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Simple Summary: Cell migration is a key factor in the spread of metastatic tumors and a major
contributor to cancer-related mortality. However, our comprehension of the underlying mechanisms
remains incomplete. In this study, we utilized a wound healing assay to explore the migration
and invasion of cancer cells in the context of metastasis. We developed a computational model
using cellular automata, rigorously calibrated and validated with in vitro data from both tumor and
non-tumor cell lines, offering a potent resource. This novel approach is of immense value to the
pharmaceutical sector for discovering compounds that can impede cell migration, evaluating the
efficacy of potential drugs to hinder cancer invasion, and assessing immune system responses. It
stands as a breakthrough in the quest for more effective cancer therapies.

Abstract: Purpose: Cell migration is a critical driver of metastatic tumor spread, contributing
significantly to cancer-related mortality. Yet, our understanding of the underlying mechanisms
remains incomplete. Methods: In this study, a wound healing assay was employed to investigate
cancer cell migratory behavior, with the aim of utilizing migration as a biomarker for invasiveness.
To gain a comprehensive understanding of this complex system, we developed a computational
model based on cellular automata (CA) and rigorously calibrated and validated it using in vitro data,
including both tumoral and non-tumoral cell lines. Harnessing this CA-based framework, extensive
numerical experiments were conducted and supported by local and global sensitivity analyses in
order to identify the key biological parameters governing this process. Results: Our analyses led to
the formulation of a power law equation derived from just a few input parameters that accurately
describes the governing mechanism of wound healing. This groundbreaking research provides
a powerful tool for the pharmaceutical industry. In fact, this approach proves invaluable for the
discovery of novel compounds aimed at disrupting cell migration, assessing the efficacy of prospective
drugs designed to impede cancer invasion, and evaluating the immune system’s responses.
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1. Introduction

Metastasis, which accounts for approximately 67% of cancer-related fatalities, remains
an enigmatic and complex process involving the dissemination of cancer cells from their
primary tumor site [1]. Despite its pivotal role in the formation of secondary malignant
growths, a comprehensive understanding of metastasis continues to elude the scientific
community. Therefore, unraveling the intricacies of cell migration takes on paramount
significance as it forms the foundation for comprehending and, potentially, controlling
metastasis [2,3].

An array of methods has been employed to study cell migration [4]: the in vitro wound
healing (WH) assay [5–7], often referred to as the in vitro scratch assay; Boyden chamber
assays [8,9]; live-cell imaging for real-time observation [10–12]; single-cell tracking for quan-
titative analysis [13,14]; gene expression profiling to identify key regulators [15,16]; and
protein–protein interaction analysis to examine the molecular interactions involved in cell
migration [17]. The WH assay method, characterized by its popularity, cost-effectiveness,
and standardized in vitro approach, involves inducing a controlled scratch within a con-
fluent cell monolayer, typically through mechanical, thermal, or chemical damage [18].
Following injury, cells initiate migration onto the wound bed, thereby contributing to the
restoration of the epidermal barrier’s structure and function [19]. This overall process incor-
porates cell migration, proliferation, and differentiation. In some instances, to mitigate the
potential confounding effects of cell proliferation, a low dose of the proliferation inhibitor
mitomycin C is employed [20–22]. In addition, other common strategies include reducing
the percentage of FBS in the media in order to decrease the proliferation rate or employing
shorter timepoints (e.g., 8–12 h) for measuring wound size after the initial wound creation.
This approach minimizes the impact of cell proliferation on wound closure.

As an alternative to traditional in vitro approaches, computational modeling emerges
as an efficient tool for the quantitative exploration of biological systems [23–26] and the
management of extensive experimental datasets. A particularly renowned model employed
in the context of the WH phenomenon is the Fisher–Kolmogorov (FK) equation [27]. This
mathematical framework delineates the evolution of cell density (u (cells/µm2)) in both
the spatial (x (µm)) and temporal (t (h)) dimensions, amalgamating cell migration and
proliferation processes, which are characterized as Fickian diffusion and logistic growth,
respectively, such that ∂u

∂t = D ∂2u
∂x2 + ku

(
1 − u

û
)

[28]. The FK model serves as a foundational
platform, facilitating the development of various adaptations aimed at simulating com-
plex biological phenomena [28–31]. These adaptations incorporate integrodifferential or
Navier–Stokes equations and fluid dynamics models to describe both macroscopic [32] and
microscopic aspects of biological systems [33–35].

