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Simple Summary: In the context of endometrial cancer, molecular classification is becoming in-
creasingly significant as the molecular class determines appropriate treatments and the prognosis.
However, performing clinical testing for molecular classification in a large number of patients entails
significant financial and time costs. Therefore, there is a need to develop a substantial molecular pro-
file screening method for endometrial cancers. The objective of this study was to explore whether the
molecular classification of endometrial cancer could be predicted from digital images of hematoxylin
and eosin (H&E)-stained slides using deep learning as a screening tool. After making adjustments to
the training data set and hyperparameters, we confirmed the feasibility of estimating the mismatch
repair status from histological digital images of endometrial cancer. Deep learning was found to
be effective for predicting one aspect of the molecular classification from H&E-stained histological
digital images.

Abstract: The application of deep learning algorithms to predict the molecular profiles of various
cancers from digital images of hematoxylin and eosin (H&E)-stained slides has been reported in
recent years, mainly for gastric and colon cancers. In this study, we investigated the potential use
of H&E-stained endometrial cancer slide images to predict the associated mismatch repair (MMR)
status. H&E-stained slide images were collected from 127 cases of the primary lesion of endometrial
cancer. After digitization using a Nanozoomer virtual slide scanner (Hamamatsu Photonics), we
segmented the scanned images into 5397 tiles of 512 × 512 pixels. The MMR proteins (PMS2, MSH6)
were immunohistochemically stained, classified into MMR proficient/deficient, and annotated for
each case and tile. We trained several neural networks, including convolutional and attention-based
networks, using tiles annotated with the MMR status. Among the tested networks, ResNet50 exhibited
the highest area under the receiver operating characteristic curve (AUROC) of 0.91 for predicting the
MMR status. The constructed prediction algorithm may be applicable to other molecular profiles and
useful for pre-screening before implementing other, more costly genetic profiling tests.

Keywords: endometrial cancer; deep learning; artificial intelligence; biomarker; mismatch repair;
molecular classification; whole-slide imaging; digital pathology
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1. Introduction

The lifetime risk of women developing endometrial cancer is approximately 3%,
and, over the past 30 years, the overall incidence has increased by 132%, reflecting an
increase in risk factors (particularly obesity and aging) [1]. Endometrial cancer is classically
classified into two groups—namely, Type I or II tumors [2,3]. Type I endometrial tumors are
associated with excess estrogen, obesity, hormone receptor positivity, and abnormalities in
hormone receptors. On the other hand, Type II tumors, which are mainly serous, are often
observed in older, non-obese women and are considered to have a worse prognosis [2,4].

In recent years, there has been a growing focus on molecular biological classification
of endometrial cancers. The classification of endometrial cancer proposed by The Cancer
Genome Atlas (TCGA) in 2013—a joint project of the National Cancer Institute (NCI) and
National Human Genome Research Institute (NHGRI)—employed milestone data for the
molecular classification of endometrial cancer [5]. TCGA proposed classification in four
classes—POLE (ultramutated), MSI (hypermutated), Copy-number-low (endometrioid),
and Copy-number-high (serous-like)—based on next-generation sequencing (NGS) data ob-
tained from 232 cases of endometrial cancers. Following TCGA classification, Talhouk et al.
developed and verified a modified molecular classification method called “ProMisE” [6,7].
This method replaces the detection of an abnormality of the TP53 gene and microsatellite
status, which are dependent on sequencing, with immunohistochemical staining (IHC),
making molecular classification of endometrial cancers more clinically accessible. The
ProMisE method classifies endometrial cancer into four molecular sub-types: POLEmut,
Mismatch Repair Deficient (MMRd), p53abn, and NSMP (No Specific Molecular Profile,
p53wt). These four classes correspond to the POLE, MSI, Copy-number-low, and Copy-
number-high classes of TCGA, respectively. In 2020, the World Health Organization (WHO)
also recommended a molecular classification for endometrial cancer [8,9]. In 2023, the
molecular-biology-based classification of the Federation of Obstetrics and Gynecology
(FIGO) staging was also demonstrated [10]. Therefore, it is anticipated that the provision
of a stable and easy method for molecular profiling of endometrial cancer will become
clinically significant in the near future.

