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Simple Summary: The proper management of prostate cancer requires accurate assessment of
patients diagnosed with prostate cancer, a common and often lethal cancer. Current conventional
prostate cancer diagnosis relies on: (1) needle biopsy, which can result in side effects such as hemor-
rhage or infection, as well as misplacement of needles resulting in evaluation inaccuracy, (2) prostate
serum antigen detection that can lead to overdiagnosis, or (3) MRI interpretations using the Prostate
Imaging-Reporting and Data System (PI-RADS), which is a subjective method that depends on the
experience of the radiologist’s interpretation of the images. Quantitative analysis of MRI can alleviate
the limitations of conventional approaches. Artificial intelligence applied to MRI requires big training
datasets, and its application is restricted to patients scanned under certain restricted conditions.
More recently, spectral/statistical techniques, adapted from remote sensing, have been applied and
tested in spatially registered multi-parametric MRI. The new spectral/statistical techniques require
limited training, are flexible regarding patient scanning conditions, and perform well relative to
other techniques. This study extends spectral/statistical techniques to make them more independent
of the individual radiologist by autonomously finding the appropriate tumor signature within a
prostate and, therefore, providing an objective, non-invasive, accurate means for determining prostate
tumor aggressiveness.

Abstract: Background: Accurate, reliable, non-invasive assessment of patients diagnosed with
prostate cancer is essential for proper disease management. Quantitative assessment of multi-
parametric MRI, such as through artificial intelligence or spectral/statistical approaches, can provide
a non-invasive objective determination of the prostate tumor aggressiveness without side effects
or potential poor sampling from needle biopsy or overdiagnosis from prostate serum antigen mea-
surements. To simplify and expedite prostate tumor evaluation, this study examined the efficacy of
autonomously extracting tumor spectral signatures for spectral/statistical algorithms for spatially
registered bi-parametric MRI. Methods: Spatially registered hypercubes were digitally constructed by
resizing, translating, and cropping from the image sequences (Apparent Diffusion Coefficient (ADC),
High B-value, T2) from 42 consecutive patients in the bi-parametric MRI PI-CAI dataset. Prostate can-
cer blobs exceeded a threshold applied to the registered set from normalizing the registered set into
an image that maximizes High B-value, but minimizes the ADC and T2 images, appearing “green”
in the color composite. Clinically significant blobs were selected based on size, average normalized
green value, sliding window statistics within a blob, and position within the hypercube. The center
of mass and maximized sliding window statistics within the blobs identified voxels associated with
tumor signatures. We used correlation coefficients (R) and p-values, to evaluate the linear regression
fits of the z-score and SCR (with processed covariance matrix) to tumor aggressiveness, as well as
Area Under the Curves (AUC) for Receiver Operator Curves (ROC) from logistic probability fits
to clinically significant prostate cancer. Results: The highest R (R > 0.45), AUC (>0.90), and lowest
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p-values (<0.01) were achieved using z-score and modified registration applied to the covariance ma-
trix and tumor signatures selected from the “greenest” parts from the selected blob. Conclusions: The
first autonomous tumor signature applied to spatially registered bi-parametric MRI shows promise
for determining prostate tumor aggressiveness.

Keywords: logistic probability; prostate cancer; bi-parametric magnetic resonance imaging (BP-
MRI); Gleason score (GS); signal to clutter ratio (SCR); regularization; principal components filtering;
clinically significant prostate cancer; correlation coefficient

1. Introduction

The accurate assessment of patients diagnosed with prostate cancer, a common and
potentially lethal cancer [1], is essential for effective management of the disease [2–5]. Some
conventional approaches such as prostate serum antigen measurement result in overdiag-
nosis of clinically insignificant tumors, resulting in excessive treatment [6–8]. Another ap-
proach, needle biopsy, can easily under-sample the tumor due to needle misplacement and
can possibly lead to side effects such as infections or hemorrhage [9–12]. To alleviate under-
sampling and side-effect issues, MRI [13,14] and multi-parametric MRI (MP-MRI) [15–17]
have been employed more recently to non-invasively assess prostate cancer. To reduce
patient discomfort, possible side effects and increase patient flow through the clinic, bi-
parametric MRI—unlike multi-parametric MRI—does not require injection of contrast
material and has been investigated as a simpler alternative diagnostic approach [18–21].
Currently, MRI studies are qualitatively evaluated using the PI-RADS protocol [22] which
relies on visual inspection of the MRI by the radiologist and can result in variable interpre-
tation among radiologists [23]. To further elevate prostate cancer evaluation, quantitative
approaches such that apply artificial intelligence (AI) algorithms [24–27] to MRI aim to
provide accurate, reliable, and objective prostate cancer assessments and ameliorate the defi-
ciencies in other approaches. AI algorithms often emulate neuronal processes in combining
features to characterize tumors, unlike the present study that uses an analytic approach
employing a single equation. The artificial intelligence (AI) algorithms may or may not use
the spectral aspect of multi-parametric MRI (unlike this study which only uses the spectral
features of the spatially-registered dataset). The artificial intelligence approaches often
rely on large sets of training data that use expert annotations from radiologists delineating
prostate tumors on the MRI. Such approaches process and evaluate the entire tumor, not
the individual voxels within the tumor such as in this study.

More recently, spectral/statistical approaches have been adapted from remote sensing
and applied to predict prostate tumor aggressiveness in multi-parametric [28–31] and
bi-parametric MRI [32]. The individual sequences must be registered to the voxel-level.
A vector is associated with each spatially-registered voxel composed of the values in the
individual sequence. A tumor is characterized as a signature vector that is distinguished
from the average normal prostate signature vector due to the physiological differences
such as tissue density and proton diffusion. The background (normal tissue) is further
characterized by a multispectral covariance that helps avoid issues of correlation among the
sequences when combining them in the calculations through “dewhitening”. Furthermore,
noise reduction and departures from statistical normality can be corrected by filtering out
noisy principal components and applying regulation to the covariance matrix. Unlike
artificial intelligence approaches, the training sets are minimal.

