometry-based techniques [75–78],
and computational ab initio approaches [13,79–82]. In cases where a related structure is
known, for example, a partial complex or homolog, it can be used as an initial model
to estimate particle orientations by projection-matching [83] or by maximum-likelihood
(MLM) approaches [13,14,84,85]. The goal of projection-matching is to determine poses
for each particle image by measuring the cross-correlation coefficient between the experi-
mental images and low-pass filtered, 2D projections of the input model. After orientations
that yield the highest cross-correlation coefficient are assigned to each particle, a new
3D reconstruction is calculated that serves as the model for the next iteration of refine-
ment. However, projection-matching algorithms are local optimizers and, thus, suffer from
model bias, i.e., these approaches would arrive at an incorrect solution if the initial model
were not close enough to the target structure. Alternatively, methods based on MLM for
3D reconstruction have been adopted by many different software packages [13,14,84,85].
Such techniques utilize an expectation-maximization algorithm to integrate over all possi-
ble probabilities of poses to calculate one or more 3D volume(s) [86]. While MLM methods
have been successfully applied to extract multiple, heterogeneous structures from the same
dataset [87,88], their convergence still requires one or more initial references that accurately
reflect the underlying structural information.

Nonetheless, in many cases, prior structural information is unavailable. Thus, several
approaches based on stage tilting have been developed to directly obtain an initial map
from the sample. In cryo-electron tomography, particle orientations are directly measured
by collecting multiple images of the same area over a range of microscope stage tilts [89].
The applicability and achievable resolution of this technique is limited by the radiation
sensitivity of the sample subjected to multiple exposures, as well as the ability to collect high
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quality images at high tilt angles (e.g., 60 degrees). Similar specimen-tilting approaches,
employed in the past for validation of structures obtained by SPA, include random conical
tilt (RCT) [77,78] and orthogonal tilt reconstruction (OTR) [75,76]. In RCT, two images
of the same area are collected, one with high sample tilt (e.g., 50 degrees) and the other
untilted. Collecting titled pairs provides two of the three Euler angles that define particle
pose for each particle image. The remaining angle representing in-plane translation is then
computationally determined during the alignment of the untilted particles. However, the
angular coverage of the specimen is limited by the inability to collect data beyond the
maximum tilt angle (approximately 60 degrees), resulting in a “missing cone” of data in
reciprocal space. This missing information directly corresponds to the particle orientations
that were not imaged and introduces reconstruction artifacts, such as the elongation of the
volume orthogonal to the tilt axis [90]. Additionally, the need to alter microscope stage tilt
during image collection is cumbersome and poses a challenge to automation.

Methods have also been developed to computationally determine a reliable initial
density map directly from the collected dataset. Several algorithms [79,82,91–93] apply the
common line theorem to 3D reconstruction, which states that each 2D projection of the same
3D object share a common line in the 3D Fourier transform of the object. Therefore, common
lines can be used to determine relative particle orientations between pairs of projections.
Typically, this approach requires averaging of identical 2D views of the structure to increase
the SNR. Thus, it can yield unreliable reconstructions in cases of low SNR. Other compu-
tational techniques include least-squares approaches [94], statistical weighting [79], and
stochastic gradient descent (SGD) [13,95]. SGD relies on random initialization to generate
an initial map using only particle images. However, because SGD algorithms are local
optimizers, they may, in principle, yield incorrect initial maps [96]. An implementation
of SGD in the program cryoSPARC [13] has become increasingly popular for calculating
initial maps in the absence of prior knowledge of the target structure. This approach
includes the capability of reconstructing multiple 3D maps to address sample heterogeneity.
Nonetheless, all techniques described in this section are biased by the requirement for
manual intervention to assess the quality of the calculated initial map(s) [97]. The recently
developed method Xmipp Swarm consensus [98], available in Scipion [15], avoids user
intervention by automatically calculating a consensus volume given a set of particles and
initial maps obtained from different methods. This technique utilizes swarm optimization,
a variation of SGD that incorporates momentum to accelerate convergence, to evolve the
population of volumes towards a more globally correct solution [99].

It is important to note that when using any given method to calculate an initial map for
subsequent 3D refinement, C1 symmetry should be used, unless other symmetry is already
known. While applying symmetry constraints may increase the resolution of the final
reconstruction, this reflects the increased number of particle images, rather than increased
quality of the map. Enforcing symmetry in cases of no prior knowledge can produce
artifacts or yield a wrong structure altogether. For example, applying the wrong symmetry
to a dataset of the Magnesium Channel CorA resulted in maps with two additional incorrect
densities [100].