Based on these molecular classification results, one of the most crucial therapeutic
agents to consider for classification-matched treatment is the immune checkpoint inhibitor
(ICI). ICIs are being investigated and gaining interest for various type of tumors, including
endometrial cancer [11]. Programmed death receptor-1 (PD-1) is an immune checkpoint
molecule expressed on activated T-cells, with programmed cell death ligand 1 (PD-L1) being
a representative ligand [12]. PD-1 and PD-L1 inhibitors accelerate cancer cell elimination,
mainly mediated through cytotoxic T-cells. One of the accepted surrogate markers for the
effectiveness of ICIs is deficient mismatch repair (dMMR) and the resulting microsatellite
instability (MSI) [13]. According to a cross-organ analysis of solid tumors, endometrial
cancer had the highest frequency of MSI, occurring at a frequency of 17% [14].

Commonly used methods for determining dMMR/MSI status are based on polymerase
chain reaction (PCR) [15,16], IHC for MMR proteins [17], and NGS [18,19]. The use of IHC
for MMR status classification involves examining the expression of MutL homolog 1
(MLH1), MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), and post-meiotic segregation
increase 2 (PMS2) [17]. In endometrial cancer, the high detection rate of dMMR underscores
the utmost importance of immunologic profiles [14,20]; however, testing for detailed
molecular profiles (including MMR status) in every endometrial cancer patient can be
expensive and time-consuming, which could complicate the course of treatment. Therefore,
it is necessary to develop alternative molecular classification methods in order to reduce
the associated financial and time costs.

As a novel classification method, we focused on approaches using machine learning.
In the field of healthcare, deep learning has already been demonstrated to be useful for the
classification of medical images. Originally, deep learning emerged as a prominent sub-
field of machine learning [21]. There have been many reports on the effective use of deep
learning approaches for image classification in clinical use, such as magnetic resonance
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imaging (MRI) of the brain [22], retinal images [23], and computed tomography (CT) of
the lungs [24], among others [25]. Unlike conventional machine learning methods, deep
learning relies on deep neural networks, which mimic the operation of the neurons in the
human brain. Deep learning networks can automatically extract the significant features
necessary for the corresponding learning tasks with minimal human effort [21].

Among the various deep learning algorithms, convolutional neural networks (CNNs)
have been the most commonly used [26]. Each convolutional layer extracts different infor-
mation and, through stacking multiple convolutional layers, the network can progressively
extract more complex and abstract features. The activation function in the middle of the
convolutional layers enhances the network’s ability to handle non-linear problems and
adapt to different distributions [27]. The network may gain features that humans may not
be consciously aware of; however, many of these features can be challenging to articulate.
Some reports [28–30] in the field of cancer have suggested that hematoxylin and eosin
(H&E) staining can be used to predict genetic alterations and features of the tumor mi-
croenvironment without the need for further laboratory testing. In particular, determining
microsatellite instability (MSI) status by deep learning analysis of H&E-stained slides has
been described in several reports focused on gastric cancer [31] and colon cancer [32–36].
In endometrial cancer, Hong et al. [28] attempted a comprehensive assessment using deep
learning for the detection of histological subtypes and genetic alterations, achieving an area
under the receiver operating characteristics curve (AUROC) ranging from 0.613 to 0.969
despite variations in the assessment criteria. Additionally, Fremond et al. [30] similarly
attempted to carry out decision-making through the use of deep learning approaches and to
visualize the histological features specific to molecular classifications in endometrial cancer.

Thus, the use of artificial intelligence—particularly deep learning—for medical image
analysis has been rapidly expanding [25,37]. Therefore, we considered the potential appli-
cation of deep learning to address issues related to endometrial cancer. In this study, we
examined the utility of CNNs and novel attention-based networks for the prediction of the
MMR status of endometrial cancer.

2. Materials and Methods
2.1. Ethical Compliance

According to the guidelines of the Declaration of Helsinki, informed consent was
acquired through an opt-out form on the website of Sapporo Medical University. The
Sapporo Medical University Hospital’s Institutional Review Board granted approval for
this study under permission number 332–158.

2.2. Patients and Specimens

For this study, formalin-fixed paraffin-embedded (FFPE) tumor samples from Sapporo
Medical University Hospital were used. Surgical specimens were obtained from patients
with a primary site of endometrial cancer. A pathologist and a gynecologic oncologist
chose representative slides of endometrial cancer resection specimens that were stained
with H&E. Of the 127 patients with endometrial cancer treated from 2005 to 2009 in total,
we excluded 7 patients with non-endometrioid cancer and 6 patients without sufficiently
available tumor component tiles (Figure 1). Of the 7 non-endometrioid cancer cases, 4 were
serous cancer cases and 3 were clear cell cancer cases. These 7 non-endometrioid cases were
excluded from this study due to the following issues. Firstly, the number of specimens
was insufficient to construct individualized classification models for each cancer. Secondly,
these non-endometrioid cancers significantly differ morphologically from endometrioid
cancer and may have resulted in bias in the classification models if included as part of the
overall data set.
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2.3. Immunohistochemistry Staining and Evaluation of MMR Status 
FFPE tumor tissues were cut into 4 µm slices, and Target Retrieval Solution at pH 9 

