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Abstract: The high transport characteristics of AlGaN/GaN heterostructures are critical components
for high-performance electronic and radio-frequency (RF) devices. We report the transport charac-
teristics of AlGaN/GaN heterostructures grown on a high-resistivity (HR) Si(111) substrate, which
are unevenly distributed in the central and edge regions of the wafer. The relationship between the
composition, stress, and polarization effects was discussed, and the main factors affecting the concen-
tration and mobility of two-dimensional electron gas (2DEG) were clarified. We further demonstrated
that the mechanism of changes in polarization intensity and scattering originates from the uneven
distribution of Al composition and stress in the AlGaN barrier layer during the growth process.
Furthermore, our results provide an important guide on the significance of accomplishing 6 inch
AlGaN/GaN HEMT with excellent properties for RF applications.

Keywords: AlGaN/GaN heterostructures; high-resistivity silicon; transport characteristics;
uniformity; polarization effect

1. Introduction

AlGaN/GaN high-electron-mobility transistors (HEMTs) are widely applied to power
and RF electrics due to their high electron density, high electron mobility, and excellent
power and frequency characteristics [1–7]. Attributed to the strong polarization effect at the
interface between AlGaN and GaN, high 2DEG density forms without additional doping.
The difference in lattice constant in crystal causes accumulation of polarized charges and
forms deep electron potential wells at the heterointerface [8,9]. Moreover, the complicated
technological requirements and prohibitive costs of gallium nitride (GaN) single-crystal
substrates greatly limit the development of homoepitaxy, which also means heteroepitaxy
has become the mainstream process for AlGaN/GaN HEMTs [10–12]. Among these devices,
silicon substrates are highly favored due to their low cost and compatibility with CMOS
processes, while they also make it possible to grow large-size GaN films and greatly reduce
the cost of devices [13–15].

One of the key focal directions for high-power and high-frequency electronic devices
is optimizing the transport characteristics of AlGaN/GaN heterostructures. However, due
to the significant lattice mismatch and thermal mismatch between the GaN and the Si
substrate, it is difficult to obtain high-quality and crack-free GaN epitaxial films as the Si
substrate size and the epi-layer thickness increase [16]. During the growth process, they are
prone to various problems appearing inside each layer, including defects, residual stress,
and wafer bow [17,18]. Especially in the RF field, the high-resistivity Si (HR-Si) substrate is
thought to substitute the SiC for its low RF loss and cost as advantages. In comparison to
low-resistance Si substrates, high-resistance Si substrates are not considered optimal for the
growth of high-quality AlGaN/GaN heterojunctions due to their inferior mechanical prop-
erties. Hence, an in-depth analysis of the uniformity of electrical properties of AlGaN/GaN
heterostructures on HR-Si is indispensable to enhance device performance, reduce the cost
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of radio frequency devices, and improve their yields. A common method used for alleviat-
ing stress and dislocations is to optimize buffer structures, such as AlN [19,20], AlGaN/GaN
superlattices [21,22], and compositionally graded AlGaN layers [23–25]. Moreover, the
uniformity of the transport characteristics of AlGaN/GaN heterostructures also cannot be
ignored. Recent research has shown that the electrical properties of heterostructures are
affected by wafer bow [26] and different buffer layer structures [27,28]. To illustrate the
effect of the uniformity of sheet resistance, J. Ma et al. studied the relationship between
the stress, dislocations, and transport characteristics of AlGaN/GaN heterostructures, and
also attributed the nonuniformity to the uneven distribution of stress [29]. Nonetheless,
the mechanism acting on the homogeneity of transport properties has been poorly studied,
and requires in-depth understanding. In this work, we investigate the uniformity of 2DEG
density and electron mobility at different wafer positions by analyzing the relationship
between crystal structure, strain, and the polarization effect, which is crucial for further
improving the transport characteristics of AlGaN/GaN HEMTs on the Si substrate and
provides a significant guide for improving epitaxial film quality.