Since the 1970s, an innovative approach rooted in the development of discrete mecha-
nistic models, known as cellular automata (CA), has gained prominence. CA, celebrated
for their simplicity, find application across diverse domains, spanning from urban system
evolution [36,37] to material erosion and various biological processes [38–40], including
the dynamics of the epithelial system [41], wound repair [42], viral infections [43], tumor
response to therapies [44,45], and tumor metabolism [46]. CA models are characterized as
spatially and temporally discrete systems governed by a set of rules rooted in fundamental
biophysical phenomena, dictating the behavior of individual cells and their interactions
within a defined spatial neighborhood [47]. This cellular-based modeling approach empow-
ers the description of complex systems through simple relationships among constituent
components, distinguishing itself from continuum models.

In this study, we introduce a CA model developed as a Digital Twin (DT) of the in vitro
WH assay, enabling precise predictions of migration rates. The model’s validation was
achieved through direct comparisons with in vitro data collected from previous exper-
imental studies based on four different cell lines. Subsequently, the model underwent
validation using five additional cell lines, four of which were obtained from the previously
published literature, while the fifth was obtained from a novel, unpublished, experimental
campaign. The overall number of nine different cell lines was intentionally chosen to



Cancers 2023, 15, 5284 3 of 14

ensure extended validation of the CA here developed across a wide spectrum of cell types
and tissues. Notably, this validation encompassed various cell types, including epithelial
and fibroblast cells, sourced from both murine and human origins, and represented both
tumoral and non-tumoral cells. The results demonstrated good agreement between the
model predictions and the experimental data.

Combining principles from the realms of biology and physics with modeling finds
widespread utility in the pharmaceutical industry for identifying novel compounds target-
ing cell migration and evaluating the effectiveness of potential drugs designed to inhibit
cancer invasion and evaluate the immune system’s response, thereby enhancing our under-
standing of potential clinical treatments [48].

2. Materials and Methods

In the upcoming section, we will provide a comprehensive breakdown of the structure
of the CA model employed for simulating in vitro wound healing. To enhance clarity, the
model description is organized into several subsections. Initially, we will introduce the
model domain and outline the rules governing cellular dynamics. To facilitate a thorough
comprehension of the model, a separate subsection will be exclusively devoted to statistical
and sensitivity analyses.

2.1. In Vitro Experiments

The CA model was validated by direct comparison of in silico predictions with in vitro
experimental data [5,31,49–52]. Four different cell lines were considered from previous
works by our group: HT-1080 human fibrosarcoma cells [5], MDA-MB-231 [31,51] and
MDA-MB-468 [51] breast cancer cell lines, and HaCaT [49,50] human keratinocyte cell line.

In our in vitro experiments, the quantification of WH dynamics was carried out by
tracking the changes in the cell-free region’s area over time (A), which was then normalized
to its initial value at time 0 (A0). To accomplish this, we employed custom-made automated
image analysis software that relied on image variance analysis to identify the wound’s
edge as the boundary of the cell-free area. Wound closure rate (α), obtained as the slope of
the linear reduction in A/A0 as a function of time, was used as the key parameter for the
comparison between in silico and in vitro experiments. The same approach was used to
compare our data to previous in vitro experiments collected from the literature. For further
elaboration on this technique, please refer to our previous publication [51].

2.2. Model Development

In the following section, we will provide a detailed presentation of the CA model used
for simulating in vitro healing.

2.2.1. Domain Building

The cellular monolayer of the WH assay was represented in silico by a two-dimensional
lattice of square elements (N × N), where each element (with coordinates i,j) had a value of
1 or 0, depending on whether it was empty or occupied by a cell.