4. DL Approaches to Ab Initio Volume Generation and 3D Reconstruction

Recent breakthroughs in microscope technology and advances in computer hard-
ware and software have enabled the collection of increasingly large and complex cryo-EM
datasets including hundreds of thousands of movie frames [21,22]. However, traditional
methods for 3D reconstruction remain computationally expensive, time-consuming, and of-
ten fail to adequately address instances of structural variability. Thus, many methods have
employed DL-based algorithms to determine particle poses, calculate initial 3D volumes,
and elucidate different conformational states within the same dataset (Table 2). One of such
widely used DL algorithms is the autoencoder, which has been implemented for both homo-
geneous and heterogeneous reconstruction by many programs, including cryoPoseNet [36],
cryoAI [37], cryoDRGN [38–40], cryoFIRE [42], cryoVAEGAN [41], Atom-VAE [43], and
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3DFlex [46]. As noted in the previous section, accurate 3D reconstruction requires the prior
knowledge or calculation of particle poses. Currently, poses can be estimated by per-image
pose searches or amortized inference methods. The former approach, employed by many
traditional ab initio reconstruction and refinement algorithms [13,14,79,82,83,91–93], is not
a DL-based strategy. In this approach, the posterior distribution of poses is computed
for each experimental image independently, which is often computationally expensive.
Amortized inference methods allow for faster pose estimation by amortizing or sharing
computation across multiple instances through the use of a learned model. Amortized
inference approaches leverage DL techniques to learn a model or parameters that capture
the relationship between the input image and the corresponding particle pose. Following
model training, these methods can predict the optimal pose for new images, significantly
reducing the computational time required. Initially proposed by Ullrich et al. [101], many
autoencoders apply an amortized inference approach for pose estimation. The program
CryoPoseNet [36] was the first to use an autoencoder for ab initio 3D reconstruction with
amortization over poses. CryoPoseNet encodes the input experimental images into a latent
variable representing pose estimation. The predicted poses then become an input to a
physics-based decoder. Such decoders incorporate the underlying physical principles and
constraints of the cryo-EM imaging process, such as CTF parameters (i.e., defocus and
angle of astigmatism) and projection parameters (i.e., Euler angles and translation shifts),
to calculate a 3D reconstruction and generate corresponding 2D projections. However,
currently cryoPoseNet has only been successfully applied to synthetic datasets. Because the
cryoPoseNet image formation model operates in Fourier space and the 3D volume is stored
in real space, each decoding step is slowed by the need to perform 3D Fourier and reverse
Fourier transforms [36], constituting another limitation of the program. Furthermore, as
shown by Ullrich et al. [101], amortized inference methods for pose estimation are highly
susceptible to becoming stuck in local minima when the underlying 3D structure contains
symmetries. Such minima trapping may result in symmetry artifacts, i.e., the resulting
reconstruction displays the wrong symmetry. For example, the reconstruction of a synthetic
hand by the autoencoder approach PoseVAE showed an incorrect planar symmetry [39].
CryoAI [37] has recently expanded upon cryoPoseNet, using a symmetric loss function to
prevent local minima trapping where the map displays wrong planar symmetries. CryoAI
has demonstrated the ability to perform ab initio reconstruction on experimental datasets,
for example, 80S ribosome [37]. Both cryoPoseNet and cryoAI are currently only capable
of producing a single consensus reconstruction. However, because the output from both
programs include estimated particle poses and the 3D volume [36,37], the data can be used
for subsequent structural refinements and/or heterogeneous reconstruction using other
programs, for instance cryoSPARC’s heterogeneous refinement [13].

In addition to autoencoder approaches, methods using GAN architecture have been
proposed for 3D reconstruction that avoid pose estimation entirely [44,45]. The program
CryoGAN [44] utilizes a modified GAN framework for homogenous reconstruction that
does not require an initial map. The goal of CryoGAN is to calculate the 3D volume whose
distribution of simulated projections most closely match the experimental images. To
accomplish this task, the generator is replaced with a cryo-EM physics-based simulator
that imposes a mathematical model of the cryo-EM imaging procedure to produce images
that resemble the real particle projections [44]. The cryo-EM physics-based simulator,
for example, adds realistic noise to the simulated images that is extracted from areas of
micrographs where no particles are present. However, because CryoGAN does not estimate
poses, additional refinements cannot be applied to the resultant map, as such refinements
would require the knowledge of particle poses [44]. CryoGAN developers have recently
introduced Multi-CryoGAN [45], which allows for reconstruction of multiple volumes
from a single dataset.

Because biological macromolecules are flexible molecular machines that exhibit an
array of compositional and conformational states to execute a specific function, even bio-
chemically purified cryo-EM samples often contain multiple structural states. The presence
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of multiple structural isoforms in the sample poses a challenge for 3D reconstruction,
as averaging regions with structural variability often leads to blurred densities and lim-
its the achievable resolution. Thus, it is important to calculate multiple maps in order
to appropriately address structural variability. The past decade has introduced several
advanced techniques aimed at elucidating a continuum of conformational states from
cryo-EM data. One strategy is to approximate conformations as linear transformations
of a known reference structure. Such dimensionality-reduction methods include princi-
pal component analysis (PCA)-based techniques [47,102–105] and normal mode analysis
(NMA) approaches [106,107]. However, because these methods model variability as linear
combinations of eigen volumes, they have limited ability to model complex, nonlinear
motions. Other approaches aim to directly estimate a deformation field that describes
how the initial reference structure must be modified to match the optimal structure for
each individual image in the dataset [46,108,109]. For example, Herreros et al. utilized
Zernike 3D polynomials to define a deformation field for approximating particle 3D con-
formations [108,109]. In the ‘hyper-molecules’ method [110], deformable molecules are
represented as high-dimensional objects with additional degrees of freedom represent-
ing conformational space. Nonetheless, such techniques remain in the initial stages of
development. For a more in-depth description of dimensionality reduction techniques for
3D reconstruction, see Singer et al. [111].

