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Simple Summary: In this paper, we look at the role of artificial intelligence (AI) advancements in
prostate cancer diagnosis and management. Specifically, we focus on magnetic resonance prostate
reconstruction, prostate cancer detection/stratification/reconstruction, positron emission tomogra-
phy/computed tomography, androgen deprivation therapy, and prostate biopsy. A total of 64 studies
were included. Our results showed that deep learning AI models in prostate cancer diagnosis show
promise but are not yet ready for clinical use due to variability in methods, labels, and evaluation
criteria. Conducting additional research while acknowledging the limitations is crucial for reinforcing
the utility and effectiveness of AI-based models in clinical settings.

Abstract: Background: The aim was to analyze the current state of deep learning (DL)-based prostate
cancer (PCa) diagnosis with a focus on magnetic resonance (MR) prostate reconstruction; PCa
detection/stratification/reconstruction; positron emission tomography/computed tomography
(PET/CT); androgen deprivation therapy (ADT); prostate biopsy; associated challenges and their
clinical implications. Methods: A search of the PubMed database was conducted based on the
inclusion and exclusion criteria for the use of DL methods within the abovementioned areas. Results:
A total of 784 articles were found, of which, 64 were included. Reconstruction of the prostate, the
detection and stratification of prostate cancer, the reconstruction of prostate cancer, and diagnosis on
PET/CT, ADT, and biopsy were analyzed in 21, 22, 6, 7, 2, and 6 studies, respectively. Among studies
describing DL use for MR-based purposes, datasets with magnetic field power of 3 T, 1.5 T, and
3/1.5 T were used in 18/19/5, 0/1/0, and 3/2/1 studies, respectively, of 6/7 studies analyzing DL
for PET/CT diagnosis which used data from a single institution. Among the radiotracers, [68Ga]Ga-
PSMA-11, [18F]DCFPyl, and [18F]PSMA-1007 were used in 5, 1, and 1 study, respectively. Only two
studies that analyzed DL in the context of DT met the inclusion criteria. Both were performed with a
single-institution dataset with only manual labeling of training data. Three studies, each analyzing
DL for prostate biopsy, were performed with single- and multi-institutional datasets. TeUS, TRUS,
and MRI were used as input modalities in two, three, and one study, respectively. Conclusion:
DL models in prostate cancer diagnosis show promise but are not yet ready for clinical use due
to variability in methods, labels, and evaluation criteria. Conducting additional research while
acknowledging all the limitations outlined is crucial for reinforcing the utility and effectiveness of
DL-based models in clinical settings.
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1. Introduction

Prostate cancer (PCa) is the second most frequent cancer in men and the fifth leading
cause of death worldwide [1]. This has prompted the rapid development of methods for
diagnosing and treating PCa. Thus, modern technology allows for the thorough exami-
nation of the pelvis using multiparametric magnetic resonance imaging (mpMRI) of the
whole body using positron emission tomography (PET/CT) to better identify damage to
regional lymph nodes and distant metastases of the prostate to determine tumor aggres-
siveness, and androgen deprivation therapy (ADT) has been used as the first treatment
method for high-risk patients [2]. However, the implementation and interpretation of the
abovementioned studies depend on the subjective opinion of a specialist, which can be
subject to deviations for various reasons. Moreover, the manual layer-by-layer segmenta-
tion of images is time-consuming and subject to the experience of specialists. This leads
to differences in opinions among specialists, unnecessary biopsies of indolent neoplasms,
and the active monitoring of patients with clinically significant forms [3]. Researchers have
developed automated methods using artificial intelligence (AI) techniques to address these
challenges. These methods can reduce the time required for MRI, PET/CT, ultrasound
(US), and digital pathology interpretation and improve the accuracy and consistency of
PCa diagnosis [4]. Moreover, such second-opinion systems allow for the better selection of
treatment methods, such as ADT. Deep learning (DL), a branch of machine learning (ML),
can automatically learn and extract hierarchical representations of data, making it adept
at handling complex and unstructured data and improving accuracy over time, unlike
traditional machine-learning models that require significant manual feature engineering.
While DL algorithms show promise in PCa diagnosis, their success naturally depends on
different variables, such as dataset type, imaging protocol variability, human participation
during training, and proper validation and testing [5].

This review aimed to analyze the current state of DL-based PCa diagnosis with
a focus on prostate reconstruction, PCa detection/stratification/reconstruction, PSMA-
PET diagnosis, and the use of DL in the context of ADT and prostate biopsy, associated
challenges, and their clinical implications.

2. Methods

In October 2023, a search was conducted in the PubMed and Google scholar databases
via Boolean operators with the use of the following terms: “Prostate”, “cancer”, “PCa”,
“MRI”, “PET/CT”, “ADT”, “biopsy”, “reconstruction”, “detection”, “stratification”, “AI”,
“deep learning”, “DL”. The inclusion criteria were the availability of a full article in English;
a publication date no more than five years from the search date; the use of DL methods for
MR-based PCa diagnosis and prostate reconstruction; PET/CT, ADT, and prostate biopsy
assistance; a description of the datasets used (including the number of institutional and
open datasets and the number of cases); a description of the segmentation of the area of
interest when training a neural network (manual, semi-autonomous, or autonomous); and
the presence of a description of validation or testing (internal or external). In addition, the
references in the selected articles were analyzed. If an article compared various algorithms,
the data on the most efficient algorithm were entered into the table.

Descriptive statistics were performed using the SPSS Statistics software (version 26.0).
The distribution of continuous data was determined using the Kolmogorov–Smirnov test.
Depending on the normalization, the mean value with standard deviation or the median
with minimum and maximum values was calculated.
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3. Results

As a result of this search, 784 articles were identified, of which, 64 were included
(Figure 1).
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Figure 1. PRISMA search strategy for selection of related and relevant research.

Prostate reconstruction was performed in 21 studies. The reconstruction of prostate
cancer has been described in six studies. The detection and stratification of prostate cancer
has been described in 22 articles. PET/CT was performed in seven studies. ADT and
prostate biopsy optimization were analyzed in two and six studies, respectively.

3.1. MR-Based Prostate Reconstruction

A summary of previous studies describing deep learning models for 3D prostate re-
construction is presented in Table 1/Figure 2. Da Silva et al. [6] proposed an automatic and
novel coarse-to-fine segmentation method for prostate 3D MRI scans. The coarse segmenta-
tion step combines local texture and spatial information using the Intrinsic Manifold Simple
Linear Iterative Clustering algorithm and a probabilistic atlas in a deep convolutional
neural network (DCNN) model jointly with the particle swarm optimization algorithm to
classify prostate and non-prostate tissues. Then, fine segmentation uses the 3D Chan–Vese
active contour model to obtain the final prostate surface. This approach led to a DSC
value of 0.85. Wang et al. presented a three-dimensional (3D) fully convolutional network
(FCN) with deep supervision and group dilated convolution [7]. According to the results,
the proposed method leads to a DSC of 0.86 and significantly prevails over UNet (0.836,
p = 0.023) and VNet (0.838, p = 0.018).
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Table 1. Summary of studies dedicated to the use of deep learning algorithms for three-dimensional prostate segmentation on MRI. Local and open datasets were
used in 13 and 14 studies. Among the latter, Promise12, ProstateX, ISBI13, ASPS13, 12CVB, BWH, QIN-Prostate, and Decathlon datasets were used in 11, 3, 2, 1, 1, 1,
1, and 1 study, respectively. Datasets with magnetic field power of 3 T, 1.5 T, and 3/1.5 T were used in 18, 0, and 3 studies, respectively. Multi-vendor datasets
were used in 16 studies. Median number of cases was 146 with minimum and maximum equal to 25 and 648. Among sequences, T2-weighted images (T2WIs),
diffusion-weighted images (DWIs) and apparent diffusion coefficient (ADC) maps were used in 21, 1, and 2 studies, respectively. The segmentation of area of interest
was performed manually in all cases (although most papers used open datasets with already annotated prostates, annotations were created manually by experts).
All studies provided internal validation. The test was performed in 8 studies, whereas an external one was performed in 3 studies.