Thus, the dimensions of each element of the lattice correspond to the average size of
a single cell (δ) (Figure 1a). As shown in Figure 1a, the initial configuration (at time t = 0)
was characterized by two lateral cell domains simulating the edge of the wound (referred
to as left (L) and right (R)) and one central domain mimicking the cell-free region (referred
to as wound (W)). The dimension of W along the x-direction was defined by the mean
value of the length of the in vitro wound (b0) divided by δ. Similarly, the initial number
of cells in L and R, randomly distributed, was calculated from the cell density (ρ) in the
in vitro experiments by assuming the L and R lengths as half of the dimension of W. As
the simulation time went on, cells moved toward the wound from the edges, where a
periodic boundary condition was set to guarantee constant cell density. The periodic
boundary simulated an infinite space for the surrounding cells; in the script, the first and
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last columns of the lattice were repopulated with cells at each time step in case any vacancy
was generated during the simulation by cell migration steps.
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Figure 1. (a) Initial configuration of domain. At t = t0, the lattice domain was divided into two
lateral domains (L and R, left and right, respectively) occupied by cells (each cell occupies a squared
element of size δ) representing the edge of the wound and a central cell-free domain (W, wound) of
size b0 along the x-direction. (b) Scheme of migration rule. A total of 3 × 3 lattice squares where
automaton rules were applied: cell in the center of the square (M0) decides to migrate; in the following
steps (t1 and t2), it can move to one of the empty adjacent spaces, such as M1 or M2. (c) Scheme
of proliferation rule. Cell identified with P0 decides to proliferate; in the following step (t = t1), it
proliferates, and the daughter cell (referred to as D1) occupies a space in the neighborhood. At a later
time, t = t2, the daughter cell may proliferate again, and its daughter cell, referred to as D2, occupies
another space. (d) Flow chart of the model algorithm.

2.2.2. Rules Governing Cellular Dynamics

CA evolved over time and space based on a set of simple rules associated with the two
primary processes of migration and proliferation, which govern the dynamic evolution of
living tissues. These processes will be discussed in detail in the following sections.

1. Migration and proliferation

When confronted with available empty spaces within the lattice, cells possess the
flexibility to opt for either migration or proliferation, effectively occupying a chosen site
among the nearest vacant lattice locations, as shown in Figure 1b,c. Within the CA lattice,
the determination between migration and proliferation hinges on the estimated probabilities
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assigned to each process. In detail, migration probability is defined as Pm = 1/Tm
1/Tm+1/Td

,
where Tm is the time necessary for a cell to move a distance equal to its characteristic
size δ. Tm can be calculated using the random motility coefficient as Tm = δ2/D, where
D is the constant diffusion rate of cells. Similarly, proliferation probability is given by
Pd = 1/Td

1/Td+1/Tm
, where Td is the doubling time of a given cell line, typically available in

the literature. Since, in a single step, each cell may either migrate or proliferate, the sum of
these two probabilities is 1.

To determine the action for each cell in every time step, a stochastic process is em-
ployed. For each cell, a random value, denoted as “λ”, is generated from a uniform
probability distribution within the range [0, 1]. Subsequently, this random value “λ” is
compared to a Pm. If λ < Pm and a neighboring location is available, the cell will migrate;
otherwise, the cell will proliferate.

This stochastic decision-making process, based on probabilistic comparisons, governs
the behavior of each cell in the model, dynamically determining whether it should engage
in migration or proliferation at each time step.

2. Quiescence

In cases where there are no available empty neighboring locations for cells to move
into, the cells enter a quiescent state, unable to execute either migration or proliferation.
This quiescent state is implemented to replicate the biological phenomenon of contact
inhibition [53], where cells cease their movement and division when they are in close
contact with neighboring cells.

The flow chart of the algorithm is reported in Figure 1d and described below:

(1) Spatial domain discretization and initialization of cell positions.
(2) Testing for empty neighbors for every occupied element.
(3) Random number (λ) assignment to the occupied CA elements to decide the actions of cells:

a. If λ > Pd, the actual site of the cell of interest will remain occupied by the cell,
and a daughter cell will be placed in a randomly chosen empty site among
the neighbors.

b. If λ < Pm, the site of the cell of interest will become empty, and a neighboring
empty site will become occupied.