The current implementation of the spectral/statistical approach requires a clinician to
identify tumor like voxels within the spatially registered MRI hypercube [28–32]. A color
composite is used to quickly identify candidate target voxels through the appearance of
a specific color. For example, for bi-parametric MRI, red, green, and blue colors can be
assigned to the Apparent Diffusion Coefficient (ADC), the High B-value (HBV), and T2
channels, respectively. In this case, the tumor appears as green due to its relatively high
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density and low diffusion (low ADC and low red; low diffusion, large HBV and large green;
and high density, low T2 and low blue). Clinical intervention can introduce more variation
due to the dependence on the clinician’s experience and training, thereby complicating
studies and potentially diminishing clinical assessment. The clinician intervention can
also slow the evaluation process and reduce the workflow and efficiency into the clinic.
In addition, analyzing large number of patients (>1000) for research studies requires
greater efficiency in processing and can be abetted by automating the tumor signature
extraction process.

This manuscript describes and assesses a novel technique. This investigation is the
first and only one to autonomously extract vector target signatures that characterize the
tumor without the manual intervention of a clinician or image analyst as in previous
spatially registered MP- and BP- MRI studies [28–32]. Unlike most studies, this investi-
gation employs a spectral/statistical algorithm via an analytical approach requiring few
parameters and limited training, which processes each voxel within the prostate and tu-
mor. Specifically, this manuscript summarizes how well these signatures perform when
inserted into spectral algorithms in terms of accurately finding tumor aggressiveness and
clinical significance. Various options for processing the covariance matrix, a mathematical
entity that characterizes the normal prostate clutter background, are evaluated in terms of
achieving maximal accuracy.

2. Materials and Methods
2.1. Overview

Figure 1 shows the overall scheme to predict the International Society of Urological
Pathology (ISUP) grade [33]. The ISUP is the “ground truth” for this study, independently
determined from pathology and is related to the Gleason score, a measure of a tumor’s
aggressiveness, and Clinically Significant (Insignificant) Prostate Cancer or CsPCa (CiPCa).
The prediction of ISUP proceeds in certain sequential steps. Two spectral features, namely
z-score (Panel H) and processed Signal to Clutter Ratio (SCR) [31,32] (Panel I) are generated
from spatially registered MRI and are different and competing (in this study) quantitative
indicators of tumor aggressiveness. For this study, patient MRI data were gathered as part
of the PI-CAI Grand Challenge [34]. The ISUP grade is determined from the pathology
analysis recorded in the PI-CAI data collection [35] (Panel A in Figure 1). Using the BP-
MRI data [28–32], spatially registered hypercubes were assembled from the individual
MRI sequences through digital resizing, translation and cropping, specifically the ADC,
HBV, and T2 (Panel B in Figure 1). The prostate was manually outlined to create a digital
mask (Panel C in Figure 1). The background or normal prostate statistics are characterized
through computing the covariance matrix (Panel D) and the mean vector and standard
deviation for each MRI channel (Panel F). Various options exist to reduce noise and ensure
proper normality through covariance matrix processing (Panel E) for input to SCR (Panel I).
Specifically, principal component filtering, regularizing the covariance matrix and elliptical
volume minimization reduced the noise (Panel E) in the SCR [31,32] (Panel I). The novel
component of this research was that tumor signatures (see yellow filled box and Panel
G in Figure 1) were generated autonomously, not manually, to provide input for the
z-score and SCR computation [28–32]. The yellow filled panel (Panel G) illustrates the
autonomous signature formation process. Details are discussed in the following subsections
of the Section 2. First, the autonomous tumor signature generation creates a “normalized
quantitative green” image by combining normalized sequences of High B/(ADC+High
B+T2). Next, procedures employ thresholding to the quantitative green image, applying
morphology operations such as blobbing and removing small blobs. The optimal blob was
selected based on blob and sliding window statistics. The center of mass and “greenest”
sliding windows were used to select a specific voxel within the blob for the tumor signature.
The autonomous signature provides input for features Signal to Clutter Ratio (SCR), (Panel I)
and z-score (Panel H). The processed SCR (Panel I) and z-score (Panel H) were linearly
(logistical probability) fitted to the ISUP grade (CsPCa/CiPCa) (Panel J) and the PI_CAI
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biopsy (Panel A), respectively. Quantitatively evaluation of the linear and logistic fits was
achieved by computing the correlation coefficients (R) and the Area Under the Curve (AUC)
from Receiver Operator Characteristic (ROC) [28–32], respectively (Panel J).
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Figure 1. Overall schematic depicting the processes needed to predict the ISUP and CsCPa.
Histopathology provides the “Gold standard” ISUP, CsPCa (Panel A). Spatially registered bi-
parametric MRI hypercubes are digitally assembled (Panel B). Normal prostate is digitally outlined
(Panel C). Background, normal prostate covariance matrix computed (Panel D), Covariance matrix
treatments for Signal to Clutter calculations (Panel E). Additional simple background statistics com-
puted (Panel F) Autonomous target signature is depicted in the yellow highlighted panel, the focus
of this research (Panel G). z-score computed using statistics and signature from Panels F, G (Panel H),
SCR computed using processed covariance and signatures from Panels E, G (Panel I), Predictions
of ISUP, CsPCa using z-score or SCR from Panels I,H (Panel J). Fitting between ISUP, CSPCA and
Predictions from Panels A,J.

Algorithms to spatially register the bi-parametric data, image process, and compute
the SCR and AUC from the ROC curve were implemented using the Python 3 program-
ming language.