Authors Network Power of Magnetic
Field, Tesla

Number of
Institutional

Datasets
Open Datasets Used Vendors Sequences Number

of Cases
Prostate

Segmentation Validity Test DSC

da Silva et al. [6] coarse-to-fine
segmentation DCNN 3 - PROMISE12 Multi T2WI 56 Manual Internal Internal 0.85

Wang et al. [7] 3D DSD-FCN 3 1 PROMISE12 Multi T2WI 90 Manual Internal - 0.855

Liu et al. [8] DDSP ConNet 3 - PROMISE12 Multi T2WI 80 Manual Internal - 0.8578

Nai et al. [9] HighRes3DNet 3 - ProstateX Multi T2WI, DWI,
ADC 160 Manual Internal - 0.890

Yu et al. [10] ConvNet 3 - PROMISE12 Multi T2WI 80 Manual Internal - 0.8693

Karimi et al. [11] CNN with statistical
shape model 3 1 PROMISE12 Multi T2WI 75 Manual Internal - 0.88

Ushinsky et al. [12] Hybrid 3D/2D
U-Net 3 1 - Single T2WI 299 Manual Internal - 0.898

Yan et al. [13] P-DNN 3 - PROMISE12 Multi T2WI 80 Manual Internal - 0.899

Jia et al. [14] 3D APA-Net 3/1.5 - PROMISE12, ASPS13 Multi T2WI 140 Manual Internal - 0.901

Comelli et al. [15] E-Net 3 1 - Single T2WI 85 Manual Internal - 0.9089

Bardis et al. [16] Hybrid 3D/2D
U-Net 3 1 - Multi T2WI 242 Manual Internal Internal 0.940

Sanford et al. [17] 2D-3D hybrid CNN 3/1.5 5 - Multi T2WI 648 Manual Internal External 0.915

Liu et al. [18] MS-Net 3/1.5 - ISBI13, I2CVB Multi T2WI 79 Manual Internal Internal 0.9166

Wang et al. [19] SegDGAN 3 T 1
Decathlon, ISBI13,
QIN-PROSTATE,

PROMISE12
Multi T2WI 335 Manual Internal External 0.9166

Aldoj et al. [20] Dense U-net 3 1 - Single T2WI 188 Manual Internal - 0.921

To et al. [21] 3D DM-net-8feat 3 1 PROMISE12 Multi T2WI, ADC 280 Manual Internal Internal 0.9511
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Table 1. Cont.

Authors Network Power of Magnetic
Field, Tesla

Number of
Institutional

Datasets
Open Datasets Used Vendors Sequences Number

of Cases
Prostate

Segmentation Validity Test DSC

Zhu et al. [22] BOWDA-Net 3 1 PROMISE12, BWH Multi T2WI 146 Manual Internal External 0.9254

Zhu et al. [23] double 2D U-Net 3 1 - Single T2WI 163 Manual Internal - 0.927

Meyer et al. [24] anisotropic 3D
multi-stream CNN 3 1 ProstateX Multi T2WI 156 Manual Internal Internal 0.933

Chen et al. [25] AlexNet 3 1 - Single T2WI 25 Manual Internal - 0.9768

Yan et al. [26] PSPNet 3 - PROMISE12 Multi T2WI 270 Manual Internal - 0.9865

DCNN: deep convolutional neural network; 3D: three-dimensional; 2D: two-dimensional; DSD-FCN: deeply supervised densely fully convolutional network; DDSP: Differentiable Digital
Signal Processing; CNN: convolutional neural network; P-DNN: Propagation Deep Neural Network, APA-Net: Adversarial Pyramid Anisotropic Convolutional Network; BOWDA-Net:
boundary-weighted adaptive neural network; PSPNet: Pyramid Scene Parsing Network; T2WI: T2-weighted images; ADC: apparent diffusion coefficient; DWI: diffusion-weighted
images; DSC: Dice similarity coefficient.
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Liu et al. proposed a novel Densely Dilated Spatial Pooling Convolutional Network
(DDSP ConNet) in an encoder–decoder structure [8]. It employs a dense structure to com-
bine dilated convolution and global pooling, thus supplying coarse segmentation results
from the encoder and decoder subnets and preserving more contextual information. Nai
et al. evaluated the effectiveness of monomodal DenseVNet, multimodal ScaleNet, and
mono- and multimodal HighRes3DNet [9], and the DSC in whole-prostate reconstruction
for these networks was 0.875, 0.848, 0.858, and 0.890, respectively. Multimodal High-
Res3DNet and ScaleNet had a higher DSC, with a statistically significant difference only in
the zonal reconstruction of the peripheral zone and the central part of the prostate com-
pared to monomodal DenseVNet, which indicates an increase in the accuracy of regional
segmentation when using multimodal networks. However, the difference was statistically
insignificant in terms of isolating the entire prostate. Yu et al. [10] proposed a novel volu-
metric convolutional neural network (ConvNet) with mixed residual connections to handle
variations in prostate shape and indistinct prostate boundaries. Karimi et al. described the
architecture of a convolutional neural network and a training strategy that aimed to exploit
the limited variability in the prostate shape while simultaneously solving the problem of
insufficient data for training [11]. The key to achieving these goals is a statistical shape
model. The output of the neural network is limited by the parameters allowed by the shape
model. Ushinsky et al. described the use of a 3D/2D hybrid neural network, UNet, which
achieved a DSC value of 0.898. A hybrid 3D/2D U-network was created by modifying the
down-sampling portion of the U-network to perform convolution image processing, ReLU
activation, and normalization in 3D [12]. These 3D images are then mapped using a projec-
tion operation to match the 2D images in the U-Net upsampling step. Yan et al. described
the application of a neural network with a backpropagation algorithm consisting of three
components, convolution and pooling layers (CPlayers), a propagation layer (P-layer), and
an F-measure loss layer (L-layer), and compared this approach with FCN-16s and FCN-32s,
DS-Net, and VolConv [13]. The DSC values for the described and compared networks were
0.9055, 0.8658, 0.6983, 0.6693, and 0.904, respectively. Jia et al. described a 3D Adversar-
ial Pyramid Anisotropic Convolutional Network (3D APA-Net) consisting of a generator
(i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer
convolutional neural network) that distinguishes between the segmentation result and its
corresponding ground truth. The 3D PA-Net has an encoder–decoder architecture that con-
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sists of a 3D ResNet encoder, anisotropic convolutional decoder, and multilayer pyramidal
convolutional connections [14]. The resulting DSC values were compared to those of VNet,
3D GCN, and 3D UNet and were 0.901, 0.796, 0.817, and 0.818, respectively. Comelli et al.
compared the accuracy of prostate reconstruction using U-Net, E-Net, and ERFNet [15].
According to the results, the first two networks provided a DSC of over 0.9, whereas the
best accuracy was achieved when using ENet (0.9089). Bardis et al. described the sequential
use of three convolutional neural networks, each of which was implemented using an
individual hybrid 3D/2D U-Net architecture [16]. The networks were named U-NetA,
U-NetB, and U-NetC, respectively. U-NetA is responsible for localizing the prostate. U-
NetB is responsible for prostate segmentation, whereas zonal segmentation is implemented
using U-NetC. The DSC values for the entire prostate, transitional zone, and peripheral
zone are 0.940, 0.910, and 0.774, respectively. Sanford et al. focused on the problem of
heterogeneity in MR images taken from different sources and described the use of 2D–3D
anisotropic hybrid networks and deep multilevel transformation as a data-augmentation
method [17]. This approach provided segmentation accuracy for the entire prostate and
transition zone, with values of 0.915 and 0.897, respectively. Liu et al. described the use
of a neural network using batch normalization and a loss function to level the differences
between MR images of the prostate obtained using different MR scanners [18]. Thus, the
authors obtained a DSC value of 0.9169. Wang et al. described a conditional generative
adversarial network (SegDGAN). The generator G is a segmentation network in which end-
to-end learning is performed. While G uses a U-network encoder–decoder structure [19],
D is a multidimensional feature extraction network with six layers. Each layer contains a
convolution layer, BN layer, and rectified linear unit activation function layer. The highest
DSC value was 0.9166, which was significantly higher than the segmentation accuracy
using U-Net, FCN, and SegAN. Aldoj et al. developed a Dense U-net algorithm based
on the previously tested DenseNet and U-net networks. Compared to U-net, the Dense
U-net achieved an average Dice score in whole-prostate segmentation of 0.921 vs. 0.907,
for the central part (central + transition zone), of 0.895 vs. 0.891, and for the peripheral
zone, of 0.781 vs. 0.75 [20]. To et al. described a 3D deep dense convolutional neural
network and compared its accuracy in prostate segmentation with 3D U-Net, 2D DS-net,
and 3D MRC-net. The DSC values were 0.9511, 0.9380, 0.9247, and 0.9237, respectively [21].
Zhu et al. described a boundary-weighted adaptive neural network (BOWDA-Net) with a
DSC value of 0.9254 for automated prostate segmentation [22]. Zhu et al. described the
use of two cascade U-Nets: the first determined the contour of the entire prostate and the
second was responsible for the segmentation of the peripheral zone. The DSC values were
0.927 and 0.793, respectively, which were significantly higher than those obtained using
a single UNet network [23]. Meyer et al. used an anisotropic 3D multi-stream CNN with
an encoder–decoder architecture with four levels of resolution, similar to the 3D U-Net.
Reconstruction was performed using multiplanar T2 images and compared to the monopla-
nar approach. A statistically significant increase in DSC was observed at all prostate levels,
especially at the base (0.906 vs. 0.898) and apex (0.901 vs. 0.888). The total DSC level for
the entire prostate was 0.933 [24]. Chen et al. described an AlexNet network using batch
normalization and global maximum pooling algorithms, which achieved a DSC value of
0.921 [25]. Yan et al. described the use of the Pyramid Scene Parsing Network (PSPNet)
and compared its accuracy with that of FCN and Unet [26]. The DSC values for PSPNet,
FCN, and U-net were 0.985, 0.8924, and 0.9107, respectively.