Another class of methods utilizes manifold embedding to uncover conformational
heterogeneity [38–40,42,112–114]. In brief, these techniques encode images into a low-
dimensional latent space, or manifold, to describe the conformational changes of the
system. CryoDRGN [38] is one of the most widely used programs implementing manifold
methods for heterogeneous reconstruction. By utilizing a modified autoencoder, cryo-
DRGN applies amortized inference to learn a distribution of conformational states within
a dataset. However, the program assumes that poses are known and, thus, it requires
a previously determined consensus reconstruction for initialization. Other versions of
cryoDRGN, such as cryoDRGN-BNB [40] and cryoDRGN2 [39], implement ab initio recon-
struction algorithms able to simultaneously estimate poses and different structural states.
CryoDRGN2 has demonstrated the ability to perform homogeneous and heterogeneous
reconstructions on both synthetic and experimental datasets, including the spliceosome and
RAG1-RAG2 complex [39]. However, it does not apply an amortized inference approach
for pose estimation. Rather, this method utilizes an exhaustive pose search in the 5-D space
of rotations and in-plane translations for each individual image [39]. Such technique, in
turn, often poses a computational bottleneck.

To efficiently sample the conformational space of the biological specimen, cryo-EM
datasets have to grow increasingly large, making apparent the need for efficient recon-
struction techniques whose runtimes scale with dataset size. Another program from the
developers of cryoDRGN, cryoFIRE [42], is the first amortized inference approach for
ab initio, heterogeneous reconstruction applicable to large, experimental datasets. Cry-
oFIRE performs joint amortization of poses and conformational states, and it utilizes a
physics-based decoder to input images to a conformational manifold [42]. This autoencoder
architecture allows for significantly faster image processing than existing methods, for
example, heterogeneous ab initio reconstruction using five million particle images can be
completed in two hours [42]. However, this approach demonstrates lower accuracy in
translation estimation compared to the per-image pose searches employed by cryoDRGN-
BNB [40] and cryoDRGN2 [39], which can result in lower accuracies of particle alignments,
subsequently leading to lower resolution reconstructions [42]. Furthermore, interpreting
the conformational space provided by manifold methods remains challenging, as it might
not reflect the conformational space in vivo.

While the techniques described above have demonstrated progress in elucidating
multiple conformational states present within a cryo-EM dataset, they do not provide
fully quantitative information about the dynamics of the target system [115,116]. Fur-
thermore, map densities that tend to correlate with dynamics information (i.e., flexible
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regions) often exhibit lower local resolution. Thus, algorithms have been developed that
incorporate cryo-EM maps into molecular dynamics (MD) simulations to provide dynamics
information consistent with both the experimental data and the physical–chemical con-
straints of the biomolecule (e.g., bond length, dihedral angles, etc.) [116–118]. The program
DEFMap [118] is a DL-based strategy designed to predict dynamics associated with atomic
fluctuations within cryo-EM maps. DEFMap first performs all-atom MD simulations using
PDB structures derived from EM maps to calculate the root mean squared fluctuation
(RMSF) representing atomic fluctuations. The program then employs a 3D CNN to learn
the relationship between the cryo-EM map and the MD-derived RMSF values, capturing the
3D patterns of the experimental data that represent protein dynamics [118]. Another pro-
gram, CryoFold [119,120], integrates cryo-EM density data with MD simulations and other
modeling tools to generate the most probable ensemble of atomic structures. CryoFold has
successfully produced models of the CorA channel and ATP synthase [119]. However, the
program requires density maps with 5 Å resolution or better [119]. Furthermore, because
cryo-EM maps are typically calculated using only a filtered subset of the experimental
images, the techniques described above often do not sample the complete conformational
landscape of the target system [117].

Another strategy to characterize conformational states and their probability distri-
bution is to directly infer atomic models from the experimental images, bypassing the
3D reconstruction process entirely. Rosenbaum et al. utilized a VAE to infer a continu-
ous distribution of atomic models and poses directly from particle images [43]. Other
approaches combine Bayesian inference and physical structure-sampling tools to generate
model ensembles that match the experimental cryo-EM data, including BioEM [121,122],
cryoBIFE [123], and ensemble reweighting [124]. cryoBIFE uses a path collective variable
to generate free-energy profiles for molecules directly from particle images along with its
uncertainty [123]. Expanding upon cryo-BIFE, the ensemble reweighting approach devel-
oped by Tang et al. extracts ensemble densities directly in atomic coordinate space using
cryo-EM particle images [124]. This approach first generates an initial guess of the sys-
tem’s conformational probability landscape using prior ensembles from protein structure
prediction tools or MD simulations. The landscape is then reweighted by comparing the
experimental cryo-EM images with the conformations sampled from the initial distribution.
The reweighted ensemble can then be used to produce ensemble averages or calculate
free-energy landscapes [117]. While this approach can potentially be applied to flexible
systems for which a reliable 3D reconstruction cannot be obtained, it has yet to be applied
to experimental datasets. For a more in-depth discussion of methods for inferring the
probability distribution of conformations from cryo-EM data, see Tang et al. [117].

Taken together, significant progress has been made in facilitating 3D reconstruction
from cryo-EM data with the application of DL-based algorithms. Several methods have
been applied to homogenous reconstruction [36,37,44] that eliminate the requirement for an
initial model. However, so far, these methods have only been applied to synthetic [36,44]
and high-quality, publicly available experimental datasets [37]. The successful application
of DL-based methods has yet to be demonstrated for structure determination from novel
cryo-EM datasets. Further developments are also needed to match and surpass the reso-
lutions achievable by conventional reconstruction methods [44]. As datasets grow in size
to accommodate more complex systems, DL-based ab initio reconstruction methods show
great promise in elucidating distributions of heterogeneous structures [38,39,42,45]. These
techniques overcome the computational bottlenecks that plague traditional approaches by
utilizing amortized inference. However, developments are needed to increase the accuracy
of pose estimation [42]. Very recently, several techniques have been proposed to combine
cryo-EM data with physical structure-sampling tools, such as MD simulations, to provide
dynamics information [116,118–120] and characterize conformational landscapes of the
target systems [121–124].
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Table 2. Summary of recently developed AI-based methods for ab initio 3D reconstruction. Many
techniques utilize a variational auto-encoder (VAE) architecture. Unlike conventional autoencoders
that compress input images into a fixed encoding, VAEs learn a probability distribution of encodings
per image, enabling the generation of new data through sampling.