In this paper, the transport properties of AlGaN/GaN HEMT on the HR-Si sub-
strate and the mechanism of the diversification of 2DEG density and electron mobility
are investigated. Structural and optical characterization techniques were used to quantify
crystal quality and stress, and then the polarization charge density at the heterointerface
was calculated based on quantization data. Our results show that polarization effects
strongly interrelate to the Al content, strain in the AlGaN, and residual stress in GaN,
which affects the distribution of 2DEG density and electron mobility. Furthermore, electron
mobility is greatly influenced by scattering, the Al content, and polarization charges at the
AlGaN/GaN heterointerface, which also affect the distribution of electron mobility.

2. Experimental Details

The AlGaN/GaN HEMT structure was grown on a 6-inch high-resistance Si substrate
(HR-Si(111)) with metal organic chemical vapor deposition (MOCVD, Aixtron AIX G5+,
AIXTRON, Herzogenrath, Germany). The schematic structure is shown in Figure 1a,
and the layer structure of the cross-section was further observed specifically by scanning
transmission electron microscopy (STEM). In order to characterize the uniformity of the
structure and the transport properties, nine measurement locations were selected in the
center and edge regions of the 6-inch wafer, as shown in Figure 1b. The transport properties
were analyzed using a non-contact Hall measurement (N-Hall). The crystalline quality,
chemical composition, and stress were characterized using high-resolution X-ray diffraction
(HR-XRD). A wafer bow test was performed by using the Flatness Analyzer measurement.
Atomic force microscopy (AFM, with a tapping mode) and STEM were performed to
investigate the surface morphology, microstructure, and dislocation distribution.
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Figure 1. (a) Schematic illustration of AlGaN/GaN HEMT structure grown on Si(111) substrates, and
STEM-BF image of cross-sectional structure. (b) Nine points measurement on 6-inch wafer.
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3. Results and Discussion

In order to observe the transport properties and distribution of AlGaN/GaN het-
erostructures, we conducted electrical measurements at nine locations (see Figure 1b),
including sheet resistance (Rs), electron mobility (µn), and 2DEG density (ns), as shown in
Figure 2. The transport characteristics of the entire epitaxial film are unevenly distributed.
Compared to the edge region of the epitaxial film, the electron mobility in the central
region is higher, while the distribution trend of 2DEG density is the opposite. A strong
correlation between 2DEG density and electron mobility at the heterointerface has been
reported [27,30], which is in agreement with our work. Here, we mainly discuss the
uniformity of electron density and mobility.
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Figure 2. The transport properties of the 6-inch epitaxial film were examined at nine locations.
(a) Sheet resistance, (b) electron mobility, and (c) 2DEG density.

Figure 3(a1–a3) shows the surface morphology and contours of the epitaxial film in the
center and edge regions to characterize the uniformity of surface roughness. The measure-
ment locations were selected from the regions 1, 2, and 6 in Figure 1b, with 5 µm × 5 µm
AFM scans. The results show that the surface is smooth and flat, without obvious defects
such as pores and cracks. Root mean square roughness (RMS) is an important indicator for
evaluating surface roughness and morphology. The average value of RMS is 0.23 nm, with
clear atomic-level step flow, which also confirms that the AlGaN/GaN HEMT structure
grows in two-dimensional (2D) layered mode. Furthermore, annular dark-field (ADF)
imaging by scanning transmission electron microscopy (STEM) shows the details of disloca-
tions distribution, under two-beam conditions with g = [0002] and g = [1120], respectively,
as shown in Figure 3(b1,b2,c1,c2). Different g vectors were used to characterize dislocation
types, where g = [0002] represents screw and mixed dislocations, and g = [1120] represents
edge dislocations and mixed-type dislocations [31]. As a result, only a small number
of threading dislocations continue extending, and most dislocations bend at the buffer
interface or during the growth process. The interaction of dislocations forms dislocation
loops, leading to dislocation annihilation, effectively reducing the dislocation density.