3.2. MR-Based PCa Detection and Stratification

Studies on PCa detection and stratification via DL algorithms are listed in Table 2.
Ishioka et al. used a CNN architecture that combined U-net with ResNet50. U-net is respon-
sible for distinguishing whole and local pelvic structures and is capable of differentiating
cancerous regions from other structures [27]. ResNet reformulates the layers as learning
residual functions with reference to the layer inputs, instead of learning unreferenced func-
tions. The authors reported AUC values of 0.645 and 0.636 for the two validation datasets.
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Zabihollahy et al. described a model made up of three U-Nets (ADC-Net1, ADC-Net2, and
ADC-Net3) with different capacities and weights to effectively learn the characteristics of
PCa in the PZ from ADC maps calculated from DWI with diffusion factors of 0, 500, and
1000 s/mm2, respectively. The resulting AUC, sensitivity, and specificity for the combined
network were 0.779, 85.76%, and 76.44% [28]. Mehrtash et al. implemented a 3D-CNN with
three inputs: ADC, DWI at the maximum value of the diffusion factor, and Ktrans. The
performance of different combinations of mpMRI inputs to the CNN was assessed, and
the best result was achieved using DWI and DCE-MRI modalities with an AUC equal to
0.80 [29]. Saha et al. described an architecture consisting of two parallel CNNs (M1 and
M2). M1 was used to generate the preliminary voxel-level detection of csPCa in prostate
bpMRI scans, whereas the goal of the M2 classification network was to improve the overall
model specificity via the independent, binary classification of each scan and its constituent
segments. According to the results, the described architecture, when using both networks,
reached an average of 0.885 AUC for PCa identification, which was significantly higher
than when using networks such as Attention U-Net, nnU-Net, UNet++, and U-SEResNet
(0.861, 0.872, 0.850, 0.856, and 0.500, respectively) [30]. Chen et al. described transfer deep
learning using InceptionV3 and VGG-16 networks for PCa detection using T2, DWI, and
DCE images. The transfer learning method involves adapting a network designed for a
related task. According to the authors’ results, the InceptionV3 model achieved an AUC of
0.81 and VGG-16 reached 0.83 [31]. Sobecki et al. proposed a model that was built upon the
VGG-16 core network to a 3D model by introducing 3D convolutional layers instead of 2D
layers. T2 images in the sagittal, coronal, and axial planes, as well as DWI, ADC, and DCE
images, were independently processed in separate 3D layers. The optimized model with
knowledge encoding on training achieved several better classification results than the tra-
ditional architecture (AUC of 0.84 vs. AUC of 0.82) [32]. Sanyal et al. described a two-stage
convolutional neural network model of two U-Net networks. The first is responsible for
the segmentation of the prostate gland, followed by the detection of clinically significant
prostate cancer. The described architecture achieved an AUC of 0.86 [33]. Bhattacharya
et al. proposed CorrSigNet, an automated two-step model that localizes prostate cancer
on MRI by capturing the pathological features of the cancer [34]. First, the model learns
the MRI signatures of cancer that are correlated with the corresponding histopathological
features using Common Representation Learning. Second, the model uses the learned
correlated MRI features to train a convolutional neural network to localize prostate cancer.
The final AUC was 0.86. Yu et al. described Res-UNet. The detection network had a UNet
architecture with 2D residual blocks. Res-UNet was designed to have five down-sampling
and five up-sampling residual blocks [35]. Yoo et al. proposed a modified ResNet. Five
networks were used to analyze the ADC images with the appropriate diffusion factors
(0, 100, 400, 1000, and 1600 s/mm2). To improve the performance of the architecture, the
authors implemented a fully preactivated residual network. In the original ResNet, batch
normalization and ReLU activation layers were followed after the convolution layer, but in
the pre-activation ResNet, batch normalization and ReLU activation layers came before the
convolution layers [36]. Zhong et al. used the ResNet neural network with transfer learning
to distinguish between clinically insignificant and significant PCa foci and compared its
effectiveness with a standard convolutional neural network and PI-RADS v2 conclusion.
According to the results, the AUC for distinguishing indolent from clinically significant
lesions using the transfer learning model, without it, and the PI-RADS v2 scores were 0.726,
0.687, and 0.711, respectively; however, the difference between transfer learning and PI-
RADS v2 was not statistically significant [37]. Khosravi et al. used Google Inception-V128
(GoogLeNet) architecture. The authors pursued two goals: to differentiate tumors from
healthy tissues by grouping ISUP groups (IG) 3, 4, and 5, and to identify only clinically
significant lesions (by grouping IG 1 and 2 and 3, 4, and 5 into different groups). The
proposed algorithm was able to identify PCa and, in particular, isolate clinically significant
lesions with an AUC, sensitivity, and specificity of 0.89, 81.5%, and 82% and 0.78, 71.3%,
and 68.9%, respectively [38]. Arif et al. described the experience of using deep learning
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on T2, DWI (b-factor of 800 s/mm2), and ADC counterparts in the detection of clinically
significant prostate cancer and in the confirmation of low-risk cancer (ISUP grade ≤ 1)
in patients under active surveillance. Two MRI sequences (T2w and DWI) and an ADC
map were used as separate input channels for the model. AUC, sensitivity, and specificity
ranged from 0.65 to 0.89, 82 to 92%, and 43 to 76%, respectively [39]. Wang et al. described
the use of a neural network consisting of pooled subnets: (1) a tissue deformation network
(TDN) for automated prostate detection and multimodal registration and (2) a dual-path
convolutional neural network (CNN) for clinically significant (CS) PCa detection. During
the training phase, the two networks mutually influence each other and effectively guide
the registration and extraction of the representative features. According to the results of