Program AI architecture Advantages Limitations

cryoPoseNet [36] Auto-encoder
Amortized inference over poses
Reconstruction can be further refined by
other programs

Reconstructs single, consensus volume
Volume susceptible to trapping in
local minima
Only demonstrated on synthetic
datasets

cryoAI [37] VAE

Amortized inference over poses
Reconstruction can be further refined by
other programs
Implements symmetric loss function to
avoid local minima trapping in
pose estimation
Demonstrated on experimental datasets

Reconstructs single, consensus volume

cryDRGN-BNB [40] VAE
Amortized inference over conformations
Reconstructs manifold for continous and
discrete conformation distributions

Per-image pose search is
computationally expensive
Scales poorly with larger datasets
Fails to reconstruct high-quality
volumes from experimental datasets
Difficult to interpret
conformational landscape

cryDRGN2 [39] VAE

Amortized inference over conformations
Reconstructs manifold for continous and
discrete conformation distributions
Demonstrated on experimental datasets
More accurate pose estimation than later
version [42]

Per-image pose search is
computationally expensive
Difficult to interpret
conformational landscape

cryoFIRE [42] VAE

Joint amortized inference over
conformations and poses
Reconstructs manifold for continous and
discrete conformation distributions
Reconstruction significantly faster than
previous versions [39,40]

Pose estimation can be inaccurate,
limiting resolution of reconstructions
Difficult to interpret
conformational landscape

spatial-VAE [125] VAE Estimates translations and in-plane rotations Does not directly perform
3D reconstruction

Multi-CryoGAN [45] GAN

Reconstructs manifold for continous and
discrete conformation distributions
Avoids pose and conformation estimation
for each projection

Only demonstrated on
synthetic datasets
Reconstruction cannot be further refined
Lower resolution than
traditional methods
Difficult to interpret
conformational landscape

cryoVAEGAN [41] VAE, GAN Jointly estimates in-plane rotation and
CTF parameters

Does not directly perform
3D reconstruction

5. Conventional Approaches to De Novo Atomic Model Building and Refinement

Recent developments in the field of cryo-EM have resulted in the improved quality
and resolution of Coulomb maps deposited to the Electron Microscopy Data Bank (EMDB).
For instance, in 2022, 2734 maps with 4 Å resolution or better were deposited to the EMDB,
compared to just 90 maps in 2015 [126]. In high-resolution maps (≤3 Å), one can directly
observe residue side chains and distinguish between different side chain rotamers [127].
De novo model building for high-resolution maps is relatively straightforward and can be
accomplished using tools originally developed for X-ray crystallography and adopted for
cryo-EM, such as Phenix [128] and Coot [129,130] (Figure 4). Nonetheless, it is important
to note that this process still requires manual user intervention and is sometimes very
labor-intensive. At intermediate resolution (4–6 Å), map topology becomes increasingly
difficult to resolve, making atomic model building a nontrivial task. At such resolutions,
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one may be able to recognize the pitch of helices, but individual beta strands and residue
sidechains may not be discernable. Furthermore, resolution is rarely uniform throughout a
given map, limiting the building of an accurate atomic model from the entire map.
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Figure 4. In cases of high-resolution maps, atomic models can be built using tools originally
designed for X-ray crystallographers. In an iterative process, the atomic model is refined using
Phenix [128], followed by manual adjustments in Coot [130] to address issues such as interatomic
clashes or geometry restraints. Here, a tyrosine sidechain rotamer is fit manually into the EM density
using Coot.

If available, a previously determined structure, for example, by X-ray crystallography
or NMR, with a homologous sequence can be used as a template for model building [131].
In such cases, the existing model is docked in the EM map and refined to maximize the
model agreement with both molecular geometries and the EM densities. Techniques such as
rigid fitting [132,133] and flexible fitting [134–136] can be used to fit the template structure
in the EM map. These approaches use a scoring function to measure the fit of the atomic
model to the EM map. However, if no homologs are available, de novo modeling must
be performed to produce an atomic model based on the discernable map features and
protein sequence. This process involves determining the densities that correspond to the
protein backbone and assigning sequence to build the model. Traditional de novo modeling
methodologies utilize physics-based optimization algorithms to build atomic models from
intermediate resolution maps [72,128,137–139]. These programs, including EM-Fold [137],
Rosetta [138], Gorgon [139], and MAINMAST [72], iteratively optimize an atomic model
by minimizing an energy function that includes terms describing physical forces, such as
steric clashes, bond lengths, and electrostatic interactions. However, such algorithms have
high computational costs and often heavily rely upon manual intervention for accurate
model building.