2.2. Study Design and Population

The patient data were derived from the PI-CAI [34] which is a publicly available
repository for prostate tumor MRI and assessments. An annotated multi-center, multi-
vendor dataset of 1500 bp MRI exams featuring basic clinical and acquisition variables
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compose the PI-CAI dataset [34]. Only a subset of the 1500-patient cohort underwent or
had available biopsy results. Patients were scanned at a number of different centers by
Siemens and Philips scanners. The PI-CAI data collection [34] only comprises bi-parametric
MRI, namely ADC, HBV, and T2 sequences.

All patients in this study cohort from the PI-CAI database [34] had biopsy-proven
adenocarcinoma of the prostate. This study included 42 consecutive biopsied patients. The
mean patient age was 65.1 years (range, 50 to 78 years), the mean PSA was 13.49 ng/mL
(range, 1.5 to 81.95 ng/mL), the mean prostate volume mean was 60.6 cm3 (range, 19 to
192 cm3), and mean ISUP grade was 1.12 (range, 0 to 5). All cases had been anonymized
prior to analysis.

2.3. Spatial Registered Hypercube Assembly: Magnetic Resonance Imaging

The bi-parametric MRI data [34] was restricted to ADC, HBV, and T2 sequences.
Diffusion-weighted MRI sequences were computed using a number (typically five) of
increasing magnetic field gradients. In higher magnetic field gradients (HBV), the higher
diffusing protons (not tumor) more readily attenuate their signals, producing lower values
and were hypointense. On the other hand, tumor nuclei (slower diffusing) under higher
magnetic field gradient (HBV) signals are less attenuated and yielded relatively larger
values and were hyperintense. The ADC was a slope from a linear fit to the magnetic field
gradient images (typically five) for each voxel. Slower diffusing nuclei (tumors) yielded
a smaller slope, lower ADC values, and therefore were hypointense. The ADC display
higher noise levels relative to each of the images from the magnetic field gradients resulting
from a fit. Tumors have higher tissue density and therefore resulted in relatively smaller
T2 signals.

2.4. Spatial Registered Hypercube Assembly: Image Processing, Pre-Analysis

To initiate spatial registration, the inter-voxel distance and spatial offsets for each of
the MRI sequences (ADC, HBV, and T2) were read from information stored in the dicom
header files. The MRI images were digitally resized [28–32] to the MRI sequence with
the lowest transverse spatial resolution (ADC, HBV). Based on the offsets listed in the
image header files, the images were translated a few voxels to the reference image (ADC,
HBV). The slices were axially translated to match the offsets using the known location of
the axial offsets. Small transverse translation adjustments were applied to the T2 image
to match the ADC, HBV from visual inspection. Stacked individual slices that had been
scaled, translated, and cropped based on the described protocol are known as a “cube”. The
components (ADC, HBV, T2) of the “cube” were spatially registered at the voxel level. The
“cubes” associated with each axial slice were then “stitched” together into a narrow three-
dimensional hypercube, in order to depict the entire body within the MRI scan Field of
View (FOV). These “three-dimensional” (two transverse directions plus spectral dimension
composed of ADC, HBV, and T2 images) thereby depicts a four dimensional “object”
(three-dimensional body plus the spectral dimension). Such a construct helps increase the
processing speed and analysis. For each patient, spatial registration and processing took a
few seconds on a Windows 10, base speed 2 Ghz, cache memory 8 GB machine.

Figure 2 shows a color composite derived from the three (ADC, HBV, T2) spatially
registered images. Spatially registered cubes derived from each slice are “stitched” together
and placed side by side in the horizontal display. In Figure 2, 27 slices of 256 × 256 × 3 cubes
(rows × columns × dimensions) were stitched into a single hypercube of size 256 × 6912 × 3
(rows × columns × dimensions). Only small sections of slices #13, #14 (out of 27) are shown.
The numbers listed along the vertical and horizontal edges show the row and columns
numbers for the hypercube, respectively. The yellow vertical line marks the divider (at
column 3328 = 13 × 256) between #13, #14 slides. Only the normal prostate and prostate
tumors appear in Figure 2 and all other tissues, bones, etc., in the MRI field of view are
blackened out due to masking. Color composite is shown by assigning red, green, and blue
to ADC, HBV, and T2, respectively. For greater clarity for viewing the tissues, a zoomed-in
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portion of the image accompanies the composite color image. The tumor appears as green
in such a color scheme (low ADC, high HBV, and low T2).
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Figure 2. Section of color composite hypercubes where red, green, and blue were assigned to ADC,
High B-value, and T2, respectively. Only small sections of slices #13, #14 (out of 27) are shown.
The numbers listed along the vertical and horizontal edges show the row and columns numbers,
respectively, for the hypercube. The yellow vertical line marks the divider. Red outlined rectangle
denotes zoomed region. Zoomed region shown. Note the green region in central, anterior transition
zone and dark green in posterior extending from left to right peripheral zone.

2.5. Normalized “Green” Image

Prostate tumors generally have higher cellular density relative to a normal prostate
and that tends to inhibit the diffusion of protons with resultant restricted diffusion rates [4].
In multi- and bi-parametric MRI prostate cancer imaging, tumors appear to show lower,
higher and lower signal intensity relative to normal tissue in ADC, High B-value, and T2
images, respectively. Assigning the red, green, and blue colors to ADC, High B-value and
T2 means that tumors appear as green. The assignment of the red, green, blue channels
was selected arbitrarily, but this study required a standard assignment. Quantifying the
“greenness” of a voxel helps detect the blobs related to tumors within a prostate and also
sort the blobs based on tumor aggressiveness indicator.