the authors, the combination of T2 and ADC images is justified and allows an AUC of
0.8978 [40]. Abdelmaksoud et al. assessed the diagnostic accuracy of AlexNet and VGGNet
networks using ADC calculated from DWIs with nine diffusion factors (100, 200, 300, 400,
500, 600, 700, 800, and 900 s/mm2). The mean sensitivity and specificity of AlexNet were
87.5 ± 2.3% and 90.9 ± 1.9%, respectively. These results improved when using a deeper
CNN model (VGGNet), reaching values of 91.7 ± 1.7% and 90.1 ± 2.8%, respectively [41].
Aldoj et al. tested a 3D convolutional neural network with separate input layers for the T2,
DWI, ADC, and DCE sequences. The AUC value reached 0.91 using DWI, ADC, and DCE,
whereas the use of T2 did not lead to any improvement [42]. Song et al. modified VGGNet
and developed a deep convolutional neural network (DCNN) architecture. Training was
performed using T2, DWI, and ADC images from 195 patients. The AUC for distinguishing
between tumor and healthy tissues was 0.944, with a sensitivity of 87.0% and a specificity of
90.6%. Decision curve analysis revealed that the joint model of PI-RADS v2 and DCNN pro-
vided additional net benefits compared with the DCNN model and PI-RADS v2 alone [43].
Pellicer-Valero et al. tested a 3D Retina U-Net for prostate tumor detection and stratification
by combining a single-stage RetinaNet and U-Net. The network achieved an AUC, sensi-
tivity, and specificity of 0.96, 100%, and 79%, respectively [44]. Xu et al. presented a deep
learning framework using ResNets to identify suspicious lesions on prostate mp-MRIs. The
residual network achieved an AUC of 97 for lesion detection, with an average Jaccard score
of 71%, which compared the agreement between network and radiologist segmentation [45].
Cao et al. described the use of FocalNet, an end-to-end multiclass CNN that simultaneously
determines the lesion and its grade of malignancy according to ISUP grading by accepting
T2 and ADC images into two input channels and predicting six classes of labels at the
pixel level: no lesion, ISUP 1, 2, 3, 4, and 5. To detect only clinically significant lesions,
an area under the characteristic curve of 0.81 was achieved [46]. Hou et al. described
ResNeXt, which is a 2D convolutional neural network with a convolutional block attention
module (CBAM) for analyzing mpMRT images by combining T2, DWIs with a diffusion
factor of 1500 s/mm2, and ADC. The model using a single-slice image yielded the highest
areas under the receiver operating characteristic curve (AUC) of 0.857 (95% confidence
interval [CI], 0.827–0.884), 0.807 (95% CI, 0.735–0.867), and 0.728 (95% CI, 0.631–0.811) in
the training, validation, and test data, respectively. The performance of the two experts
(AUC, 0.632–0.741 vs. 0.715–0.857) was lower (paired comparison, all p values < 0.05) than
that of AI assessment [47]. Zong et al. utilized a vanilla CNN of the VGG style that consists
of four convolutional layers, each followed by batch normalization and ReLU nonlinear
layers, and two max pooling layers after every two convolutional blocks. The maximum
values of AUC, sensitivity, and specificity were 0.91, 100%, and 83%, respectively, with the
combination of T2, DWI, and ADC sequences [48].
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Table 2. Summary of studies dedicated to the use of deep learning in PCa detection and stratification on MRI. Local and open datasets were used in 16 and 11 studies.
Among the latter, ProstateX is used in all studies, whereas Prostate-MRI, Prostate-Diagnosis, and TCGA-PRAD datasets were used in one study. Datasets with
magnetic field power of 3 T, 1.5 T, and 3/1.5 T were used in 19, 1, and 2 studies, respectively. Multi-vendor datasets were used in 18 studies. The median number of
cases was 344 with a minimum–maximum range of 37–2170 cases. Among sequences, T2WI, DWI, ADC, and DCE were used in 17, 13, 19, and 5 studies, respectively.
In the datasets used, PCa was localized in PZ, TZ, AS, and SV in 13, 11, 8, and 8 studies, respectively. Notably, AS and SV localizations were provided only with the
use of the ProstateX open dataset. As a reference, biopsy and whole-mount histopathology were used in 16 and 6 studies, respectively. Segmentation of area of
interest was performed manually or semi-autonomously in 20 and 2 studies. In all studies, validation was performed with an internal dataset. Testing was carried
out in 13 papers, whereas external data were used in 4 studies.

Authors Network
Power of
Magnetic

Field, Tesla

Number of
Institutional

Datasets
Open Datasets Used

Different
Scanners
Vendors

Number
of Cases

Segmentation
Type

PCa
Location Reference Sequences Validity Test AUC

Ishioka
et al. [27] U-net + ResNet50 1.5 1 - Multi 335 Manual - Biopsy T2WI Internal - 0.645

Zabihollahy
et al. [28]

Ensemble
U-Net-based model 3 1 - Single 226 Manual PZ Whole-mount

histopathology ADC Internal - 0.779

Mehrtash
et al. [29] 9-layer 3D CNN 3 - ProstateX Multi 344 Manual PZ, TZ,

AFMS, SV Biopsy T2WI, DWI,
ADC, DCE Internal Internal 0.80

Saha
et al. [30]

Two parallel 3D
CNNs 3 2 - Multi 2137 Manual PZ, TZ Biopsy T2WI, DWI,

ADC Internal External 0.885

Chen
et al. [31] VGG-16 3 - ProstateX Multi 344 Manual PZ, TZ,

AS, SV Biopsy T2WI, DWI,
DCE Internal Internal 0.83

Sobecki
et al. [32] 3D VGG-16 3 - ProstateX Multi 344 Manual PZ, TZ,

AS, SV Biopsy T2, DWI,
ADC, DCE Internal Internal 0.84

Sanyal
et al. [33] U-Net 3 1 - Multi 77 Manual PZ Biopsy DWI, ADC Internal - 0.86

Bhattacharya
et al. [34] CorrSigNet 3 1 - Multi 95 Manual - Whole-mount

histopathology T2WI, ADC Internal Internal 0.86

Yu
et al. [35] Res-U-Net 3 7 ProstateX Multi 2170 Semi-

automated - Biopsy T2WI, DWI,
ADC Internal External 0.867

Yoo
et al. [36] ResNet 3 1 - Single 427 Semi-

automated - Biopsy ADC Internal Internal 0.87

Zhong
et al. [37] ResNet 3 1 - Multi 140 Manual PZ, TZ Whole-mount

histopathology T2WI, ADC Internal Internal 0.876

Khosravi
et al. [38] GoogLeNet 3/1.5 1

ProstateX, Prostate-MRI,
Prostate-Diagnosis,

TCGA-PRAD
Multi 400 Manual - Whole-mount

histopathology T2WI Internal Internal 0.89

Arif
et al. [39] 12-layer CNN 3 1 - Single 292 Manual PZ, TZ Biopsy T2WI, DWI,

ADC Internal - 0.89
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Table 2. Cont.