After calculating an initial model, refinement methods guided by experimental data
play a crucial role in improving the model quality. Such methods aim to optimize the fit of
the structural model to the experimental map while maintaining geometry restraints [127].
The program MDFF [140,141] employs a MD-based approach and is one of the most popular
refinement methods, with successful applications of model refinement of ion channels [142]
and various structures from SARS-CoV-2 [143,144]. MDFF refines structures through MD
simulations in the presence of external constraints derived from the experimental volume
that are related to the density gradient of the EM map and its Coulomb potential. These
constraints then guide the atomic model towards the position that best fits the experimental
densities [141]. Another method, Flex-EM [145], optimizes atomic positions with respect
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to a scoring function that includes the cross-correlation between the map and model,
as well as stereochemical and non-bonded interaction terms. In Flex-EM, the model is
divided into rigid bodies that undergo heuristic optimization by a Monte Carlo search,
conjugate-gradients minimization, and simulated annealing MD [145]. The program EM-
refiner [146] employs replica-exchange Monte Carlo (REMC) simulations to refine atomic
models. Here, refinement simulations incorporate data from the EM map with physics-
and knowledge-based force fields to direct flexible fitting of the backbone structures.

There are several hurdles that limit the accuracy of derived models from intermediate-
resolution EM maps, which are the most prevalent. As target structures often contain
multiple, related subunits, many existing model building and refinement algorithms require
segmentation of the map into sub-densities representing individual subunits or nucleic
acid chains. However, segmentation becomes increasingly difficult if areas of the map
vary in resolution, and virtually impossible in cases where the map quality is too poor to
resolve subunit interfaces [127]. Furthermore, maps are often noisy due to several factors,
including the low SNR in cryo-EM data, particle misalignment, or the presence of structural
heterogeneity and preferred orientations. Signal contributed by noise may manifest as
random fluctuations or distortions in the map that can interfere with the optimization of the
measured fit between the model and the Coulomb map [62]. Additionally, there is currently
no infrastructure to adjust models of flexible macromolecules that undergo continuous
conformational changes [1]. The recent integration of AI-based approaches to the de novo
model building toolbox has the potential to significantly alleviate these limitations.

6. AI-Based Approaches to De Novo Model Building

Early applications of AI methods to model building utilized conventional ML tech-
niques such as k-nearest neighbor (k-NN) [147], k-means clustering [148], and support-
vector machines (SVM) [149]. These approaches have been successful in identifying
SSEs [147,149] and modeling simplified backbone structures [148]. For example, the pro-
gram RENNSH [147] identifies α-helices in EM maps by representing each voxel as a
spherical harmonic descriptor and using a nested k-NN framework to classify α-helix vox-
els. Another ML approach, SSELearner [149], first learns from maps deposited in the EMDB
and then applies an SVM classifier to detect both α-helices and β-sheets in intermediate-
resolution density maps. Pathwalking [148] is a de novo model-building approach that
uses a combination of the traveling salesman problem and k-means clustering to build a
Cα model. Nonetheless, these programs do not guarantee convergence to the correct
solution and are not capable of building complete atomic models [71,150].

DL has recently driven remarkable advancements in structural biology, including the
development of programs for automated de novo atomic model building from cryo-EM
density maps (Table 3). This breakthrough is largely attributed to increased computational
power, quality of EM images, and the number of available high-resolution cryo-EM struc-
tures for model training [150]. Recently, many CNN-based approaches have been applied
not only for automatic assignment of SSEs [50–53] and backbone chains [53–56], but also to
detect individual amino acids [56,57], thus generating complete de novo models [53–57]
(Table 3). Below, we highlight some representative programs utilizing CNN architectures,
followed by a description of methods that apply alternative DL frameworks to model
building.

AAnchor [56] is the first program with 3D CNN architecture to identify individual
amino acids in EM maps. This technique utilizes a classification CNN to locate and label
residues, known as anchors, with highest confidence within a defined voxel size [56]. How-
ever, AAnchor is currently limited to maps with 3.1 Å resolution or higher and on average,
the fraction of anchors detected ranges from 10 to 20% depending on map resolution [56].
Another program, A2-net [57], uses a CNN framework to identify residues and their poses
followed by a Monte Carlo Tree Search (MCTS) strategy to link the 3D coordinate system
of amino acids into a complete peptide chain. Compared to its automated counterparts, in-
cluding Rosetta and others [151,152], A2-net converges to a solution significantly faster. An
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atomic model for a protein with one thousand amino acids can be derived in minutes [56],
compared to several hundred hours in Rosetta [152]. The latest version of A2-net, CryoNet
(https://cryonet.ai (accessed on 10 May 2023)), has been applied for model building of
cryo-EM maps of the human minor spliceosome [153] and the Acidobacteria homodimeric
reaction center bound with cytochrome c [154]. CR-I-TASSER [54] is a fully automated,
hybrid method that combines a 3D-CNN to build Cα trace models with multithreading
algorithms to identify homologous Protein Data Bank (PDB) templates for guided structure
assembly. Nonetheless, the generated CR-I-TASSER model directly relies on the accuracy of
the Cα trace prediction, which authors found to decrease with lower resolution maps [54].
Additionally, this technique requires prior segmentation of the experimental map, further
limiting its applicability to low-resolution density maps. Although CNNs remain one of
the most popular AI architectures for atomic model building and are the most direct DL
method for learning features from density maps, they are not without limitations. While
CNNs are considered translation-equivariant, meaning translating the input data will result
in translated output, they lack rotational invariance, meaning they do not behave consis-
tently for input data of varying orientation. Moreover, the localization of the convolution
mechanism narrows the CNN’s receptive field [155,156], potentially limiting their ability to
capture global features and dependencies within cryo-EM maps.