This study generated a normalized green image by adhering to the following proce-
dure [29]. After the bi-parametric MRI was spatially registered, a normal prostate mask
marked the normal prostate. From visual inspection, the distributions of ADC, HBV, T2
follow a roughly normal distribution. For voxels residing within the prostate (by using
the mask), a cumulative histogram for prostate voxel values in each sequence (ADC, High
B-value, T2) determined the 1 percentile and 98 percentile values. The voxels were scaled
or stretched based on the 1% and 98% values and anomalous voxels did not distort the
normalization. However, aberrant voxels (<1% and >98%) were assigned 0 and 1 values,
respectively. The “green” image was then formed by combining the normalized sequences
through the ratio: Green/(Red+Green+Blue) or High B/(ADC+High B+T2). The most
“tumor-like” voxels presumably possessed the largest green values.

Figure 3a shows an example of a stitched quantitative green image. As in Figure 2,
only a small portion (slices #13, #14) of the hypercube (27 slices) is shown. In addition,
masking only permits display for the prostate and tumor. The white and grey regions show
voxels having values exceeding the threshold and are potential blobs and tumors. Note
the regions are in the center anterior regions and the left and right posterior regions of the
prostate. Zoomed regions are denoted by the red rectangle. For reference, Figure 3b shows
the corresponding T2 image. Note the hyperintense region in the Figure 3a “Green” region
corresponds to the hypointense region for Figure 3b T2 image.
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Figure 3. (a) Section of normalized green image. Highest green regions are grey, white and no-
green is black. Only small sections of slices #13, #14 (out of 27) are shown. The numbers listed
along the vertical and horizontal edges show the row and columns numbers, respectively, for the
hypercube. The yellow vertical line marks the divider zoomed region shown inside the red rectangle
and expanded on right. (b) Section and zoomed T2 image. Note hyperintensity in (a) “Green”
corresponds to hypointense region in (b) T2.

2.6. “Green” Blob Formation

This study generates and examines agglomerations of voxels that presumably depict
prostate tumors [31]. The procedure for generating blobs follows a fixed sequence applied
to all patient data. First, a threshold (=0.90) is applied the normalized “green” image
and voxels exceeding the threshold were assigned a binary value 1 (or True), and those
below the threshold were assigned a binary value 0 (or False). The True voxels are only
connected if they have a True neighbor voxel residing within a single voxel in the horizontal,
vertical, diagonal directions. To eliminate excessively unusual shapes, such as thin string
appendages, morphology operations are applied to the blobs, such as erosion being applied
to non-zero voxels within structure element (2, 2) to shrink the object and followed by
dilation of the remaining non-zero voxels within the structure element (3, 3) to expand the
remaining object. Blob sizes less than 12 voxels or roughly 0.1 cc were filtered out.

Figure 4 shows an example of a “blobbed” selection, labeled after morphology opera-
tions erosion, dilation, and filtering. As in Figure 2, only a small portion (slices #13, #14)
of the hypercube (27 slices) are shown. In addition, masking only permits display for the
prostate and tumor. The red rectangle denotes the zoomed region. Note that after erosion
and dilation, the posterior regions were filtered out.
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2.7. Blob Selection

Tumors are often multifocal and occupy spatially distinct regions within a given
patient with prostate cancer. This study characterizes each blob and computes the average
grade over all blobs. In addition, this study examined the selection of a single blob and
its relationship with the pathologist’s report on the ISUP grade and clinical significance.
The blobs were selected from the normalized “green” image. The possible criteria for
selecting a given blob are maximal blob size, maximal “green”, minimal standard deviation,
maximal sliding window “green”, minimal sliding window stand deviation, maximal
sliding window covariance (average green/standard deviation), and relative blob position
in the scan. All blobs for a given patient were rated relatively, based on these statistical and
sliding window values. Some of these criteria play a more critical role in predicting tumor
aggressiveness. From trial and error, it was found that the following weights helped predict
ISUP and clinical significance: Size = 1, Green = 2, Sliding Window Maximum = 3, Sliding
Window Covariance = 3, Standard Deviation = 1, Blob Eccentricity = 0, Blob Position = 1,
Blob Covariance = 2).

2.8. Sliding Windows

Tumors are heterogenous, which complicates the autonomous search for the appro-
priate voxel within the blob that accurately characterizes the tumor. A “sliding windows”
approach, shown schematically in Figure 5, helps one find the appropriate voxel within
a given blob. Specifically, sliding windows (shown in yellow and blue in Figure 5) find
a high “green value” but are also relatively homogenous within a heterogeneous blob
(shown as green in Figure 5). In this study, the sliding window is defined as nine voxels
(yellow and blue in Figure 5) that include and surround a central voxel (blue in Figure 5).
Average and standard deviations are computed for the nine-voxel window and stored.
The next window center is translated one voxel away, and the statistics are calculated and
stored. This procedure is replicated and extended over the entire blob. The sliding window
recording the highest “green” and highest covariance (average/standard deviation) is
noted. The “greenest” voxel is based on the highest recorded covariance value from the
sliding window cohort.
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2.9. Overall Quantitative Metrics Description: SCR, Z-Score

Following common clinical practice, trained radiologists qualitatively determine a
tumor’s aggressiveness through visual inspection of multiple MRI pulse sequences [2]. In
this study, by contrast, a tumor’s departure from normal prostate tissue was quantitatively
expressed through computation of the SCR and z-score (Appendix A.1). The z-score and
SCR formulation merge information derived from all MRI sequences. SCR and z-score
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compute the difference between the mean tumor signature value and the mean normal
prostate value, scaled by the normal prostate standard deviation for each MRI sequence
(ADC, HBV, and T2). However, the z-score does not account for correlation among the
MRI sequences (ADC, HBV, and T2). The SCR, in contrast, decorrelates the sequences via
whitening. However, the SCR adds noise. The SCR computation requires generating the
covariance matrix. Using the covariance matrix in the SCR calculation decorrelates the
different components (i.e., especially the correlation between ADC and DWI) to generate the
true contribution of each sequence. The Appendices A.1–A.3 summarize the mathematics
behind the SCR algorithm. See references [31,32] for more details.