(DAKO, Glostrup, Denmark) was used for epitope retrieval. The tissues were then stained 
with rabbit anti-MSH6 monoclonal antibody (clone, EP51; DAKO) and mouse anti-PMS2 
monoclonal antibody (clone, ES05; DAKO), which were used to detect MMR proteins in 
the tissues. The slides then underwent incubation with a secondary antibody. Subse-
quently, the slides underwent hematoxylin counterstaining, followed by rinsing, alcohol 
dehydration, and cover-slipping with mounting medium. Two gynecologists and one 
pathologist evaluated the resulting IHC and MMR status. As previously reported, nega-
tive staining for MSH6 corresponds to a lack of MSH2 and/or MSH6 proteins, as the sta-
bility of MSH6 depends on MSH2 [38]. In the same way, PMS2 staining covers the protein 
expression of PMS2 and/or MLH1. Therefore, if either PMS2 or MSH6 expression was de-
ficient, it was determined as dMMR and, if not, it was determined as proficient MMR 
(pMMR) (Figure 2B). In total, 29 patients were classified as dMMR, while 85 patients were 
classified as pMMR (Figure 1). 

Figure 1. Study flow diagram. In total, 114 eligible patients were investigated in this study, and we
used 5397 tiles as the study data set. N = number of patients, n = number of tiles, dMMR = deficient
MMR, pMMR = proficient MMR, WSI = whole-slide imaging.

2.3. Immunohistochemistry Staining and Evaluation of MMR Status

FFPE tumor tissues were cut into 4 µm slices, and Target Retrieval Solution at pH
9 (DAKO, Glostrup, Denmark) was used for epitope retrieval. The tissues were then
stained with rabbit anti-MSH6 monoclonal antibody (clone, EP51; DAKO) and mouse
anti-PMS2 monoclonal antibody (clone, ES05; DAKO), which were used to detect MMR
proteins in the tissues. The slides then underwent incubation with a secondary antibody.
Subsequently, the slides underwent hematoxylin counterstaining, followed by rinsing,
alcohol dehydration, and cover-slipping with mounting medium. Two gynecologists and
one pathologist evaluated the resulting IHC and MMR status. As previously reported,
negative staining for MSH6 corresponds to a lack of MSH2 and/or MSH6 proteins, as
the stability of MSH6 depends on MSH2 [38]. In the same way, PMS2 staining covers the
protein expression of PMS2 and/or MLH1. Therefore, if either PMS2 or MSH6 expression
was deficient, it was determined as dMMR and, if not, it was determined as proficient
MMR (pMMR) (Figure 2B). In total, 29 patients were classified as dMMR, while 85 patients
were classified as pMMR (Figure 1).
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chemistry findings for MSH6 and PMS2. Cases with a loss of expression in either PMS2 or MSH6 
were classified as deficient mismatch repair (dMMR), while those without such loss were classified 
as proficient mismatch repair (pMMR). Bar = 100 µm. 
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narizing the tile through treating pixels that matched the specified pink color range from 
(100, 50, 50) to (179, 255, 255) as white (255) and pixels that did not match as black (0). The 
program calculated the average value of the pink color area and excluded it if it was 
greater than 25 (i.e., if there was a large amount of pink color within one tile). In total, 
38,699 tiles were excluded automatically using the constructed program. Furthermore, we 
manually excluded 53,451 tiles without sufficient tumor component. The exclusion criteria 
were specified as follows: tiles in which more than 25% of the tile area consists of non-
tumor components (e.g., stroma), tiles containing irrelevant contaminants within the slide, 
tiles with folding due to poor tissue extension during sample preparation and air trap-
ping, and tiles with artifacts during scanning. Supplementary Figure S1A shows an over-
view of the tile exclusion process through the program and manual inspection. The total 
number of excluded tiles (Supplementary Figure S1B) amounted to 92,150, while eligible 

Figure 2. Overview of this study and evaluation of immunohistochemistry findings for MSH6 and
PMS2 in endometrial cancer. (A) Overview of data preparation and model construction. Whole-
slide images were cut into non-overlapping square tiles of 512 pixels at 5× magnification. Tiles
that met the exclusion criteria were excluded (Supplementary Figure S1A,B), and only eligible
tiles (Supplementary Figure S1C) were used as the data set. For each tile, the classification model
was used to perform binary classification of mismatch repair (MMR) status. (B) Evaluation of
immunohistochemistry findings for MSH6 and PMS2. Cases with a loss of expression in either PMS2
or MSH6 were classified as deficient mismatch repair (dMMR), while those without such loss were
classified as proficient mismatch repair (pMMR). Bar = 100 µm.