In addition to standard CNN framework, many de novo model building programs
have adopted the U-Net architecture (Table 3). The U-Net is a type of CNN commonly
used to segment or classify pixels in an input image [157]. In the U-Net architecture, an
encoder first downsamples the input image and extracts features, and then a decoder
network restores the image back to its original dimensions. Through the downsampling
and upsampling operations, U-Nets may be more effective at extracting both low-level
and high-level features than standard CNNs. Moreover, U-Nets incorporate so-called skip
connections that, as the name implies, may skip any given layer in the neural network to
provide direct connections between different layers of the network. In the U-Net framework,
skip connections enable the direct propagation of feature maps from the encoder to the
decoder. This unique architecture preserves fine-grained details and facilitates better
information flow throughout the network. Various programs have employed a 3D U-Net
framework for SSE identification [58,59] and complete de novo model building [60,62].
DeepTracer [60] is one of the most popular, fully automated model building programs that
utilizes a 3D U-Net architecture to predict locations of SSE elements, backbone atoms, and
individual amino acids within EM maps. Evolved from Cascaded-CNN [53], DeepTracer
employs a series of four U-Nets to perform distinct tasks: locate amino acid positions,
locate the protein backbone, identify SSEs, and identify individual residues [60]. Pfab et al.
applied DeepTracer to a set of coronavirus-related cryo-EM maps (Figure 5), and found
that, on average, 84% residues match with the corresponding deposited PDB structures [60].
Furthermore, DeepTracer has been utilized to build a variety of atomic models from EM
maps, including the human small subunit processome [158], Chikungunya virus replication
complex [159], and human caveolin-1 complex [160]. While DeepTracer demonstrates more
accurate Cα prediction than its counterparts [72,128,161], it is currently only applicable to
maps with 5 Å resolution or higher. The latest version, DeepTracer-2.0 [61], also has the
ability to model nucleic acids.

Other DL architectures for de novo model building include the Graph Neural Network
(GNN), Recurrent Neural Network (RNN), Residual Neural Network (ResNet), and Long-
and Short-Term Memory network (LSTM) (Table 3). For example, Structure Generator [55]
is a fully automated pipeline that utilizes 3D-CNN, GCN, and LSTM algorithms to produce
a protein structure based on amino acid identities and locations. Structure Generator [55]
first uses a 3D-CNN, named RotamerNet, to locate amino acids and assign their rotameric
orientations within the map. Using the Cα coordinates defined by RotamerNet, the GCN
generates a contact map and connects Cα positions located within 4 Å. Lastly, the bidirec-
tional LSTM labels the candidate amino acids and ensures the consistency of the assignment
with a provided protein sequence to yield a structural model [55]. While Structure Genera-

https://cryonet.ai
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tor has demonstrated high prediction accuracy using simulated datasets [55], it has not yet
been applied to experimental maps. Additionally, the program is limited to modeling protein
sequences with less than 700 amino acids [55].
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Figure 5. The atomic model built from the cryo-EM map of a feline coronavirus spike protein [162]
using DeepTracer [60]. (A) The 3.3 Å cryo-EM map of a feline coronavirus spike protein (EMDB
ID: EMD-9891) that contains 1403 residues. (B) Density map fitted with the DeepTracer model. The
DeepTracer model was built in just 14 min, compared to over 60 h required for model building with
Phenix [60]. (C) Visualization of individual backbone atoms and side chains fitted to the cryo-EM
Coulomb map using the molecular model obtained with DeepTracer.

DL techniques have provided much needed insight into the automation of atomic
model building. Several approaches have demonstrated capabilities to construct full
atomic models, but their applicability is generally limited to maps with 5 Å or higher
resolution [60,61,64,163]. Furthermore, while several methodologies are able to precisely
identify and locate individual atoms, it remains a challenge to construct a full peptide chain
without violating geometric and stereochemical restraints [65,71]. Different solutions have
been proposed to remedy this problem, including the program ModelAngelo [64,163] that
utilizes sequence data and prior information of protein geometries to refine the protein
chain geometry. Another software, CR-I-TASSER, attempts to overcome this limitation by
integrating Molecular Dynamics simulations with DL model building [54]. New strategies
have also been proposed to integrate DL frameworks with protein structure prediction
techniques, such as AlphaFold2, discussed in detail in the following section.
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Table 3. Summary of recently developed AI methods for de novo atomic model building.

Program AI Architecture Advantages Limitations

Emap2Sec [50] CNN
Identifies SSEs
Demonstrated on experimental maps
High accuracy for intermediate resolution maps

Does not place α-helices and β-sheets in
detected regions
Voxel-based approach fails for large EM maps

Emap2Sec+ [52] ResNet
Identifies SSEs and nucleic acids in maps 5–10 Å
Improved accuracy in protein SSE detection
compared to Emap2Sec [50]

Voxel-based approach fails for large
EM maps

CNN-based [51] CNN Identifies SSEs
Does not place α-helices and β-sheets in
detected regions
No results for experimental maps

Haruspex [58] U-Net Identifies SSEs and nucleic acids in maps
Applied to experimental and simulated maps

Only applicable to maps ≤4 Å
False positives for helices, sheets or
RNA/DNA
Misclassifies semi-helical elements, β-hairpin
turns, polyproline residues as α-helices

EMNUSS [59] U-Net Identifies SSEs
Applied to experimental and simulated maps

Incorrect predictions on atypical density
volumes; narrow receptive field

AAnchor [56] CNN Identifies amino acids Only applicable to maps ≤3.1 Å
Only detects 10–20% amino acids on average

A2-Net [57] 3D-CNN, MCTS

Identifies amino acids
Model with 1000 amino acids can be derived
in minutes
Applied to experimental maps
Fully automated