Authors Network
Power of
Magnetic

Field, Tesla

Number of
Institutional

Datasets
Open Datasets Used

Different
Scanners
Vendors

Number
of Cases

Segmentation
Type

PCa
Location Reference Sequences Validity Test AUC

Wang
et al. [40]

TDN and dual-path
CNN 3 1 ProstateX Multi 360 Manual - Biopsy T2WI, ADC Internal - 0.8978

Abdelmaksoud
et al. [41] VGGnet 3/1.5 1 - Multi 37 Manual - Biopsy ADC Internal - 0.91

Aldoj
et al. [42] 12-layer 3D CNN 3 - ProstateX Multi 200 Manual PZ, TZ,

AS, SV Biopsy DWI, ADC,
DCE Internal - 0.91

Song
et al. [43]

Modificated
VGGNet 3 - ProstateX Multi 195 Manual PZ, TZ,

AS, SV Biopsy T2WI, DWI,
ADC Internal Internal 0.944

Pellicer-
Valero

et al. [44]
3D Retina U-Net 3 1 ProstateX Multi 490 Manual PZ, TZ,

AS, SV Biopsy T2WI, DWI,
ADC, DCE Internal Internal 0.95

Xu
et al. [45] ResNet 3 - ProstateX Multi 346 Manual PZ, TZ,

AS, SV Biopsy T2WI, DWI,
ADC Internal - 0.97

Cao
et al. [46] FocalNet 3 1 - Multi 417 Manual - Whole-mount

histopathology T2WI, ADC Internal - 0.81

Hou
et al. [47] PAGNet 3 2 - Single 840 Manual - Whole-mount

histopathology
T2WI, DWI,

ADC Internal External 0.728

Zong
et al. [48] “Vanilla” VGG 3 1 ProstateX Multi 367 Manual PZ, TZ,

AS, SV Biopsy T2WI, DWI,
ADC Internal External 0.84

3D, three-dimensional; CNN, convoluted neural network; TDN, tissue deformation network; VGG, visual geometric group; PZ, peripheral zone; TZ, transition zone; AFMS, anterior
fibromuscular stroma; SV, seminal vesicles; T2WI, T2-weighted images; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; DCE, dynamic contrast enhancement;
AUC, area under the characteristic curve.
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3.3. MR-Based Prostate Cancer Reconstruction

Studies on PCa 3D reconstruction are presented in Table 3.
Gunashekar et al. used a 3D convolutional neural network for PCa segmentation

based on a U-Net network. To interpret the CNN segmentation results, heat maps were
generated using a gradient-weighted class activation map (Grad-CAM). DSC was 0.32 and
did not significantly differ from the results of manual tumor annotation by radiologists [49].
De Vente et al. used a 2D U-Net with MRI slices as the input and lesion segmentation
maps that encoded the ISUP grade, a measure of cancer aggressiveness, as the output.
The model scored a voxel-wise weighted kappa of 0.446 ± 0.082 and a Dice similarity
coefficient for segmenting clinically significant cancers of 0.370 ± 0.046, obtained using
5-fold cross-validation [50]. Lai et al. used a DCNN model called SegNet, which has an
encoder–decoder structure, to reconstruct PCa via T2, DWI, and ADC sequences as well as
to determine the most informative combination. According to the results, all sequences used
combinations that led to the best DSC of 0.5273 [51]. Lee et al. described two combinations
of the U-Net network and a convolutional GRU, UconvGRU and SUconvGRU, which allow
the modeling of both spatial and temporal patterns. DSC values of 0.2164 and 0.5323 were
obtained [52].

Chen et al. proposed a multibranch UNet (MB-UNet) for PCa reconstruction based
on T2, DWI (b-value > 1000 s/mm2) and ADC maps. The DSC of the test sample reached
a value of 0.6333. The authors emphasized the importance of the DWI sequence for
PCa segmentation [53]. Alkadi et al. described their deep learning architecture with an
encoder, a corresponding decoder of the same size, a SoftMax trainable layer, and a pixel-
classification layer. This technique was tested for the segmentation of prostate cancer using
T2 images and reached a DSC of 0.892 [54].
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Table 3. Summary of studies dedicated to the use of deep learning for PCa 3D segmentation on MRI. Local and open datasets were used in 3 and 3 studies. Among
the latter, ProstateX and 12 CVB were used in two and one study, respectively. Datasets with magnetic field power of 3 T, 1.5 T, and 3/1.5 T were used in 5, 0, and
1 study, respectively. Multi-vendor datasets were used in four studies. The median number of cases was 129, with a minimum–maximum range of 16–204 cases.
Among sequences, T2WI, DWI, and ADC were used in 6, 4, and 5 studies, respectively. In the datasets used, PCa was localized in PZ, TZ, CZ, AS, and SV in 5, 2, 1, 2,
and 2 studies, respectively. Again, AS and SV localizations were provided only with the use of the ProstateX open dataset. As a reference, biopsy and whole-mount
histopathology were used in 4 and 2 studies, respectively. Segmentation of area of interest was performed manually or semi-autonomously in five and one study. In
all studies, validation was performed with an internal dataset. Testing was carried out in 3 papers and only with internal data.

Authors Network
Power of
Magnetic

Field, Tesla

Number of
Institutional

Datasets

Open
Datasets Use

Different
Scanners
Vendors

Sequences Segmentation
Type PCa Location Reference Number

of Cases Validity Test DSC

Gunashekar et al. [49] 3D U-Net 3/1.5 1 - Multi T2, DWI,
ADC Manual - Whole-mount

histopathology 122 Internal - 0.32

de Vente et al. [50] 2D U-Net 3 - ProstateX Multi T2, ADC Semi-automated PZ, TZ, AS, SV Biopsy 172 Internal Internal 0.370

Lai et al. [51] SegNet 3 - ProstateX Multi T2, DWI,
ADC Manual PZ, TZ, AS, SV Biopsy 204 Internal Internal 0.5273

Lee et al. [52] SUconvGRU 3 1 - Single T2, DWI,
DCE Manual PZ, TZ Whole-mount

histopathology 16 Internal - 0.5323

Chen et al. [53] 2D U-Net 3 1 - Multi T2, DWI,
ADC Manual PZ, TZ Biopsy 136 Internal Internal 0.6333

Alkadi et al. [54] DCNN with
modified VGG16 3 - 12CVB Single T2 Manual PZ, TZ, CZ Biopsy 19 Internal - 0.892

3D, three-dimensional; 2D, two-dimensional; DCNN, deep convolutional neural network; VGG, visual geometric group; PZ, peripheral zone; TZ, transition zone; CZ, central
zone; SV, seminal vesicles; T2WI, T2-weighted images; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; DCE, dynamic contrast enhancement; DSC, Dice
similarity coefficient.
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3.4. Positron Emission Tomography (PET)