2.4. Pre-Processing of Whole-Slide Images

The H&E slides were then digitized using a Nanozoomer whole-slide scanner (Hama-
matsu Photonics, Hamamatsu, Japan). Each whole-slide image (WSI) was divided into
non-overlapping square tiles of 942 µm at a magnification of 5×, each with dimensions of
512 × 512 pixels (Figure 2A). On average, each WSI was divided into 813 tiles, and processing
WSIs from 120 cases of endometrioid cancer resulted in the creation of 97,547 tiles.

We first constructed an image exclusion program, in which we specifically conducted
the following pre-processing steps using OpenCV: (i) excluding edge tiles with different
numbers of pixels in height and width and (ii) converting the tile to HSV format and
binarizing the tile through treating pixels that matched the specified pink color range from
(100, 50, 50) to (179, 255, 255) as white (255) and pixels that did not match as black (0).
The program calculated the average value of the pink color area and excluded it if it was
greater than 25 (i.e., if there was a large amount of pink color within one tile). In total,
38,699 tiles were excluded automatically using the constructed program. Furthermore,
we manually excluded 53,451 tiles without sufficient tumor component. The exclusion
criteria were specified as follows: tiles in which more than 25% of the tile area consists
of non-tumor components (e.g., stroma), tiles containing irrelevant contaminants within
the slide, tiles with folding due to poor tissue extension during sample preparation and
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air trapping, and tiles with artifacts during scanning. Supplementary Figure S1A shows
an overview of the tile exclusion process through the program and manual inspection.
The total number of excluded tiles (Supplementary Figure S1B) amounted to 92,150, while
eligible tiles (Supplementary Figure S1C) amounted to 5397, accounting for 5.5% of the
total number of divided tiles. Supplementary Table S1 details the number of tiles and
characteristics for each patient.

2.5. Hardware and Software Libraries Used

The experiments were carried out with Python (version 3.8.10), making use of the
following packages: torch (version 2.0.0), torchvision (version 0.15.1), numpy (version
1.24.1), scikit-learn (version 1.2.2), matplotlib (version 3.7.1), and timm (version 0.6.13).
Model development and evaluation were performed on a workstation with GeForce RTX
3080 (NVIDIA, Santa Clara, CA, USA) graphic processing units, a Ryzen Threadripper
3960X (24 cores, 3.8 GHz) central processing unit (Advanced Micro Devices, Santa Clara,
CA, USA), and 256 GB of memory.

2.6. Data Split and Training Data Preparation

The useful tiles were divided into separate data sets for training, validation, and
testing. The data set cases were randomly split into training, validation, and test sets for
each prediction task, such that tiles from the same patient were contained in only one of
these sets. This approach ensured that the test data set was independent from the training
process, allowing for a patient-level split. The split ratio for training–validation–testing
was set at 70%:15%:15%.

2.7. Classification Model Construction Using Convolutional Neural Networks

Construction of the CNN-based binary classification model for MMR status, pMMR,
or dMMR was conducted using pre-trained CNN models through torchvision in the
Pytorch library, including GoogLeNet [39], VGG19 [40], ResNet50 [41], ResNet101 [41],
wideResNet101-2 [42], and EfficientNet-B7 [43]. We constructed a model that inputs a non-
overlapping image tile of size 512 × 512 pixels at a resolution of 1.84 µm/pixel and outputs
a tile-level probability for MMR status. We fine-tuned the pre-trained models in torchvision
using the prepared training data set and validated the results using the validation data
set, following the provided instructions. The trainable parameters were fine-tuned using
a stochastic gradient descent optimization method, and we examined the conditions for
data pre-processing and the hyperparameters needed for model training. To address the
imbalance in the number of tiles in each class, we down-sampled the larger class of pMMR,
randomly reducing cases to align with the smaller class in terms of slide numbers. The
detailed results of the down-sampling process are presented in Supplementary Table S2.
We also examined changes in model performance with data augmentation. We conducted
the following four patterns of data augmentation: (i) no data expansion (original tile),
(ii) original tile with added 90◦ and 270◦ rotations (resulting in three times the data),
(iii) original tile with added vertical and horizontal flips (resulting in four times the data),
and (iv) original tile with both rotations (as in ii) and flips (as in iii) (resulting in six times
the data). Furthermore, we examined the conditions for the hyperparameters, provisionally
using ResNet50 [41] for the validation network. For the hyperparameters, we changed
the batch size (8, 16, 32), number of epochs (30, 60, 90, 120), and learning rate (1 × 10−2,
1 × 10−3, 1 × 10−4).