Cannot identify ligands

Structure Generator [55] 3D-CNN,
GCN, LSTM

Identifies amino acids and rotamer orientation,
builds full protein chain

Limited to protein sequences
<700 amino acids
No results for experimental maps

CR-I-TASSER [54] 3D-CNN, I-TASSER 3D-CNN predicts Cα atoms used for I-TASSER;
generates full structure

Cα trace prediction accuracy dependent
on resolution
Requires prior map segmentation

DeepTracer [60,61] 3D U-
Net

Locates amino acid positions and
protein backbone
Identifies SSEs and amino acids
Automated
Lastest version models nucleic acids

Only applicable to maps ≤5 Å
Only builds atoms for main chains

DeepTracer ID [63] 3D U-Net, AlphaFold2

Uses DeepTracer to build model and searches
against AlphaFold2 library for refinement
Identifies individual proteins in density map;
does not require protein sequences to be known
a priori
Does not require high accuracy from
AlphaFold2 prediction

Limited to proteins >100 amino acids for
succesful AlphaFold2 prediction matches
Only applicable to maps ≤4.2 Å

EMBUILD [62] U-Net, AlphaFold2 Constructs main chain map; fits AlphaFold2
predicted chains into the map Only builds atoms for main chains

ModelAngelo [64,163] CNN, GNN
Builds complete atomic model
Better RMSD and sequence prediction results
than DeepTracer

Only applicable to maps ≤3.5 Å
Requires protein sequences are known

DeepMM [164] CNN
Predicts Cα positons; identifies SSEs and
amino acids
Applied to experimental maps

Cannot model nucleic acids
Residue matching accuracy dependent on
map resolution

DEMO-EM [165] ResNET, I-TASSER

Builds complete atomic model for
multi-domain proteins
Only requires protein sequence
Fully automated

Requires prior map segmentation
Individual domain models calculated
without restraints from density data

7. Applications of AI-Based Protein Structure Prediction to Atomic Model Building

The field of protein structure prediction has been transformed by significant devel-
opments in DL algorithms, exemplified by AlphaFold2 [68], RoseTTaFold [166], ESM-
Fold [167], and I-TASSER-MTD [168]. Given only protein sequences, such programs
employ a combination of NNs and novel algorithms to predict atomic 3D structures,
which in turn provide complementary data to experimental methods. Of particular note,
AlphaFold2 [68], a publicly available program developed by Google DeepMind, has shown
unprecedented levels of accuracy in predicting atomic models [68,169,170]. AlphaFold2
outperformed all other prediction methods in the 14th edition of the Critical Assessment of
Structure Prediction (CASP), a blind test for structure prediction of experimentally solved
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structures that have not yet been made publicly available. AlphaFold2 models had a
median backbone accuracy of 0.96 Å RMSD, whereas the next best performing method
had a median backbone accuracy of 2.80 Å RMSD [68]. Using the amino acid sequence
as input, AlphaFold2 first performs a Multiple Sequence Alignment (MSA) and tries to
identify proteins with similar structures, known as templates. Based on the templates,
AlphaFold2 generates a “pair representation” model, indicating which amino acids are
likely to be in contact with each other [171]. The program then employs a transformer
NN, called the Evoformer, to refine, exchange, and extract information from the MSA and
pair representation. The extracted information is used by the structure module, a second
NN, to construct an atomic model [68]. The AlphaFold Protein Structure Database [172],
hosted at the European Bioinformatics Institute–European Molecular Biology Laboratory
(EMBL-EBI), provides access to over 200 million AlphaFold2 models, covering the majority
of sequence entries in UniProt. Furthermore, computed models using AlphaFold2 as well
as other prediction methods are available through ModelArchive (modelarchive.org). As
of 2022, over one million computed models were also accessible through the Research
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [173].

Predicted structures can serve as starting models for deriving atomic coordinates from
cryo-EM maps [174–178]. In addition, several methods have been proposed to dock and
fit predicted structures into density maps [62,66,67]. In cases of multi-domain and multi-
component complexes, one approach is to first use AI-prediction tools to generate structures
of sub-complexes and then assemble them into higher-order structures [168,179,180]. For
example, the protein structure prediction and modeling tool I-TASSER-MTD [168] predicts
structures of individual domains and then uses the EM density to guide the construction
of a complete atomic model. Assembline [180] is another software package that offers an
integrative pipeline for model building that satisfies the constraints of predicted structures
and cryo-EM maps. Assembline has been used to assemble full atomic structures of multiple
protein complexes [178,181,182], including the human nuclear core complex [178]. In this
study, Mosalaganti et al. fit models of individual subunits and sub-complexes generated
by AlphaFold2 [68] and ColabFold [183], respectively, into the density map, followed by
structure assembly with Assembline [180]. Notably, the model of the N-terminal domain of
NUP358 predicted with AlphaFold2 was in better agreement with the cryo-EM map than
atomic coordinates from previously determined X-ray structures [178]. Furthermore, the
predicted models not only showed the same subunit interactions previously reported by
the crystal structures, but also revealed new interactions [178].