Studies on the use of DL with PET in patients with PCa are summarized in Table 4.
Hartenstein et al. [55] tested whether convolutional neural networks (CNNs) could

accurately predict the 68Ga-PSMA-PET/CT lymph node status using only CT images. Expe-
rienced radiologists had an AUC of 0.81, while convolutional neural networks (CNNs) had
0.95 (a status) and 0.86 (balanced location, masked). CNNs improved their effectiveness by
“learning” infiltration probabilities in different anatomical locations. Capobianco et al. [56]
used training data from two radiotracers to develop a deep-learning method for stage-
based image categorization of the PET/CT of 68Ga-PSMA-11. Training strategies were
utilized to maximize data use from more 18F-FDG PET/CT images and expert annotations.
This comprised transfer learning and combination training with tracer-type inputs to the
network. Following the PROMISE miTNM architecture, we assessed network and expert
annotations for N- and M-stage concordance. Training with 18F-FDG data and the develop-
ment set yielded an average precision of 80.4% (confidence interval: 71.1–87.8) for suspect
uptake sites compared to expert judgment. It classified anatomical locations of suspicious
findings with 77% (CI: 70.0–83.4) accuracy. In addition, 81% agreed on regional lymph
node involvement and 77% agreed on metastatic stage. Experts and the algorithm agreed
on the anatomical location of problematic uptake regions in whole-body 68Ga-PSMA-11
PET/CT. PSMA–ligand data are scarce; therefore, training samples from another radio-
tracer improves the performance. To automatically segment intraprostatic cancer lesions
on PSMA PET scans, Ghezzo et al. [57] tested a cutting-edge convolutional neural network
on a diverse cohort. Compared to hand contouring, the AI model performed relatively
well, with a median Dice score of 0.74. Kendrick et al. [58] developed and tested a com-
puterized method that uses advanced ML to identify and distinguish metastatic prostate
cancer (mPCa) lesions in whole-body [68Ga]Ga-PSMA-11 PET/CT images. The goal of
this approach was to extract patient-level prognostic indicators. The accuracy, sensitivity,
and positive predictive value (PPV) for each patient were all greater than 90%, with the
best at 97.2%. The lesion-level PPV and sensitivity were 88.2% and 73.0%, respectively.
Inter-observer variability was examined using the Dice similarity coefficient (DSC) and PPV
at the voxel level. The median DSC was 50.7% for the first observer and 32% for the second
observer, with a p-value of 0.012. The median PPV was 64.9% for the first observer and
25.7% for the second observer (p < 0.005). Kaplan–Meier analysis showed a strong correla-
tion between TLVauto and TLUauto and patient survival (both p < 0.005). Using PSMA PET
scans of patients with PCa, Leung et al. [59] developed a DL and radiomics system to cate-
gorize lesions and patients. Based on the PSMA PET scans of 267 male patients with PCa,
3794 lesions were grouped into the PSMA-RADS groups. The framework had lesion-level
and patient-level PSMA-RADS classification AUROC scores of 0.87 and 0.90 on the test set.
In the test set, the framework had lesion- and patient-level prostate cancer classification
AUROC values of 0.92 and 0.85. Trägårdh et al. [60] developed an AI-driven method to
detect and measure prostate tumors, lymph nodes, and bone metastases using [18F] PSMA-
1007 PET/CT images. AI segmentation has been compared with the hand segmentations
of numerous nuclear medicine doctors. The AI technique had 79% sensitivity for prostate
tumor/recurrence, 79% for lymph node metastasis, and 62% for bone metastasis. The
sensitivity of nuclear medicine physicians averaged 78%, 78%, and 59%, respectively. Zhao
et al. [61] used a deep neural network to automatically characterize prostate cancer (PC)
lesions. This approach evaluates the tumor burden on 68Ga-PSMA-11 PET/CT scans to
optimize the PSMA-directed radionuclide therapy. 68Ga-PSMA-11 PET/CT imaging was
performed in 193 patients with mPCa at three medical facilities. Scientists have focused
on pelvic bone and lymph node lesions for their proof-of-concept. The triple-combining
2.5D U-Net neural network automatically classified these irregularities. The recommended
method collects axial, coronal, and sagittal plane information simultaneously, mimicking
the clinician’s workflow and reducing computational and memory requirements. The
network detected bone lesions with 99% accuracy, 99% recall, and a 99% F1 score. The
network detected lymph node lesions with 94% precision, 89% recall, and a 92% F1 score.
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Table 4. Summary of studies dedicated to the use of deep learning for PET/CT diagnosis of PCa. All studies were performed with institutional datasets. Six of seven
studies used data from a single institution. Among radiotracers, [68Ga]Ga-PSMA-11, [18F]DCFPyl, and [18F]PSMA-1007 were used in 5, 1, and 1 study, respectively.
The median number of cases was 193 with a minimum–maximum range of 39–660 cases. During training, images were labeled semi-automatically or manually in
2 and 5 studies, respectively. Validity and tests are provided in all studies, whereas an external test was performed in one paper.

Authors Network Radiotracer Number of Institutional Datasets Open Datasets Use Segmentation Type Number of Cases Validity Test

Hartenstein et al. [55] CNN [68Ga]Ga-PSMA-11 1 - Semi-automated 549 Internal Internal

Capobianco et al. [56] CNN [68Ga]Ga-PSMA-11 1 - Semi-automated 173 Internal Internal

Ghezzo et al. [57] CNN [68Ga]Ga-PSMA-11 1 - Manual 39 Internal Internal

Kendrick et al. [58] 3D U-Net [68Ga]Ga-PSMA-11 1 - Manual 193 Internal Internal

Leung et al. [59] CNN [18F]DCFPyl 1 - Manual 267 Internal Internal

Trägårdh et al. [60] 3D U-Net [18F]PSMA-1007 1 - Manual 660 Internal Internal

Zhao et al. [61] 2.5D U-Net [68Ga]Ga-PSMA-11 3 - Manual 193 Internal External

3D, three-dimensional; CNN, convoluted neural network; Ga, gallium; PSMA, prostate-specific membrane antigen; F, fluorine; [18F]DCFPyl: Piflufolastat F-18.
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3.5. Androgen Deprivation Therapy (ADT)

Studies on the use of DL with ADT for patients with PCa are summarized in Table 5.
Spratt et al. [62] used digital pathology images and clinical data from the pretreatment

prostate tissue of 5727 individuals in five phase III randomized studies who received radi-
ation with or without ADT. An AI-based predictive model was created and validated to
assess ADT’s ability to prevent distant metastasis, which is the key outcome measure. After
model completion, NRG/RTOG 9408 was validated by randomizing 1594 males to either
radiation alone or radiotherapy with ADT for 4 months. The prediction model showed that
ADT significantly reduced distant metastasis in positive patients (n = 543, 34%) compared
with radiotherapy alone. With a 95% CI of [0.19–0.63], the hazard ratio (sHR) was 0.34
(p < 0.001). No significant differences were observed between the treatment groups in the
prediction model-negative subgroup of 1051 patients (66%). The subdistribution hazard
ratio (sHR) was 0.92, with a 95% confidence interval of 0.59–1.43 (p = 0.71). Mobadersany
et al. [63] developed a novel AI technique that uses clinical, digitized H&E, and radiology
bone scan (rBS) data to predict outcomes in non-metastatic castration-resistant prostate
cancer (nmCRPC) patients who received ADT. By integrating imaging data with 11 con-
ventional clinical features (such as tumor stage, ISUP grade, PSA), the authors developed
and taught a multimodal technique that uses survival convolutional neural networks
(SCNNs) and the Cox proportional-hazards model (CPH) to assess ADT outcomes for
overall survival (OS) and time to PSA progression (TTP). The trained framework was
tested for risk stratification and prediction using the hold-out set. Bootstrapping analysis
with the Wilcoxon signed-rank test determined the multimodal framework’s performance
advantage over clinical CPH. ADT for overall survival (OS) and time to progression (TTP)
in nmCRPC was reliably predicted using a multimodal approach. The multimodal ap-
proach in SPARTAN’s hold-out set improved clinical CPH prediction by 14–16% across
both outcomes. The Wilcoxon signed-rank test with a p-value < 0.0001 showed that this
improvement was significant.