The crystalline quality and stress of the epitaxial film were evaluated by HR-XRD at
nine positions (see Figure 4), suitable for investigating the influence of crystal quality on
transport properties. Figure 4 shows ω scans of rocking curves (RCs) towards the symmetric
(002) and asymmetric (102) planes, of which full-width at half-maximum (FWHM) can
reflect the crystalline quality [32]. The values of FWHM at different positions are presented
in Table 1, indicating the high uniformity of crystal quality in the center and edge regions,
especially the (002) plane. It is worth noting that for the (102) plane, the FWHM in the
central region is slightly higher, which is related to stress distribution.
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Table 1. The FWHM of different locations in the AlGaN/GaN HEMT on Si(111).

Measurement Locations (002) FWHM (Arcsec) (102) FWHM (Arcsec)

1 505.91 809.93
2 515.48 795.78
3 516.17 794.99
4 516.02 798.84
5 516.60 795.24
6 513.14 788.98
7 509.94 786.17
8 514.80 786.60
9 514.40 790.31
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Figure 5(a1,a2) shows the 2θ−ω scan along the (002) and (102) planes used to measure
lattice constant c and a, respectively, and the diffraction peak of AlGaN is located between
GaN and AlN. For hexagonal systems [33], the lattice constant (a and c) is expressed as:

1
d2 =

4
3

(
h2 + hk + k2)

a2 +

(
l
c

)2
(1)

where d represents the interplanar spacing of the probed lattice plane (hkl). According to
Vegas’s law [34], as a ternary alloy of GaN and AlN, the lattice constant of AlxGa1−xN
depends on the Al content x, which can be expressed as:

cAlGaN = cAlN ·x + cGaN ·(1 − x)

aAlGaN = aAlN ·x + aGaN ·(1 − x) (2)
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As a result, the Al content x was calculated based on the lattice constant a or c of
GaN/AlGaN/AlN in accordance with Equation (2), as shown in Figure 5(b1). It is clear
to see that the uniformity of the Al content varies with different measurement locations.
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The Al content in the central region of AlGaN/GaN heterostructures (~0.27) is lower than
that in the edge region (~0.3), which may be related to the strain state of the AlxGa1−xN
barrier layer and the migration rate of Al atoms during the growth process [35].

According to Bragg’s law defined as: 2dsin θ = nλ, it is known that the shift of
diffraction peaks indicates the change in the lattice constant. The positions of diffraction
peaks of GaN and AlGaN both shift at different measurement regions (see Figure 5(a1,a2)),
which demonstrates that lattice distortion may occur in the GaN and AlGaN layers due to
lattice mismatch. In hexagonal crystal systems, strain can be defined as in-plane strain (εxx)
and out-of-plane strain (εzz) [36], expressed as:

εxx = εyy =
a − a0

a0
εzz =

c − c0

c0

2
c13

c33

a − a0

a0
= − c − c0

c0
(3)

The in-plane stress σxx is related to εxx by Hooke’s law [37]:

σxx =

[
(C11 + C12)− 2

C2
13

C33

]
·εxx (4)

where, a0 and c0 are the lattice constant of strain-free bulk materials, aGaN = 3.189 Å,
cGaN = 5.186 Å; aAlN = 3.112 Å, and cAlN = 4.978 Å [36]. a and c are experimental lattice
parameters, Cij represents the elastic constants. The piezoelectric coupling matrices and
components of the elastic constant matrix for the materials are listed in Table 2 [38]. More-
over, AlxGa1−xN-related parameters are linear interpolation sets between the physical
properties of GaN and AlN according to Vegas’s law.

Table 2. Electrical properties of materials.

GaN AlN AlxGa1−xN

Piezoelectric coefficients (C/m2)
e31 −0.49 −0.6 −0.49 − 0.11x
e33 0.73 1.46 0.73 + 0.73x

Elastic constants (Gpa)

C11 367 396 367 + 29x
C12 135 137 135 + 2x
C13 105 108 103 + 5x
C33 405 373 405 − 32x

Spontaneous polarization (C/m2) PSP −0.029 −0.081 −0.052x − 0.029

Figure 5(b2) displays the in-plane stress of AlGaN and GaN calculated using Equations (3)
and (4). For the entire AlGaN/GaN HEMT, the residual stress of GaN is not uniformly
distributed, the central region is under tensile stress, while the edge region is under tensile or
compressive stress, which may be related to the uniformity of the material and the dislocation
distribution [32]. This also affects the stress of the AlGaN barrier layer grown on top of the
GaN. Due to the smaller lattice constant of AlGaN compared to GaN, a thin layer of AlGaN is
grown pseudo-morphically on the GaN–substrate template, which results in the generation
of tensile stress. Furthermore, there are variations in the magnitude of the tensile stress at
different positions, with the central region having less tensile stress than the edge.