(4) Lattice updates according to the selected actions based on probabilities.
(5) Stop if the wound was healed; otherwise, proceed to next time step and return to (1).

In wound repair, the direction of migration is affected by the presence of the damage
due to the lack of contact inhibition [54] and chemical stimuli (i.e., nutrients, catabolites,
etc.) [13]. To reproduce a chemical stimulus from the opposite edge of the wound, pushing
the cells to move in the direction of the wound [13], the number of sites available in
the opposite direction was reduced (from 9 to 7). However, the approach developed in
our CA can be flexibly used to also describe different possible external stimuli, such as
chemotaxis; for example, the presence of an external chemoattractant effect was analyzed
in the Supplementary Materials. In our work, an isotropic condition was assumed.

2.3. Parameter Sensitivity Analysis

To understand the effect of the biological and physical characteristics of the system on
wound healing, parameter sensitivity analysis was performed. The model parameters of
interest (Tm, Td, ρ, δ, b0) were evaluated for their effect on the kinetics of wound closure
(v, α, D, and characteristic times of the assay). The characteristic times of wound closure,
typically measured experimentally in the literature, were Thalf and Tclosure, defined as the
times required for a closure of 50% and 100% of the original wound area A0, respectively.

In this analysis, the model parameters were subjected to perturbations within prede-
fined ranges around their baseline values, and the resulting impact of these perturbations
on the output variables was quantified. The specific range of physiologic variation for
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each of the parameters mentioned above, obtained from the literature, along with their
definitions, is reported in Table 1.

Table 1. List of parameters relevant to the model. ρ, δ, Tm, Td, and b0 were input parameters, while
the model allows calculating D, v, and α, which have been used to compare in silico and in vitro
data. The range of variation in ρ was chosen to define the degree of coverage of the domain. The
minimum corresponds to a single cell in each sub-domain (L or R), and the maximum value was
associated with full coverage of the L and R sub-domains. The values of other parameters depend on
the specificity of the cell line. Ranges of variation have been defined from information available in
the literature [5,31,49–52] to validate the model. The details of the calculations performed to estimate
parameters were reported in the Supplementary Materials.

Parameter Description Range of Variation Dimension

Tm Characteristic time of migration 0.005; 0.5 h
Td Characteristic time of proliferation 12; 40 h
ρ Density: number of cells in unit area 10−6; 10−3 cells/µm2

δ Characteristic dimension of the cell 15; 25 µm
b0 Initial length of the wound 370; 900 µm

D Motility: the time necessary to travel
a length equal to delta 103; 104 µm2/h

v Velocity of the fronts of cells 5; 60 µm/h
α Velocity of wound area variation 0.02; 0.13 1/h

Global Sensitivity Analysis

A global sensitivity analysis (GSA) was conducted in order to explore the influence
of variations in input parameters on model outputs [55] and to identify the parameters
that have a significant impact on wound closure analysis. The GSA workflow proposed
by Wang et al. [55] was used and structured in three phases: pre-analysis (for preparing
the basic input sampling dataset), analysis (for performing sensitivity analysis and quanti-
fying the distribution of the sensitivity index), and post-analysis (for producing the final
summarized parameter ranking).

To generate random sets of the parameter value, model inputs were defined according
to the Latin Hypercube Sampling (LHS) method [56], for which model simulations were
performed to calculate model outputs. Specifically, the LHS method was implemented to
generate 500 random sets of input parameters, and model simulations were performed to
obtain the corresponding 500 sets of model outputs. To evaluate the relative effect of model
parameters, a linear relation was assumed between the input parameters and output vari-
ables. The regression coefficients, βI, were estimated using multiple linear regression anal-
ysis (MLRA) according to the expression equation Output = β0 + βρρ+ βTmTm + βTd

Td.
To obtain a distribution of regression coefficients, the procedure was repeated 10 times
with 10 independent sets of 500 simulations (p-value < 0.05; data were reported in the
Supplementary Materials).