Another approach is to combine structure prediction tools with DL-based model
building techniques to aid in the construction and refinement of atomic models [62–67,165].
The program EMBUILD [62] utilizes a U-Net to first generate a so-called main-chain
probability map including potential solutions and probabilities reflecting the agreement of
the main chain assignments with experimental densities. AlphaFold2 [68] predicted models
of individual chains are then fit into the map, and a scoring function is used to measure
how well the fitted chain matches the main-chain probability map. The final model is
the combination of fitted chains that yield the highest scoring function among different
combinations of fitted positions [62]. He et al. [62] applied EMBUILD to 47 intermediate-
resolution maps and built models with an average template modeling score (TM-score)
of 0.909 and RMSD of 2.85 Å, outperforming other state-of-the-art methods, including
phenix.dock_in_map [184] and gmfit [185,186]. Another program, DEMO-EM [165], utilizes
DL-based inter-domain distance maps to facilitate the fully automated assembly and
refinement of individual domains into full-length structures. When applied to a benchmark
set of multi-domain proteins with medium- to low-resolution maps, DEMO-EM generated
models with correct inter-domain orientations in 97% of cases, outperforming MDFF and
Rosetta [165]. Nonetheless, DEMO-EM, along with the other programs described in this
section, utilize models generated for each subunit independently without taking into
consideration the conformational changes that may occur upon subunit binding [64].
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Other algorithms leverage structure prediction tools to identify proteins within cryo-
EM maps. With advancements in image processing techniques, cryo-EM can now be
applied directly to cellular extracts. However, determining the specific proteins within the
resulting map often requires the application of other complementary techniques, such as
tandem Mass Spectrometry. The program DeepTracer-ID [63] combines DeepTracer [60,61]
and AlphaFold2 to directly identify the proteins present in a cryo-EM map. DeepTracer-ID
first utilizes DeepTracer, as described above, to build an atomic structure, and then uses
this model to search the AlphaFold2 library containing all predicted structures from any
given organism. Identified structures are used to iteratively refine the atomic model. In
a blind test of 13 experimental maps, DeepTracer-ID identified the correct proteins as top
candidates [63]. DeepTracer-ID has also been successfully used for protein identification
in cryo-EM maps of a white spot syndrome virus capsid [187] and archaeal surface fila-
ments [188]. Nonetheless, this approach is only applicable for maps with 4.2 Å or higher
resolution. In addition, accurate sequence-based alignment of the DeepTracer model and
AlphaFold2 predicted structure requires proteins with a sequence longer than 100 amino
acids [63]. Similarly, the program DeepProLigand [65] predicts protein ligand interactions
by employing DeepTracer and using other known protein-ligand structures available in
AlphaFold2 library or available through the RCSB PDB.

While integrative approaches described in this section represent a promising tool
for atomic model building, AI structure prediction methodologies suffer from several
limitations. Assessing the quality of predicted AlphaFold2 structures is a nontrivial task.
Although quality metrics accompany each AlphaFold2 model, these scores are also predic-
tions that may contain errors [189]. Thus, manual inspection is still required to evaluate
the model in the context of the experimental map, as even high-confidence predictions
can be modeled incorrectly [190]. Furthermore, as AlphaFold2 relies on experimentally
determined structures deposited in the PDB, the algorithm may produce incorrect folds
when there is a lack of homological structures [70]. Further developments are needed to
improve the prediction accuracy of mutated residues, regions involved in ligand binding,
and dynamic interactions [189,190].

8. Conclusions

Over the past decade, technological advances have transformed single-particle cryo-
EM from low-resolution “blobology” [7] to the preferred technique for structure determi-
nation at near-atomic resolution. The recent adoption of DL techniques has made signifi-
cant contributions to the cryo-EM image processing pipeline, particularly in the areas of
3D reconstruction and atomic model building. As the size of cryo-EM datasets become
larger to efficiently sample more complex and dynamic specimen, there is an increasing
need for efficient ab initio reconstruction methods. While a variety of DL-based tech-
niques have been applied to generate initial 3D density maps, including auto-encoders and
GANs, these approaches are still in the early stages of development, and many have only
demonstrated success on synthetic datasets [36,45]. Further improvements are needed for
DL-based algorithms that leverage amortized inference to accurately tackle heterogeneous
ab initio reconstruction without compromising computational resources. Additionally, the
interpretation of the conformational landscapes generated by DL-based reconstruction
algorithms remains challenging, as these techniques lack benchmarks and standardized
stand-alone validation measures. The current methods rely on the user to manually inspect
the manifold and reconstruct a subset of volumes at individual points. Cases of discrete
heterogeneity are often unambiguous, as distinct structures frequently manifest as clusters
of points in the manifold that allow users to generally infer the number of states and
their populations [38]. However, due to the nonlinear relationship between the latent
space and the distribution of volumes, distances between points in the landscape have no
straightforward, real-world meaning. While these models aim to organize their latent space
such that structurally related conformations reside in close proximity, there is no physically
interpretable metric that relates the trajectory between different conformations in the mani-
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fold [42]. Techniques like PCA can help visualize the directions of significant variability;
however, assigning biological significance to this motion is ill-advised. The validity of all
inferred conformational states requires a combination of experimentally derived structures
coupled with other biophysical and biochemical tools that probe dynamics of biological
systems. Importantly, DL-based techniques have also proven useful for constructing atomic
models from intermediate-resolution cryo-EM density maps. A number of methodologies
have been developed to extract features from 3D volumes, for instance SSEs, Cα backbones,
and individual amino acids. The most successful of these approaches employ CNN and
U-Net frameworks. As the field of DL continues to rapidly develop, the application of more
complex DL frameworks, such as transformer models [191], have yet to be explored for de
novo atomic model building [71,150]. In addition, several tools that utilize structures from
AlphaFold2 and other protein prediction software to guide structure assembly have been
recently proposed. However, there remains a need for more end-to-end, fully automated
techniques that utilize complementary data, such as amino acid sequences and predicted
protein structures, for more accurate structure modeling.
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