For each patient, SCR calculations took a few seconds to process on a Windows 10,
base speed 2 Ghz, cache memory 8 GB machine.

2.10. SCR: Filtering Noise

The covariance matrix in the SCR computation can be decomposed into principal
components [36]. Eigenvectors or principal components linearly combine all MRI compo-
nents. The principal components are all mutually orthogonal to each other and therefore
are decorrelated from each other. Conventionally, the ordering of the principal components
follows their associated eigenvalue (or statistical variation). Images associated with high
eigenvalues have large variations within the image, resulting in better-resolved images. In
contrast, images associated with principal components with small eigenvalues are noisy.
Filtering out and eliminating the noisy (low eigenvalue) principal components reduces
the noise in the covariance matrix calculation and increases the SCR calculation accuracy.
The Appendix A.2 summarizes the mathematics for filtering principal components. See
references [31,37,38] for more details.

2.11. Regularization and Shrinkage

Regularization ensures that the computations using the corrected covariance ma-
trix more closely follow the normal distribution. The analytic equation describing the
covariance matrix only results in an approximation to what would be expected for normal-
ity. Shrinkage regularization [31,32,39] perturbs the original covariance matrix CM(γ) by
adding a diagonal matrix weighted with a mixing parameter γ to generate a regularized or
modified regularized covariance matrix. Through minimizing, the discriminant function
helps to choose the appropriate γ. Regularized and modified regularized covariance matrix
computations use the same procedure but only differ in the different choice of the mixing
diagonal matrix (identity vs. diagonal of standard deviations). The Appendix A.3 describes
a summary of the mathematics behind regularization procedures. See references [31,32,39]
for more details.

Figure 6 shows the center of mass (Figure 6a), and the “greenest” sliding window voxel
(Figure 6b) are also shown for SCR generated from covariance matrix treated with modified
regularization. As in Figure 2, only a small portion (slices #13, #14) of the hypercube
(27 slices) is shown. In addition, masking only permits display for the prostate and tumor.
The red rectangle shows the zoomed region. The specific windows are denoted as red
squares showing the region of analysis within the blob.

2.12. Elliptical Volume Minimization

Another way to reduce noise in the covariance matrix calculation is to apply Elliptical
Volume Minimization (EVM) [40]. For this study, EVM sequentially removes 10% of some
randomly chosen pixels, then searches and computes the elliptical hypervolume for the
remaining 90% of the prostate voxels. The location of the 90% remaining voxels and their
elliptical hypervolume for each randomly chosen sequence is recorded. The minimum
elliptical volume is chosen, presumably reducing the effects of the 10% aberrant voxels.
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Figure 6. The (a) center of mass (CM) and the (b) “greenest” sliding window voxel are also shown for
SCR generated from covariance matrix treated with modified regularization. Red rectangle shows
the zoomed in region. Red square shows regions of analysis within the blob.

2.13. Logistic Regression

Logistic regression [41] fit the processed SCR, z-score, or patient data to the dependent
categorical variable, CsPCa, for this study. The ISUP grade is derived from the pathological
assessment from analysis of the MRI biopsy, systematic biopsy, the combination of MRI and
systematic biopsy or histopathology of the radical prostatectomy. The clinically significant
PCa (CsPCa) was assigned to ISUP grade ≥ 2, and the clinically insignificant PCa (CiPCa)
was assigned to <2. The training/test sets were randomly assigned among the 42 patients
but maintained a 70%/30% ratio for all combinations of patient sets. This study generated
1000 new randomized sets or configurations of results of patients within the training/test
conditions. These configurations resulted in 1000 independent ROC [42] curves, resulting
in a distribution of AUC values. The distribution of AUC scores was recorded, and the
2.5% and 97.5% largest AUC delineated the 95% confidence interval. The fit quality was
assessed through the AUC and the 95% confidence interval in the AUC distribution.

3. Results

Purported tumor signatures were found among the blobs and inserted into the
whitened Euclidean distance, or SCR computation and plotted against the ISUP. One
option is to find the average target signature taken from all blobs. In addition, blobs that are
more likely to depict a tumor’s aggressiveness were selected based on the blob’s statistics
(average, standard deviation), statistics from the sliding windows within each blob, size
and position within the scan. Within each blob, there was the option of choosing a signature
from the center of the mass or from the “greenest” voxels as determined by the sliding
window. As an example, Figure 7 shows plots of SCR from autonomous signatures gathered
from the “greenest” part of the selected blob. The covariance matrix was untransformed,
approximated with the z-score, elliptical envelope, PC filtered, regularized and modified
regularized. The combination of z-score and modified regularization results in the highest
(lowest) correlation (p-value).
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Figure 7. Signal to Clutter Ratio plotted against ISUP for the “greenest” voxel of selected blobs.
For SCR fitting, covariance matrix was untransformed, elliptical envelope applied, PC filtered, and
regularized and modified regularized. Fitting using z-score also shown. Correlation coefficients and
p-values shown for each covariance treatment.

Table 1 shows the metrics, specifically the correlation coefficient and p-values for
assessing the fitting of SCR with ISUP for tumor signatures taken from averaging the
signature from all blobs using the center of mass of each blob (Ave Blob CM) or averaging
from all blobs using the “greenest” part (Ave Blob Green) of every blob, signature from
a selected blob, and the choice of center of mass (Signature CM) or “greenest part of the
selected blob (Signature Green). Also shown are evaluations of fits resulting from different
manipulations of the covariance matrix for the SCR, such as unprocessed covariance matrix
(Untransformed), elliptic envelope (Elliptic), principal component filtering (PC Filter),
regularization (Reg), modified regularization (Mod Reg) and from z-score (z-score). The
highest (lowest) correlation coefficient (p-value) achieved comes from the z-score and
modified regularization of the covariance matrix.

Table 1. Correlation coefficient, p-values.