2.8. Classification Model Construction Using Attention Networks and Our API-Net-Based Model

We also verified the performance differences between CNNs and attention-based
networks, such as a Vision Transformer (ViT) [44]. We selected pre-trained ViT models from
the torchvision models in the Pytorch library, as mentioned above. The hyperparameters
and data set were similarly chosen as for the CNNs mentioned above. We examined two
ViT models—ViT_b16 and ViT_b32—in this study. Additionally, we examined the model
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of the modified network based on API-Net [45]. This modified network is a class-aware
visualization and classification technique that employs attention mechanisms, which we
developed for cytopathological classification and feature extraction. This API-Net-based
model takes pairs of images as input and learns the embeddings of input features and
representative embeddings, called prototypes, for each MMR class. We used the existing
API-Net to estimate attention vectors. Given an unknown image, the classification model
predicts classes through comparing the unknown images to prototypes, recognizing their
similarity for the determination of classes.

2.9. Evaluation of Constructed Model Performance

The following calculated parameters were used as indicators of model performance:
Accuracy = (TP + TN)/(TP + FP + FN + TN); Precision = TP/(TP + FP); Recall = TP/(TP
+ FN); and F-score = 2 × precision × recall/(precision + recall). TP, TN, FP, and FN
represent the number of true positive, true negative, false positive, and false negative
tiles, respectively. A receiver operating characteristic (ROC) curve is a probability curve
for classification of problems at various threshold settings. The ROC curve was plotted
using TPR against FPR, where TPR is on the y-axis and FPR is on the x-axis. The AUROC
represents the area under the ROC curve.

3. Results
3.1. Pre-Processing of Data Set before Model Training

Table 1 shows the results of the data set pre-processing before model training. First,
we examined the ratio of the number of tiles between data sets. Supplementary Table S2
shows the number of tiles regarding different data set ratios. When the ratio of the number
of tiles was not adjusted for predicting the MMR status, the pMMR class had approximately
2.6 times the amount of data as the dMMR class. Specifically, there were 1484 tiles for
dMMR and 3913 tiles for pMMR.

Table 1. Results for metrics concerning different pre-processing of data sets and various hyper-
parameter configurations. We examined the ratios of the number of tiles between data sets, data
augmentation, and hyperparameters.

Accuracy Precision Recall F-Score AUROC

Pre-processing

Ratio
Original 0.74 0.55 0.09 0.15 0.74

Down-sampled 0.80 0.76 0.88 0.81 0.89

Data augmentation

None 0.80 0.76 0.88 0.81 0.89
Rotate 0.76 0.70 0.90 0.79 0.87

Flip 0.75 0.73 0.77 0.75 0.84
Rotate and flip 0.77 0.77 0.76 0.77 0.86

Hyper-parameter

Batch
8 0.80 0.76 0.88 0.81 0.89
16 0.72 0.70 0.74 0.72 0.80
32 0.69 0.70 0.67 0.68 0.77

Epoch

30 0.80 0.76 0.88 0.81 0.89
60 0.78 0.75 0.84 0.79 0.88
90 0.80 0.79 0.81 0.80 0.88

120 0.75 0.69 0.89 0.78 0.87

Learning rate
1 × 10−2 0.80 0.76 0.88 0.81 0.89
1 × 10−3 0.70 0.68 0.75 0.71 0.78
1 × 10−4 0.69 0.64 0.86 0.74 0.78

Next, we created a data set using down-sampling in order to match the number of
slides for pMMR to the lower slide count of dMMR and compared it with the original
ratio without adjustment. In the down-sampled data set, the number of tiles for dMMR
remained unchanged (at 1484), while for pMMR, it was 1484. Consequently, the original
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ratio seemed to be better when examining accuracy values exclusively. As a result, in the
original ratio, the classification results were biased toward pMMR, which had a larger
number of tiles. In other words, due to the increase in FN and TN, the recall rate was 0.09
and the precision rate was 0.55, both of which are low. Compared to the original data set, the
down-sampled data set exhibited superior overall performance. Therefore, it was revealed
that the classification performance improved in the data set with down-sampling, even
though much of the pMMR training data were excluded. Additionally, we examined the
effect of training on a data set that had undergone data augmentation through flipping and
rotating processes, but no improvement in performance was observed. We used ResNet50
for the consideration of these effects on data set pre-processing.