Since the dimensions of both the wound length, b0, and the cells, d, were only ge-
ometric parameters for our simulation, they were excluded from this analysis and fixed
to the mean value (575 µm and 20 µm, respectively) obtained from the values reported
in Table 1. The distribution of regression coefficients βI is reported for α, Tclosure, and Thalf
in Figure 2a–c, respectively, related to each input parameter. Through the application of
statistical analysis, with one-way ANOVA and Tukey’s test (confident interval 95%), param-
eters were ranked according to their significance to the output (from 1 (high significance)
up to 3 (low significance)), as shown in Figure 2d.

This work revealed that Tm was ranked as the most significant parameter for all the
outputs, implying a stronger dependency of the outputs on it. No significant differences
between the effects of ρ and Td on the rate of closure a were revealed. On the contrary,
ρ was more significant (rank 2) to Thalf than Td (rank 3), suggesting the effect of the density
being higher in the earlier steps of the process, when the domain was poorly occupied



Cancers 2023, 15, 5284 7 of 14

by cells, while at later stages, the influence of density was limited. An opposite trend
was observed for the effect of Td, which was more significant at later stages (Tclosure) with
respect to the initial steps (Thalf) of the process.
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Thus, going through the variation in the biological values of Tm and Td (Table 1),
assuming a cell type has the lowest doubling time and the highest migration time, the
probability to proliferate each time step was only 4% (see Supplementary Materials). The
idea that, in the case of concurring mechanisms, the fastest one (governed by the shortest
characteristic time) was also controlling the rate of the entire process was a clear concept
from the analysis of the process based on the transport phenomena approach [57]. An
electric analogy simplification would consider the two concurring mechanisms as two
resistances acting in parallel and driven by the same driving force, which in this case was
the difference between cell density at confluence (or at least in the bulk of the tissue, far
from the wound) and the density in the wound, which in this case was 0. A wider analysis
of the role of transport phenomena in the process was reported in a previous paper [5].

3. Results

In this section, we present the results of the numerical model simulations, which aimed
to study the evolution of wound healing.

3.1. Baseline Model Behavior and Model Calibration

A direct comparison between in silico (a) and in vitro (b) experiments (along the
columns) at two different times (0 and 9 h, along the rows) was reported in Figure 3. In
detail, a representative phase-contrast microscopy image showing the HT-1080 wound
closure process was reported and compared to a snapshot of the CA experiments. In both
cases, the first time step (t = 0 h) showed a cell-free central domain populated at later times
by cells migrating and proliferating up to wound closure (t~9 h). To quantify the agreement,
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the wound evolution of the in vitro (circle symbols) and in silico (solid line) experiments
was compared in terms of A/A0, as reported in Figure 3c. A strong agreement in terms of
α was clearly observed.

Table 2. Characteristic parameters of cell lines used for validation of CA. Ids 1–20 were derived
from previous works by some of the co-authors of this paper or were taken from the literature.
Id 21 presents new data from a new experiment reported here for the first time. Details about
parameter estimates (*) derived from raw data available in the original papers were reported in the
Supplementary Materials. N/A= Not available; the values of some parameters were not reported
due to a lack of specific information in the original papers.

Cell line Id ρ [#cells/µm2]
α

[1/h]
b0

[µm]
Td
[h]

Tm
[h] References

HT-1080

1 2.7 × 10−3 0.012 468 * 24 0.063

[5]

2 2.9 × 10−3 0.128 371 * 24 0.075
3 1.6 × 10−3 0.078 532 * 24 0.107
4 2.1 × 10−3 0.078 638 * 24 0.075
5 1.5 × 10−3 0.069 548 * 24 0.129
6 1.2 × 10−3 0.069 687 * 24 0.082
7 N/A 0.110 288 24 0.110 [58]

MDA-MB-231

8 1.0 × 10−3 0.023 800 38 0.338
[31,51]9 1.2 × 10−3 0.042 930 38 0.075

10 2.3 × 10−3 0.044 800 38 0.095

11 N/A 0.040 288 38 0.476 [58]

MDA-MB468 12 1.2 × 10−3 0.031 800 47 0.154 [51]