Covariance Matrix Manipulation Correlation Coefficient p-Value

Untransformed Ave Blob CM 0.326 0.0351

Untransformed Ave Blob Green 0.33 0.033

Untransformed Signature CM 0.362 0.0185

Untransformed Signature Green 0.423 0.00525

Elliptic Ave Blob CM 0.219 0.163

Elliptic Ave Blob Green 0.204 0.196

Elliptic Signature CM 0.137 0.388

Elliptic Signature Green 0.158 0.316

Z-score Ave Blob CM 0.45 0.00281

Z-score Ave Blob Green 0.46 0.00218

Z-score Signature CM 0.448 0.00293

Z-score Signature Green 0.476 0.00146
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Table 1. Cont.

Covariance Matrix Manipulation Correlation Coefficient p-Value

PC Filter Ave Blob CM 0.269 0.0848

PC Filter Ave Blob Green 0.273 0.08

PC Filter Signature CM 0.282 0.0706

PC Filter Signature Green 0.311 0.0453

Reg Ave Blob CM 0.315 0.042

Reg Ave Blob Green 0.321 0.038

Reg Signature CM 0.415 0.00634

Reg Signature Green 0.457 0.00236

Mod Reg Ave Blob CM 0.464 0.00195

Mod Reg Ave Blob Green 0.439 0.0036

Mod Signature Reg CM 0.4473 0.00298

Mod Signature Reg Green 0.498 0.00079
Abbreviations: Untransformed: unprocessed, Elliptic: elliptic envelope, z-score, PC Filter: principal component
filtered, Reg: regularized, Mod Reg: modified regularization, CM: center of mass, Ave Blob CM: center of mass
from averaging over all blobs, Ave Blob Green: greenest from average over all blobs, Signature CM: center of mass
from the selected blob, Signature Green: greenest voxel from selected blob.

As an example, Figure 8 shows plots of Receiver Operator Characteristic (ROC) curves
that plot the true positive rate and against the false positive rate or false alarm rate from
logistic probability fits of the SCR from autonomous signatures gathered from the “greenest”
part of the selected blob to the clinically significant prostate cancer. The covariance matrix
was untransformed, approximated with the z-score, elliptical envelope was applied, PC
filtered, regularized, modified regularized. The combination of z-score and modified
regularization results in the highest (lowest) correlation (p-value).
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Figure 8. Receiver Operator Curve (ROC) autonomous signatures taken from greenest part of the
selected blob, for covariance treatments: untransformed, elliptical envelope, z-score, PC filtered,
regularized, modified regularized. AUC and 95% confidence interval also shown.

Table 2 shows the metrics, specifically the AUC (along with the 95% confidence
interval) from ROC curves, for assessing the logistic probability of fitting SCR with clinical
significance for prostate cancer for tumor signatures taken from averaging the signature
from all blobs using the center of mass (Ave Blob CM) or the greenest parts of all blobs (Ave
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Blob Green), signature from a selected blob, and the choice of center of mass (Signature
CM) or “greenest part of the selected blob” (Signature Green). The highest AUC achieved
comes from the z-score and modified regularization of the covariance matrix.

Table 2. AUC from ROC for logistic probability fit.

Covariance Matrix Manipulation AUC [95% CI]

Untransformed Ave Blob CM 0.775 [0.500–1.0]

Untransformed Ave Blob Green 0.684 [0.333–1.0]

Untransformed Signature CM 0.681 [0.182–1.0]

Untransformed Signature Green 0.774 [0.364–1.0]

Elliptic Ave Blob CM 0.592 [0.300–0.899]

Elliptic Ave Blob Green 0.592 [0.300–0.899]

Elliptic Signature CM 0.639 [0.333–0.909]

Elliptic Signature Green 0.684 [0.333–1.0]

Z-score Ave Blob CM 0.915 [0.667–1.0]

Z-score Ave Blob Green 0.869 [0.545–1.0]

Z-score Signature CM 0.955 [0.800–1.0]

Z-score Signature Green 0.955 [0.80–1.0]

PC Filter Ave Blob CM 0.911 [0.700–1.0]

PC Filter Ave Blob Green 0.864 [0.583–1.0]

PC Filter Signature CM 0.908 [0.667–1.0]

PC Filter Signature Green 0.865 [0.636–1.0]

Reg Ave Blob CM 0.727 [0.250–1.0]

Reg Ave Blob Green 0.638 [0.083–1.0]

Reg Signature CM 0.864 [0.583–1.0]

Reg Signature Green 0.909 [0.667–1.0]

Mod Reg Ave Blob CM 0.915 [0.667–1.0]

Mod Reg Ave Blob Green 0.869 [0.545–1.0]

Mod Signature Reg CM 0.955 [0.800–1.0]

Mod Signature Reg Green 1.0 [1.0–1.0]
Abbreviations: Untransformed: unprocessed, Elliptic; elliptic envelope, z-score, PC Filter: principal component
filtered, Reg: regularized, Mod Reg: modified regularization, CM: center of mass, Ave Blob CM: center of mass
from averaging over all blobs, Ave Blob Green: greenest from average over all blobs, Signature CM: center of mass
from the selected blob, Signature Green: greenest voxel from selected blob.

4. Discussion

This study discusses the procedures for autonomously generating prostate cancer sig-
natures and the analysis for how well these signatures perform when inserted into spectral
algorithms in terms of accurately finding tumor aggressiveness and determining clinical
significance. This study autonomously finds regions of tumors or blobs, autonomously
searches within the blobs for an appropriate voxel that depicts the patient’s tumor, and uses
the extracted signature associated with the selected voxel to help determine the tumor’s ag-
gressiveness. This study extracts signatures through purely spectral, not spatial processing
and does not employ training data sets. This study finds that achieving high correlation
coefficients, low p-values (< 0.01) for fitting to ISUP and high AUC (> 0.90) from logistic
probability fits to clinically significant prostate cancer is achieved if the covariance matrix
is approximated with z-score and processed using the modified regularization approach.
Greater accuracy was achieved by selecting tumor blobs based on statistics applied to slid-
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ing windows, choosing the “greenest” sliding window. A reduction in accuracy resulted
from averaging signatures from all blobs.