Table 5. Summary of studies dedicated to the use of deep learning in the context of ADT for the PCa.
Only two studies fit inclusion criteria. Both are performed with single-institution dataset only and
with the manual labeling of training data. Validity is provided by two papers, whereas an internal
test is only provided in one study. As an input, DP is used in both; however, one study used clinical
signs and radiology bone scans in addition. Among studies is a tremendous gap in the number of
cases included: 5727 versus 154.

Authors Network Input Number of
Institutional Datasets

Open
Datasets Use

Segmentation
Type

Number
of Cases Validity Test

Spratt
et al. [62] Res-Net DP 1 - Manual 5727 Internal -

Mobadersany
et al. [63] SCNNs1 and CPH Clinics + DP + rBS 1 - Manual 154 Internal Internal

SCNNs1, survival convolutional neural networks; CPH, Cox proportional-hazards model; Res-Net: Residual
Neural Network; DP, digital pathology; rBS, radiology bone scan.

3.6. Prostate Biopsy

Studies on the use of DL to assist prostate biopsies are summarized in Table 6.
Sedghi et al. [64] used transrectal ultrasonography (TeUS) data and a deep neural

mapping (DNM) model to accurately map PCa distribution in an unsupervised manner.
The TeUS data are transformed into a topological hyperlattice with related samples closer
together. Thus, malignant prostate and noncancerous tissues are categorized by similarity.
The UroNav device, invented by Florida-based In vivo Corporation, merges MRI and
ultrasound images during guided biopsy. The ultrasound transducer was held steady for
5 s to acquire 100 TeUS frames before initiating the biopsy gun. A tissue sample was then
taken using a biopsy needle. Strong consensus cores achieved a projection AUC of >0.8.

Azizi et al. [65] demonstrated a consistent software architecture that processes TeUS
data using recurrent neural networks. A comprehensive clinical trial of 157 individuals
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and 255 biopsy cores used ultrasound data to evaluate the accuracy of cancer detection.
Additionally, 21 biopsy targets from six participants were used for testing. The authors
obtained an AUC of 0.85.

Van Sloun et al. [66] used DL and U-net architecture to separate the prostate (zone)
automatically and in real time using TRUS images from multiple scanners. The pixel accu-
racy, Jaccard index, and Hausdorff distance were used to evaluate the zonal segmentation.
The traditional automated prostate segmentation algorithm was significantly inferior to the
sophisticated DL method. It had a median accuracy of 98%, a Jaccard index of 0.93 (range:
0.80–0.96), and a Hausdorff distance of 3.0 mm. Zonal segmentation achieved pixel-wise
accuracy of 97% (95–99%) for the perimeter zone and 98% (96–99%) for the transition zone.
A supervised DL system by Orlando et al. [67] correctly delineated the prostate in 3D TRUS
images from several facilities using diverse acquisition techniques and US machine models.
An adaptable algorithm for needle-based PCa procedures is required. A 2D U-net model
was compared to 3D reconstruction and optimized 3D networks, such as 3D V-Net, Dense
V-Net, and high-resolution 3D-Net. This study examines how 2D picture predictions may
lose spatial and structural information. The proposed design had DSC, recall, precision,
VPD, MSD, and HD of 94.1%, 96.0%, 93.2%, 5.78%, 0.89 mm, and 2.89 mm, respectively.
In almost all measurements, the proposed technique outperformed the top-performing
optimized 3D network, that is, 3D V-Net with a Dice plus cross-entropy loss function. The
average prostate segmentation time was less than 0.7 s, which is suitable for surgery. To
et al. [68] introduced LensePro, which is a two-stage system. The first stage involves self-
supervised learning to derive good feature representations from unlabeled TRUS data. In
the second step, the generated features are classified using prototype-based learning, which
tolerates label noise. Based on 124 systematic prostate biopsy patients, LensePro diagnosed
prostate cancer (PCa) on ultrasound with an AUROC of 77.9%, sensitivity of 85.9%, and
specificity of 57.5%. A powerful deep learning algorithm developed by Soerensen et al. [69]
efficiently and precisely separated the prostate on MRI scans. This model was effectively
integrated into a clinical magnetic resonance-ultrasound fusion biopsy. Prospectively, the
authors integrated ProGNet architecture into fusion biopsy for 11 patients. It was also
tested against the U-Net, holistically nested edge detection, and radiology technicians.
ProGNet outperformed U-Net, a holistically nested edge detector, and radiology techni-
cians in the retrospective internal test set with a Dice similarity coefficient (DSC) of 0.92
(p < 0.0001). A prospective cohort study found that ProGNet outperformed radiology
technicians (DSC = 0.93, p < 0.0001) (DSC = 0.90). ProGNet created a clinically viable
segmentation file for 35 s for each case, compared with 10 min for radiology technicians.
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Table 6. Summary of studies dedicated to the use of deep learning in the context of prostate biopsy. Three and three studies were conducted with a single- and
multi-institutional dataset, respectively. Among the latter, the number of institutes from which data were included was 2, 3, and 29. TeUS, TRUS, and MRI were used
as input modalities in 2, 3, and 1 study, respectively. All studies used manual labeling when training networks. Four papers used biopsy as a groundtruth. The
median number of cases was 172 with a minimum–maximum range of 124–905 cases. Validity and testing were performed in 6 and 3 studies, respectively.

Authors Network Modality Number of Institutional Datasets Open Datasets Use Segmentation Type Groundtruth Number of Cases Validity Test

Sedghi et al. [64] DNM TeUS 1 - Manual Biopsy 157 Internal -

Azizi et al. [65] Res-Net TeUS 2 - Manual Biopsy 163 Internal External

Van Sloun et al. [66] U-net TRUS 3 - Manual - 181 Internal -

Orlando et al. [67] 2D U-net TRUS 1 - Manual Biopsy 206 Internal Internal

To et al. [68] DNN TRUS 1 - Manual - 124 Internal -

Soerensen et al. [69] ProGNet MRI 29 - Manual Biopsy 905 Internal External

DNM, deep neural mapping; Res-Net: Residual Neural Network; 2D, two-dimensional; DNN, deep neural network; TeUS, temporal ultrasound; TRUS, transrectal ultrasound; MRI,
magnetic resonance imaging.
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4. Discussion

AI can aid in all aspects of prostate cancer diagnosis and treatment selection (Figure 3).
Despite the anatomical and functional visualization of the prostate and whole body when
performing mpMRI and PET/CT, the problems of the need for manual prostate contouring
for counseling of the area of interest, inter-observer variability in examination, the perfor-
mance of unnecessary biopsies, and omission of the dominant and most malignant foci lead
to the incorrect stratification of patients. Moreover, when performing a biopsy, the problem
of up- and down-grading remains, which emphasizes the importance of developing vari-
ous second-opinion systems both at the stage of diagnosing PCa and when performing a
biopsy [70,71].
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One of the ways to solve these problems is the use of artificial intelligence, particularly
deep learning methods [72]. As a result of the search, we selected 64 papers describing deep
learning methods to alleviate prostate and PCa visualization in prostate reconstruction, as
well as the detection, stratification, and reconstruction of prostate cancer, which provided
detailed information regarding the data used, their processing, the development of the
neural network, and its approximation. Despite the impressive results that emphasize the
promise and relevance of such supporting systems, the final efficiency and generalization
of neural networks depends not only on the novelty of the network itself but also on
many other variables [73]. Youn et al. compared the accuracy of the Prostate AI system
(Siemens Healthcare, Tokyo, Japan), with the results of radiologists divided into subgroups
depending on their experience in mpMRI interpretation. Only the opinion of the experts
with the least experience was inferior to the assessment of Prostate AI, while the most
experienced radiologists achieved significantly greater accuracy [74].