HaCaT

13 1.2 × 10−3 0.043 900 19 0.156
[49,50]14 1.7 × 10−3 0.132 900 19 0.017

15 2.5 × 10−2 * 0.029 N/A 19 0.078 [21]

Saos-2: HTB 85 16 N/A 0.010 800 37 5.851 [59,60]

Caco-2 17 1.2 × 10−3 * 0.014 882 * 80 0.385 [61]

BEAS 18 N/A 0.054 500 26 0.188
[18]

MCF-7
19 N/A 0.031 500 38 0.741

20 N/A 0.040 287 38 0.54 [58]

NIH/3T3 21 1.3 × 10−4 0.062 933 20 0.002

As shown in Figure 4, to assess the generality of our model, quantitative comparisons
between the in vitro and in silico experiments were repeated for four different cell lines
(HT-1080 human fibrosarcoma cells, MDA-MB-231 and MDA-MB-468 breast cancer cell
lines, and HaCaT human keratinocyte cell line) at different cell densities. For brevity, only
four conditions were reported; all input parameter values are reported in Table 2.

To confirm the goodness of the agreement, Pearson correlation coefficients were calcu-
lated (average value ~0.98), proving the reliability of our CA (see Supplementary Materials).
As a result, our model demonstrates the ability to predict the dynamic evolution of living
tissues. Consequently, it can be utilized to investigate processes related to cell migration
and proliferation, including cancer invasion. This model represents a promising and potent
tool for identifying strategies to treat cancers more effectively.

3.2. Model Predictions

The CA model presented here has the capability to accurately predict migration rates
and can serve as a valuable tool for investigating the dynamic evolution of complex biologi-
cal systems, effectively creating a Digital Twin of the process under examination. In this sec-
tion, the model was leveraged to predict a wide range of potential experimental conditions.
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In detail, as shown in Figure 5, α was plotted as a function of the non-dimensional
parameter φ = Tm/Td. The sets of simulations run varying values of input parameters
according to the range reported in Figure 5a, and differing Thiele module Φ spanned a
range [10−4–0.5], defined by physiological limits. As regards the minimum physiological
value of Td, it is related to the time necessary for the duplication of DNA (S1 phase),
which in eukaryotic cells takes typically about 10–12 h [62]. On the other hand, Tm can
typically vary from a few seconds to a few hours in the case of poorly motile cells, such as
osteoblasts [59].
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Figure 3. Comparison of results obtained by our CA with experimental measurements. On the
left (a), a snapshot of in silico experiments was reported and compared to in vitro images acquired
with Time-lapse microscopy during WH assay of HT-1080 at two different times (0 and 9 h) (b).
Simulations were run using input parameters estimated from the experimental setup (Id 2 in Table 2).
The wound area variation A normalized to the initial wound area A0 was monitored in time (c),
providing a direct comparison between experimental data [5] (green circle symbols) and CA outputs
(purple solid line).
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Figure 4. Wound area A, normalized with respect to the initial wound area A0, was reported as a
function of time t. The evolution of the wound area in silico (green and red solid lines) was compared
with the wound area variation in vitro (green and orange circles symbols) computed for all cell lines
here investigated. For brevity, only four cell lines (HT1080 [5], MDA-MB231 [31,51], HaCaT [51], and
MDA-MB468 [49,50]) and 7 densities were reported.
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Figure 5. Wound area reduction rate, α, as a function of the ratio between the characteristic time of
migration and proliferation, Φ. A total of 2000 in silico experiments with input parameters randomly
chosen in the ranges reported in (a) provided outputs (black dots in (b)) that show power-law
dependency of α with respect to Φ. The fitting curve was reported as a solid line. The inset reports
the same data on a log scale. In (c), the trends estimated by our analysis (solid line) were compared
with experimental data (our data: green circles; literature data: orange circles; new data: pink circles),
reported in Table 2.