Previously, prostate tumors were identified and selected manually by the clinician [28–32].
Autonomous tumor signature presumably is more objective and not subject to training and
experience of the radiologist. A more objective approach would presumably aid research
protocols by reducing the variability in patient assessments. Furthermore, autonomous
target signature selection should expedite the patient assessment and increase clinical
efficiency and patient throughput.

Despite the high correlation, low p-values, and high AUC values found from the
autonomous search, tumor signatures derived from human intervention performed even
better [32]. Future work should focus on selecting better candidate blobs. Choosing the
signature derived from averaging over all blobs performed well, but not as well as selecting
a particular blob based on size and statistical metrics. The selection criteria used in this
study, specifically statistics of the blob (size, blob statistics, sliding window statistics,
position) may not be sufficient in terms of features, weighting of the features. The choice
of position within the blob may depend on the size of the blob. In particular, the center of
mass choice may be suboptimal for blobs with curvature resulting in misplaced signature
position. Possibly a compromise between center of mass and “greenness” is needed when
selecting a voxel within the selected blob. Artificial intelligence or rigorous multivariable
fitting may find more optimal selection criteria.

This study found that accurate determination of tumor aggressiveness and clinical
significance depends on how the covariance matrix is processed, filtered, regularized. Com-
bining multiple sequences in multi-parametric and bi-parametric MRI must ensure that
each sequence is weighted appropriately. Specifically, how sequences can be combined
without possibly inappropriately weighting correlated sequences. All corrections removed
the mean values of the normal prostate sequences and scaled the differences based on
the sequence’s normal prostate standard deviation. This study found using z-score and
modified covariance matrix achieved the best performance. Applying the elliptical en-
velope and not transforming the covariance matrix degraded the accuracy for the tumor
aggressiveness.

Tumor structure is complicated and heterogenous. It is composed of vasculature,
necrotic tissue, and other structures. Therefore, it can be difficult but essential to determine
which specific part of the tumor represents the true indicator of the disease progression.
A unique aspect of this study is the use and examination of sliding windows in selecting
the specific voxel whose signature accurately helps depict the tumor’s aggressiveness.
Following the pathologists’ criteria, this study finds that the signature from the “greenest”
sliding window of a selected blob offers the best representation the tumor’s aggressiveness.
Future studies may investigate the possibility of biopsy based on the findings of the
autonomous tumor signature search. The choice of center of mass selection to select the
tumor signature can be confounded by tumors with curvature. Future studies may find
combining the “greenest” with the center of mass may provide a better choice.

In this study, correlation coefficients and p-values from fitting to the ISUP grade and
the AUC resulting from logistical fits to the CsPCa/CiPCa achieves comparable values
with those from AI [24–27]. Prospective studies of larger patient populations might confirm
the current findings and even potentially demonstrate that spectral/statistical techniques
outperform AI. To generate a model, AI requires a substantial amount of training. In
addition, AI is only applicable to certain clinical conditions such as a given magnetic field,
pulse sequence and AI may need to be retrained for patients scanned under different
conditions and scanners. In contrast [28], spectral/statistical techniques is flexible and can
manage new clinical situations by applying the “whitening–dewhitening” transform to
spectral signatures that require minimal processing.

Due to the use of analytic equations and the absence of fitting parameters, the spec-
tral/statistical algorithms do not follow the familiar training testing, prediction procedures
for artificial intelligence. This pilot study examined the feasibility of simplifying the entire
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process by skipping the conventional training, testing to determine the parameters. With
higher patient numbers, a “prediction” phase could be added. Future efforts may use
the simple coefficients (offset, slope) from linear regression fitting to ISUP in this study to
predict the ISUP or CsPCa of another set of patients.

This study examined and tested a variety of schemes to autonomously find tumors,
and search within the blob for appropriate voxels that accurately depict tumors. Prostate
tumor signatures extracted from blobs can be inserted into spectral algorithms to determine
tumor aggressiveness and the clinical significance of prostate cancer.

Our study has limitations. This study only examined a relatively small, albeit sufficient
number of patients to draw statistically meaningful conclusions. This study only applied
spectral/statistical approaches to handle the patient data and did not also simultaneously
apply an AI algorithm. Direct comparison of spectral/statistical vs. AI approaches applied
to the same patient cohort is merited. In addition, this study’s results warrant future
investigation with a greater number of patients.

5. Conclusions

The first autonomous tumor signature extraction applied to spatially registered bi-
parametric MRI shows promise for determining prostate tumor aggressiveness, simplifies
the implementation, and reduces burden for patients and clinicians. Further studies such
as those using a greater number of patients and better blob selection technique is merited.
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Appendix A.

Appendix A.1. Overall Quantitative Metrics Description: SCR, Z-Score

The tumor signature component Si for sequence i (i = ADC, HBV, T2) is an average
over W target values (xi,q) from the q voxels in the square window (W = 9). In this study,
autonomous searches select the optimal blob and then apply the sliding windows protocol
for finding the center for the target signature by finding the center of mass (CM) or the
“greenest” part of the blob for the xi,q.