3.2. Validation of Model Performance in Various Hyperparameter and Classification Models

Table 1 shows the hyperparameter tuning results. To predict the MMR status, we
used a down-sampled data set with good performance and adjusted the hyperparameters.
Compared to batch sizes of 16 or 32, a batch size of 8 showed good accuracy results;
therefore, we selected a batch size of 8. Regarding the number of epochs, we adopted
30 epochs as, in our study, the model prediction performance in the validation data set
presented high values up to epoch 30, regardless of whether a greater number of epochs
was considered. Regarding the learning rate, we chose 1 × 10−2, which performed better
than even lower values. We conducted a hyperparameter search for the API-Net-based
model and adopted a learning rate of 1 × 10−3, which yielded the highest accuracy.

Table 2 shows the results regarding the differences among the classification models.
We examined the differences among the classification models without changing hyperpa-
rameters between CNNs and ViTs. We utilized pre-trained networks available in Pytorch
(version 2.0.0) and focused on validating the classical networks commonly used for CNNs.
In all CNNs, the AUROC exceeded 0.8, with particularly high values (0.89) observed for
ResNet50 and ResNet101. On the other hand, in the comparison and evaluation of atten-
tion methods, satisfactory performance was not achieved with any ViT model (AUROC:
ViT_B16, 0.62; ViT_B32, 0.76). However, regarding our developed API-based network, the
model achieved sufficient performance, with 0.81 accuracy and 0.89 AUROC.

Table 2. Results of metrics concerning various classification models. We examined the differences in
performance among classification models using CNNs or attention mechanisms.

Accuracy Precision Recall F-Score AUROC

Convolutional neural network

GoogLeNet 0.74 0.72 0.79 0.75 0.83
VGG_19_BN 0.79 0.86 0.68 0.76 0.85

ResNet50 0.80 0.76 0.88 0.81 0.89
ResNet101 0.81 0.78 0.88 0.82 0.89

wideResNet101-2 0.77 0.88 0.62 0.73 0.88
EfficientNet-B7 0.74 0.77 0.68 0.72 0.81

Attention mechanism
ViT_B16 0.57 0.59 0.43 0.50 0.62
ViT_B32 0.67 0.61 0.89 0.73 0.76

API-Net-based model 0.81 0.81 0.81 0.81 0.89

3.3. Performance of the Models for Unseen Test Data Set

Next, we examined the generalization performance of the model through adapting
it to untested data sets. Figure 3 shows the results regarding the performance of the
best-performing model on the test data set, while Supplementary Figure S2 shows the
performance of all models validated on the test data set. We investigated the best methods
for the pre-processing of the data set, hyperparameters, and classification models, as
described above. As a result, we adopted a combination of down-sampling in the ratio
between the two classes. For CNNs, with the combination of batch size = 8, epochs = 30,
and learning rate = 1 × 10−2, utilizing ResNet50 or ResNet101 yielded the best performance.
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Among the attention methods, our API-Net-based model achieved the best accuracy when
compared to that of the other pre-trained ViT models.
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Figure 3. Model performance on test data set at the per-tile level. (A) Receiver operating characteristic
(ROC) curves and confusion matrix using ResNet50. ResNet50 had the highest accuracy among the
CNN models. (B) ROC curves and confusion matrix using API-Net-based model. The API-Net-based
model had the highest accuracy among the models using the attention mechanism. (C) ROC curves
and confusion matrix using ResNet101. ResNet101 had the second-highest accuracy among the
CNN models. (D) ROC curves and confusion matrix using Vit_B32. Vit_B32 had the second-highest
accuracy among the models using the attention mechanism. TPR = true positive rate, FPR = false
positive rate.