As shown in Figure 5b, values of α estimated by CA were reported with respect to
Φ for a set of 2000 simulations (convergence in the number of simulations was reported in
the Supplementary Materials). The data trend can be phenomenologically described by
a power law (solid line) whose parameters a and b were obtained by data fitting (details
reported in the Supplementary Materials) and estimated to be 2·10−3 and 0.66, respectively:

α = a (Φ)−b (1)

As shown, Equation (1) is in good agreement with the experimental data, qualitatively
predicting how proliferation and migration phenomena affect the closure velocity. Indeed,
Φ, being defined as Tm/Td, compares the contributions of migration and proliferation
processes to wound healing. To elaborate further, a low Φ value, along with a decreased
Tm, indicates that cells require less time to migrate from one site to another. This signifies
that these cells display high migratory behavior and, consequently, a greater potential
for invasiveness.

It is worth noting a minor discrepancy observed in the high Φ range (Φ > 0.1).
Specifically, the predictions from the fitting curve were consistently lower (approximately
0.25 times) compared to the simulated data points. It is important to highlight that most of
the physiological conditions documented in the literature (as also seen in Table 1) predomi-
nantly corresponded to lower values of Φ, with only rare exceptions involving extremely
poorly motile cells (characterized by extremely high Tm, such as osteoblasts) [59,60]. Con-
sequently, this high Φ region might be of marginal interest in practical applications.

To compare the prediction curve with the in vitro data, in Figure 5c, simulated and
experimental values of α were reported as a function of Φ. In detail, the green circles are
derived from data previously published [5,31,49–52] by our group, while the orange circles
are based on other works from the literature [18,58,59,61,63,64]. The pink circles are related
to a new unpublished experimental campaign, here presented for the first time.

Our prediction curve was a simple and reliable tool to quantify the migration rate of
cells. The main result of this analysis, obtained from an application of our CA as a DT of
the WH assay, was that, in almost any physiologically relevant condition, the WH process
was driven by cell motility, while cell proliferation played a role only in rare conditions
that were possible to predict by a preliminary estimation of the value of parameter Φ. For
any condition corresponding to a Φ lower than a critical value of 10−2, cell proliferation
can be neglected. The knowledge of this information, here clearly quantified for the first
time, to the best of our knowledge, can simplify most of the experimental protocols.
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4. Conclusions

Metastasis, which is the leading cause of death among cancer patients, is primarily
attributed to the migration of tumor cells—a process that remains not fully understood.
In silico models offer cost-effective and time-efficient tools for investigating the dynamic
evolution of cell tissues in complex phenomena like metastasis. These models take into
account the interplay of various biological processes, such as cell proliferation, cell motility,
and cell–cell interactions.

In this work, a CA model developed in MATLAB was proposed to study cell migration
by simulating the dynamical evolution of wound healing in vitro, and it was used as a
Digital Twin of WH phenomena. The CA model was calibrated and validated by direct
comparison with experimental data available in the literature, proving to be in excellent
agreement with the experiments.

The main output of the application of this model to the WH was a simple power-
law function able to predict wound closure rate, which was also in excellent agreement
with previous experimental measurements. The proposed power-law function allowed
for the identification of a critical value of a simple non-dimensional number, calculated
from physiological parameters, and was able to discriminate if the wound closure process
could be considered to be driven only by cell motility, neglecting the contribution of cell
proliferation. This information, easy to estimate preliminarily, can allow a simplification of
experimental protocols with reduced costs and times.

The methodology here proposed, based on the CA here presented, can be extended to
the investigation of other biological processes. The model was easily scalable to include
other phenomena, such as contact guidance or the interaction of cells with the extracellular
matrix (with a different stiffness) and the presence of chemical and mechanical stimuli. The
CA model is proposed and validated in a 2D application. It is worth mentioning that 2D
cell culture models on solid substrates may not always adequately represent the complexity
of in vivo conditions, given their limitations in replicating essential factors found in vivo,
such as 3D architecture, stromal cells, and extracellular matrix [65–68]. However, a relevant
part of the experimental investigation in cancer research is still performed using 2D models,
at least in the initial stages of the research, with WH being a strongly popular and diffused
assay. For this reason, we believe our CA model can be of great value to support the
analysis and interpretation of experimental investigations. Furthermore, the proposed
methodology can be extended to 3D models like spheroids or biopsies.
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