Si =
1

W

W

∑
q=1

xi,q (A1)

After applying manual delineation of the normal prostate to the spatially registered
hypercube by a clinician to determine the normal voxel xi,p, the mean normal prostate value
µi for sequence i is the average over N normal prostate voxels xi,p.

i =
1
N

N

∑
p=1

xi,p (A2)

https://pi-cai.grand-challenge.org/


Cancers 2024, 16, 1822 16 of 19

The zscore [31,32] sums all M (M = 3) differences

zscore =
1
M

M

∑
i=1

(
Si − µi

σi

)2
(A3)

that is scaled by the normal prostate standard deviation σi, given by

σi =
1
N

(
N

∑
p

(
xi,p − µi

)2
)1/2

(A4)

zscore is simple but does not correct for correlation among the i sequences (ADC, HBV, T2).
To account for correlation among the different sequences, the Signal to Clutter Ratio

SCR [31,32] is given by
SCR = (S − µ)TCM−1(S − µ) (A5)

Equation (A5) is a matrix multiplication with three components, namely ADC, HBV,
T2. The superscript T denotes a vector transpose operation, CM is the covariance matrix,
and the superscript −1 denotes a matrix inverse operation. S is the vector tumor signature
(see Equation (A1)). The mean value for normal prostate or background is denoted as µ
(a vector, see Equation (A2)).

Appendix A.2. SCR: Filtering Noise, Regularization

Noise in the covariance matrix CM can be reduced by eliminating the noisy contribu-
tors, specifically by filtering out the principal components showing the lowest variation.
The filtered SCRFiltered is given by

SCRFiltered = (S − µ)TCM−1
Filtered(S − µ) (A6)

The inverse covariance matrix CMFiltered
−1 CM−1

Filtered is a square symmetrical matrix
and therefore can be decomposed into three parts [36],

CM−1
Filtered = ΛTλ−1

FilteredΛ (A7)

Λ is the eigenmatrix, ΛT is transpose of the eigenmatrix, and diagonal matrix λFiltered
−1

populates the diagonal with eigenvalues λ2
1, λ2

2, λ2
3. . .λ2

M [36].

λ−1
Filtered =



1
λ2

1
0 · · · 0 0

0 1
λ2

2
0 0 0

... 0
. . . 0

...
0 0 0 0 0
0 0 · · · 0 0


(A8)

The principal components, eigenvectors, eigenvalues are ordered based on the size of
the associated eigenvalue. The eigenvalues range from the largest λ1 to the smallest λM.
corresponding to images with high signal and high variation (1, 2) to low variation and
noisy (M − 1, M). Removing or deleting the lowest valued eigenvalues (Mth or 3 in this
study) for Equations (A6)–(A8), filters out the noisy eigenvectors [31,32].

Appendix A.3. Regularization and Shrinkage

Regularization or shrinkage [31,32,39] adds extra components to the covariance matrix
CM(γ) in order to maximize the normal distribution or equivalently minimize the discrimi-
nant function d(γ) [=−ln(normal distribution)]. Specifically, regularization or shrinkage
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adds a diagonal component that is controlled by the parameter γ and thereby perturbing
the covariance matrix CM into the regularized CMmod_Reg(γ)

CMMod_Reg = (1 − γ)CM + γV (A9)

V is a diagonal square matrix filled up with the square of the standard deviations from
M modalities and is given by

V =


σ2

1 0 · · · 0 0
0 σ2

2 0 0 0
... 0

. . . 0
...

0 0 0 σ2
M−1 0

0 0 · · · 0 σ2
M

 (A10)

The covariance matrix CM(γ) maximizes the normal distribution or equivalently
minimizes the discriminant function d(γ) (=−ln(normal distribution)), by specifically,
inserting CMMod_Reg (Equation (A9)) and V (Equation (A10)) into the modified discriminant
function dmod_Reg (γ)

dMod_Reg(γ) =
N

∑
i=1

(xi − µ)TCM−1
Mod_Reg(γ)(xi − µ) + ln (det(CMMod_Reg(γ))) (A11)

Which is computed for all discreet values of γ in the range of 0 < γ < 1. A minimum
dmod(γmin) located at γmin.. This γmin is inserted into Equation (A9) resulting in CMMod_Reg

CMMod_Reg_Min = (1 − γMin)CM + γMinV (A12)

and then subsequently Equation (A12) is inserted into Equation (A5) to form SCRMod_Reg

SCRMod_Reg(γ = γMin) = (S − µ)TCM−1
Mod_Reg_Min(γ = γMin)(S − µ) (A13)

Another way to regularize the CM is by applying a similar, but more standard form of
regularization and shrinkage [31,32,39]. Specifically, shrinking the difference in the highest
and lowest eigenvalues by adding a diagonal component that is proportional to the identity
matrix (with identical values along the diagonal) controlled by the parameter γ and thereby
perturbing the covariance matrix CM into the regularized CMReg(γ)

CMReg = (1 − γ)CM +
Tra(CM)

M
γI (A14)

where Tra denotes the trace operator, I is the identity matrix, and discreet values of γ
range from γ = 0.0 (or no CM modification) to γ = 1.0 (or CM is proportional to the
identity matrix). For ordinary regularization, the regularized discriminant function dReg
(=−ln(normal distribution)) is

dReg(γ) =
N

∑
i=1

(xi − µ)TCM−1
Reg(γ)(xi − µ) + ln (det(CMReg(γ))) (A15)

Among the discreet γ’s (range 0 < γ < 1), the lowest discriminant function dReg_Min is
found and located at γ = γmin and given by in

dReg_Min =
N
∑

i=1
(xi − µ)TCM−1

Reg_Min(γ = γmin) (xi − µ)+

ln(det(CMReg_Min(γ = γmin )))
(A16)
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And again,

CMReg_Min=
(
1 − γRegMin

)
CM +

Tra(CM)

M
γReg_Min I (A17)

where the sum is over all N samples within the entire prostate marked by the prostate
mask, the determinant operation is denoted det. SCRReg, or regularized SCR is given by

SCRReg(γ = γMin) = (S − µ)TCM−1
Reg_Min(γ = γMin)(S − µ) (A18)

Note: γ = 0 generates the standard SCR (Equation (A5)).
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