4. Discussion

The incidence of endometrial cancer is increasing worldwide [46] and, considering the
rising importance of molecular biological tests, we need to think about future approaches
to diagnosis and treatment in this context. The molecular profile of endometrial cancer
generates a large number of features that can be utilized to provide information about treat-
ment. The TCGA-based molecular classification and its modified classification algorithm of
ProMisE are representative prognostic biomarkers and helpful for choosing classification
matched therapies, as mentioned above [5,6]. Additionally, the PORTEC-RAINBO [47] trial
is one of the largest clinical trials investigating genotype-matched therapy for endometrial
cancer, which aims to improve clinical outcomes and reduce the toxicity of unnecessary
treatments in patients with endometrial cancer through molecularly directed adjuvant
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therapy strategies. One of the RAINBO trials, the MMRd-GREEN trial, enrolled patients
with dMMR endometrial cancer at stage II with significant lymphovascular space invasion
(LVSI) or stage III, mismatch repair deficient endometrial cancer. It then compared a group
receiving adjuvant radiotherapy with concurrent and adjuvant durvalumab for one year
with a group receiving radiotherapy alone. Assessment of MMR status will become in-
creasingly important in the future, and in this trial, IHC was used for the determination
of dMMR, as performed in the present study. However, there are multiple methods of
assessment, and we need to be aware of the differences between them. In the MSI test,
five microsatellite regions (BAT-25, BAT-26, MONO-27, NR-21, and NR-24) in DNA ob-
tained from tumor and normal tissue from the same patient are amplified using PCR [15].
Tumors are classified as having high microsatellite instability (MSI-H) if two of the five
microsatellite markers present a length difference between the tumor and normal samples,
low microsatellite instability (MSI-L) if only one microsatellite marker presents a length
difference, and microsatellite stability (MSS) if no length difference is observed. In addition,
there are NGS methods that specifically target only microsatellite regions and that evaluate
MMR function as part of comprehensive cancer genome profiling approaches. When tar-
geting microsatellite regions only, the length of a total of 18 microsatellite marker regions is
measured through NGS, and MSI-H is diagnosed when 33% or more of the markers present
instability [18]. Regarding MMR status, it has been reported [48] that there is a concordance
rate of 90% or higher between IHC staining and MSI testing in colorectal cancer; however,
another report [49] has suggested lower concordance rates in other types of cancer. In the
evaluation of immunohistochemistry staining and MSI testing for endometrial cancer, the
overall concordance rate was 93.3% and, in cases that were discordant, the reason was
promotor hypermethylation of MLH1 [50]. Moreover, in endometrial cancer, although
specific discrepancies are observed in the dMMR sub-group, IHC results are considered a
better predictive factor for MMR status than determination using PCR [51]. Although IHC
was performed for assessment in the current study, it is important to recognize that MSI
testing has limitations that should be understood. When the DNA extraction quantity is
low or the DNA quality is poor, there is a 14% probability that the test cannot provide an
accurate evaluation. Furthermore, if the purity of the tumor cells in the sample is less than
30%, the results are likely to be false negative [52].

While most previous investigations in medical imaging classification have used CNNs,
a combined analysis of the PORTEC randomized trial and a clinical cohort conducted
by Fremond et al. [30] used attention-based models for class classification. Traditionally,
CNNs have been widely used for image classification tasks; however, the introduction
of the attention mechanism [53] has allowed for more accurate execution. CNNs capture
relationships between adjacent pixels in images and recognize the content being displayed
through structures called convolutional layers in the architecture. However, a disadvantage
of CNNs is that they are influenced by elements other than the intended target, such as
background objects. On the other hand, the attention mechanism, originally developed
primarily for natural language processing, has also been proven to be useful in the field
of image recognition. In the task of image recognition, a technology derived from Trans-
formers [54] incorporating attention, known as a Vision Transformer, has emerged [44]. ViT
models are capable of visualizing how much attention is paid to which areas within an
image. Unlike CNNs, pure ViTs do not include convolutional structures and are composed
solely of the attention mechanism, although they can also be used in conjunction with
CNNs. Through identifying areas of interest within images using the attention mecha-
nism, we believe that the accuracy of recognition can be improved, thus addressing the
disadvantage of CNNs when combined with attention mechanisms. A further structural
difference is that CNNs rely on fixed local receptive fields in the early layers, while ViTs
use self-attention to aggregate global information in the early layers [55]. We compared
the performance of a ViT and an original constructed API-Net-based model incorporating
a CNN structure internally, as a model utilizing an attention mechanism. In this study,
for the models utilizing the attention mechanism, the accuracy of the ViT on the test data
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set was lower compared to that of the other networks (Table 2). The reason for the lower
accuracy of the ViT could be attributed to the fact that, unlike other networks, a ViT does
not use convolution in its internal structure. This suggests that incorporating a CNN
architecture could be beneficial for pathological image diagnosis of endometrial cancer.
Additionally, in the comparison of CNNs, ResNet showed higher accuracy. Considering
that ResNet is used within the API-Net-based model as the classification backbone, ResNet
can be considered highly useful in this context. The potential for further performance
improvement through combining CNNs with attention mechanisms may be considered for
the molecular classification of cancers.