Figure 6 shows the wafer warp of the AlGaN/GaN HEMT on the HR-Si substrate,
measured using Flatness Analyzer. The warp value is −27.574 µm. The inset image has
enabled us to better represent the 3D morphology of the epitaxial wafer when in its warped
state. The wafer has a concave downward curvature, which is akin to a bowl shape and is
a manifestation of the tensile stress it endures. Larger warpage will cause differences in
dislocation densities at different locations in the epitaxial layer, which affects the uniformity
of sheet resistance [26].
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The 2DEG at the AlGaN/GaN heterointerface strongly depends on spontaneous
polarization (PSP) and piezoelectric polarization (PE), mainly derived from the structural
characteristics and stress state of the material itself. From the previous discussion, it can be
concluded that both AlGaN and GaN are affected by stress. The PE in strain layers can be
obtained by Equations (3) and (5), as follows [38]:

PE = e33εzz + e31
(
εxx + εyy

)
PE = 2

a − a0

a0

(
e31 − e33

c13

c33

)
(5)

where eij and Cij are represented as piezoelectric coefficients and elastic constants, re-
spectively, as shown in Table 2. Due to e31 − e33

c13
c33

< 0, PE is negative for tensile stress
and positive for compressive stress. Figure 7 shows the polarization effect of strain on
AlGaN and GaN, respectively. It can be seen that PSP plays a lead role and increases
with the increase in Al content, while PE increases with increasing tensile stress in AlGaN
(see Figure 7a). However, the thicker GaN layer causes more stress to be relaxed, and as
a result, the contribution of PE to the total polarization effect is smaller compared to PSP.
A clearer illustration of the changes in the PE of strain in GaN is shown in Figure 7b. At dif-
ferent positions, PE exhibits negative or positive values due to tensile or compressive stress.
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Subsequently, Figure 8a shows the relationship between 2DEG density (blue dotted
line) and the total polarization. For Ga-face AlGaN/GaN heterostructures, the fixed
polarization charge density σ is represented as:

σ = PAlGaN − PGaN = {PSP(AlGaN) + PPE(AlGaN)} − {PSP(GaN) + PPE(GaN)} (6)
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The variation trend of 2DEG density is broadly in accordance with the total polariza-
tion, indicating that 2DEG density is jointly affected by the polarization effect in AlGaN
and GaN, where the contribution of AlGaN is particularly significant. The uniformity of Al
content and stress in the AlGaN barrier layer will directly affect the density and distribution
of 2DEG.

As shown in Figure 8b, electron mobility decreases with the increase in Al content at
different positions. It is well known that electron mobility is strongly influenced by several
kinds of scattering effects, including alloy disorder scattering, interface rough scattering,
and polar optical phonon scattering. The increase in Al content will cause the roughness
of the AlGaN/GaN heterointerface to increase, resulting in enhanced interface roughness
scattering. Moreover, the increase in 2DEG density caused by increasing Al content also
leads to changes in various scattering effects [39].

4. Conclusions

In conclusion, our work investigated the transport properties of an AlGaN/GaN
heterostructure grown on an HR-Si substrate and proposed that the Al content and stress in
the AlGaN barrier layer are the main factors affecting the uniformity of transport properties.
By calculating the polarization charge density of the AlGaN/GaN heterointerface, it was
confirmed that the uneven distribution of Al content and the stress in AlGaN, as well as the
residual stress in GaN affect the density and distribution of 2DEG. Simultaneously, the Al
content also affects the uniformity of electron mobility. Therefore, we have demonstrated
the importance of the uniformity of the AlGaN barrier layer for the transport properties of
the AlGaN/GaN heterostructure, which is meaningful for the development of over 200 mm
GaN-on-Si technology.
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