The initial obstacle in confirming the generalizability of such DL-based models is the
data quality used for training. If the training data are limited in diversity, the resulting
model may not perform well on data from different centers or acquired using different
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protocols. This is more obvious from a texture analysis point of view. Castillo et al.
evaluated the generalizability of radiomics models for prostate cancer classification [75].
The three single-center models obtained a mean AUC of 0.75, which decreased to 0.54
when the model was applied to the external data. In a multi-center setting, the radiomics
model obtained a mean AUC of 0.75. Among the papers analyzing MR-based prostate
reconstruction and PCa diagnosis, a multi-center dataset (two or more, regardless of
its institutional or open nature) was combined in 15 studies (31%), and none of these
investigated PCa reconstructions. A single magnetic field power of 3 T and 1.5 T was
observed in 42 (86%) and 1 (2%) paper, respectively, whereas the dataset with combined
magnetic field power was used in only 6 (12%) studies. Moreover, multivendor images (the
use of a dataset with images from two or more MRI scans) were used in 38 (78%) cases. The
same problem was observed in other clinical scenarios. So, six of the seven studies on DL
implementation in PET/CT were also performed using a single-center dataset.

Similar to the data diversity, the number of cases used also influences the accuracy of
the created models. According to Hosseinzadeh et al., PI-RADS-trained DL can accurately
detect and localize ISUP > 1 lesions but can achieve expert performance using substantially
more than 2000 training cases [76]. Among the studies investigated in our review, the
minimum case numbers for prostate reconstruction, PCa detection/stratification, PCa
reconstruction, PET/CT, ADT, and biopsy were 25, 37, 16, 34, 154, and 157, respectively,
making such studies in the prototype stage and restricting their results’ arguability in favor
of DL-based systems [77].

The next drawback of the papers analyzed is the limited exploration of the potential
impact of sequence selection on the performance of DL algorithms, which is particularly
obvious among studies on MRI diagnosis. Only a few studies have attempted to estimate
the added value of different sequences, instead of using those chosen in advance. Aldoj
et al. [42] stated that the use of T2 did not lead to any improvement in PCa detection
accuracy, whereas Wang et al. [40] indicated that the combination of T2 and ADC images
was justified for this purpose. According to Mehrtash et al. [29], the best accuracy of
3D-CNN for detecting PCa was achieved with DWI at the maximum value of the diffusion
factor and Ktrans, whereas ADC use was not profitable. However, a recent meta-analysis
revealed that among all mpMRI sequences, ADC correlated significantly with the ISUP
grade [78]. Not in the focus of DL but related to AI-based methods generally, Bonekamp
et al. compared biparametric contrast-free radiomic machine learning (RML) and the mean
apparent diffusion coefficient (ADC) for the characterization of prostate lesions detected
during prospective MRI interpretation. According to the results, radiomics had comparable
but not better performance than the mean ADC assessment [79].

The nature of prostate cancer determines the complexity of using DL for character-
ization on MRI images. In all the studies analyzed, only a dominant focus was found,
which did not allow the determination of the true degree of PCa spread [80]. In addi-
tion, although in all studies within PCa detection/stratification and PCa reconstruction
groups, the main task was to reveal a tumor within the entire prostate, not all studies
either declared PCa distribution in different prostatic zones within dataset cases or used
cases with all possible scenarios of PCa location. Among the 28 papers, only 18 (64%)
indicated PCa locations in the dataset. Cases with PCa only in the PZ (peripheral zone),
PZ + TZ (Tz—transitional zone), PZ + TZ + CZ (CZ—central zone), PZ + TZ + AS + SV
(AS—anterior stroma; ZV—seminal vesicle) zones were used in 2, 5, 1, and 10 studies,
respectively. Unfortunately, almost half of these studies did not provide this information.
However, these mostly used open datasets (particularly ProstateX, combining cases with
PCa from PZ + TZ + AS + SV) instead of including institutional ones to make the final
dataset more heterogeneous.

The segmentation approach during training is also crucial and is one of the steps most
susceptible to bias. According to Bleker et al., a deep learning mask (DLM) auto-fixed
VOI placement is more accurate in detecting CS PCa and can result in a 97% reduction
in time [81]. Manual segmentation is a labor-intensive and time-consuming process that
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makes scaling up to large datasets difficult. Moreover, there can be significant differences in
segmentation between different human observers, which can result in inconsistencies and
errors in the dataset. Among the studies analyzed, manual segmentation was indicated in
59 (92%). Even though a huge portion was performed with open datasets accomplished
with structure masks, all of them were annotated manually by experts, leading to the
same biases.

The biases during network training were also significantly dependent on the reference
used. Although prostate segmentation can be sufficiently performed without histological
confirmation, reliable PCa contouring and stratification should be performed with reference,
minimizing subjectivity. According to Alqahtani et al., biopsy might not be efficient
in detecting more aggressive cancer cells or providing a representative sample of the
entire prostate cancer [82]. This can result in ISUP grade and stage upgrade after radical
prostatectomy. The study found that 31.6% of patients had an upgraded ISUP grade from
a 12-core biopsy to a specimen on laparoscopic radical prostatectomy (LRP). Although
fusion-guided biopsy can reduce this percentage [83], it is still challenging to accurately
estimate the distribution and shape of prostate cancer. Among the 28 studies dedicated to
PCa detection, stratification, and reconstruction, biopsy was used as a reference in 20 (71%).
Biopsy is not relevant in PCa contouring because biopsy samples represent only a small area
of the prostate gland and may not accurately reflect the location and extent of cancerous
tissue within the gland [27].

Finally, validation and testing are important steps in developing and evaluating
DL-based models for PCa diagnosis to ensure the accuracy and generalizability of their
predictions. Validation helps identify any potential issues with overfitting, where the
model has learned to perform well on the training data but does not generalize well to new
data. Testing, on the other hand, is the process of evaluating a model’s performance on
a completely new dataset that has not been previously seen by the model, providing its
true generalizability. Among the papers analyzed in this review, all were accomplished
using the results of internal validation. Testing was performed in 35 studies (55%), whereas
external validation was performed in 10 papers. Interestingly, all studies investigating DL
use for PET/CT Pca diagnosis provided testing.

However, the shortcomings of the proposed review are noteworthy. First, it was not
systematic and we did not assess the quality of the selected studies. Instead, our goal was
to analyze the current state of DL-based models by considering the challenges mentioned
previously. Second, the search was limited to studies describing the use of DL in prostate
reconstruction, the detection/stratification/reconstruction of prostate cancer, PET/CT
PCa diagnosis, ADT therapy, and prostate biopsy, whereas there are plenty of papers
dedicated to the use of DL in other aspects of prostate cancer diagnosis. For example, we
focused on DL use in the context of prostate biopsy performance, not for histopathological
investigation, as the latter is a separate topic dedicated to the goal of the review alone.
Third, we did not analyze ML as a whole but only its part relevant to DL.

5. Conclusions

DL models detecting prostate cancer on MRI show promise but are not yet ready for
clinical use owing to variability in methods, labels, and evaluation criteria. These have
mostly been developed on small datasets with high heterogeneity. Conducting additional
research while acknowledging all the limitations outlined is crucial for reinforcing the
effectiveness of DL-based models in clinical settings.
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