Additionally, another example of biomarkers receiving attention in the field of endome-
trial cancer biology is non-coding RNA (ncRNA) [56]. Endometrial cancer is significantly
associated with changes in gene function mediated by ncRNA, potentially controlling
cell mobility and invasion, which are important for metastasis formation, angiogenesis,
resistance to chemotherapeutic agents, and the transcriptional regulation of genes. Further-
more, in the field of reproduction, ncRNAs are also known to regulate the biosynthesis
and secretion of physiological sex steroids, playing significant roles in biological processes
and serving as promising biomarkers for the diagnosis of reproductive disorders [57]. As
shown above, machine learning has been proven to be useful for molecular biomarker
estimation in several ways. The ncRNA expression profile is also a favorable candidate for
features in training AI models, which are used to support endometrial cancer treatment.

H&E-stained slides are the most widely used method in the clinical context for patholo-
gists to confirm the histological type of endometrial cancer. In this study, we confirmed that
the MMR status of endometrial cancer could be predicted from H&E-stained slides using
deep learning. To the best of our knowledge, there are only a few studies [27,28,30,58] world-
wide that have tested this concept in endometrial cancer. ResNet, which performed particu-
larly well in the present study, has also been used in several previous studies [27,30,31,34,58]
in the field of medical imaging, although the number of layers and target organs differed.
For example, in colorectal cancer, the use of artificial intelligence (AI) in the colorectal
cancer diagnostic algorithm is expected to reduce testing costs and avoid treatment-related
expenses [59]. A strategy using high-sensitivity AI followed by a high-specificity panel is
expected to achieve the most significant cost reduction (about USD 400 million, or 12.9%)
compared to that of a strategy using NGS alone [59]. Meanwhile, a strategy using only
high-specificity AI may achieve the highest diagnostic accuracy (97%) and the shortest time
to the initiation of treatment [59]. This report was based on cost assumptions for colorectal
cancer from 2017 to 2020 in the United States. Although it is necessary to assess how
much of a cost reduction can be achieved in other contexts, the use of a similar approach
for endometrial cancer may have the potential to save time and costs. Additionally, the
use of AI-based approaches to assist the decision-making of oncologists in treating cancer
has the potential to allow optimal treatment to be provided to cancer patients sooner [60].
In this study, we constructed classification models using surgical specimens, but it is
known that there is substantial agreement regarding MMR status between endometrial
curettage and hysterectomy samples. Berg et al. [61] mentioned the high concordance
rate that can be used not only as a value for MMR status classification in endometrial
cancer but also as an independent prognostic marker before resection. Therefore, if the
AI classification model could be constructed for curettage specimens, it would enable the
consideration of treatment strategies at an earlier phase. However, curettage samples often
exhibit significant deformations, necessitating further consideration in the construction of
AI classification models.

However, there are challenges that we face in the adoption of AI for cancer treat-
ment [62]. We need to be aware that discrepancies in international regulations create risk
regarding the trustworthiness of each medical machine learning algorithm. In the actual
clinical use of machine learning, interoperability and integration with existing electronic
health records and image storage systems are significant barriers to adoption by hospital
systems. In addition, from an ethical perspective, it is important to prioritize human dignity
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and protect fundamental rights such as privacy, data protection, and equality. To achieve
this, it is necessary to explain the operation of AI models and systems to improve people’s
understanding of them [63]. As the usefulness of AI is demonstrated in all kinds of clinical
situations, we will need to continue to search for ways to solve problems surrounding
medical AI for cancer treatment.

5. Conclusions

Molecular classification has been playing an increasingly vital role in treatment strate-
gies for endometrial cancer. Therefore, it is crucial to incorporate additional user-friendly
screening tools that can identify patients requiring further laboratory testing, thereby sav-
ing both time and costs. Our study demonstrated the potential of developing AI-based
solutions, which are capable of easily and rapidly estimating molecular classifications from
H&E-stained slides in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers16101810/s1, Figure S1. Overview of process for excluding
tiles and examples of excluded tiles and eligible tiles, Figure S2. Performance of all models on test
data set at per-tile level, Table S1. Number of tiles and characteristics for each patient, Table S2.
Number of tiles regarding different data set ratios for mismatch repair (MMR) status prediction.
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