
Citation: Silva, D.; Rafael, J.; Fonte, A.

Toward Optimal Virtualization: An

Updated Comparative Analysis of

Docker and LXD Container

Technologies. Computers 2024, 13, 94.

https://doi.org/10.3390/

computers13040094

Academic Editors: Paolo Bellavista

and Wenbing Zhao

Received: 24 January 2024

Revised: 4 April 2024

Accepted: 7 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Toward Optimal Virtualization: An Updated Comparative
Analysis of Docker and LXD Container Technologies
Daniel Silva, João Rafael and Alexandre Fonte *

Instituto Politécnico de Castelo Branco, Av. Pedro Álvares Cabral, nº 12, 6000-084 Castelo Branco, Portugal;
dsilva@ipcbcampus.pt (D.S.); j.rafael@ipcbcampus.pt (J.R.)
* Correspondence: adf@ipcb.pt

Abstract: Traditional hypervisor-assisted virtualization is a leading virtualization technology in data
centers, providing cost savings (CapEx and OpEx), high availability, and disaster recovery. However,
its inherent overhead may hinder performance and seems not scale or be flexible enough for certain
applications, such as microservices, where deploying an application using a virtual machine is
a longer and resource-intensive process. Container-based virtualization has received attention,
especially with Docker, as an alternative, which also facilitates continuous integration/continuous
deployment (CI/CD). Meanwhile, LXD has reactivated the interest in Linux LXC containers, which
provides unique operations, including live migration and full OS emulation. A careful analysis of
both options is crucial for organizations to decide which best suits their needs. This study revisits
key concepts about containers, exposes the advantages and limitations of each container technology,
and provides an up-to-date performance comparison between both types of containers (applicational
vs. system). Using extensive benchmarks and well-known workload metrics such as CPU scores,
disk speed, and network throughput, we assess their performance and quantify their virtualization
overhead. Our results show a clear overall trend toward meritorious performance and the maturity
of both technologies (Docker and LXD), with low overhead and scalable performance. Notably, LXD
shows greater stability with consistent performance variability.

Keywords: containers; Docker; LXC; LXD

1. Introduction

The increasing demand for highly available computing resources and the increasing
adoption of Cloud computing have driven the adoption of virtualization technologies. The
benefits offered by virtualization in controlling total acquisition costs (also known as capital
expenditures or CapEx), and infrastructure maintenance costs (also known as operating
expenses or OpEx) have contributed to this interest and to the fact that it has become one
of the core blocks necessary to build large data centers and cloud infrastructure [1,2].

Traditional virtualization, based on modern hypervisors, is recognized as a mature
and widely adopted technology in support of these infrastructures. However, the addition
of an abstraction software layer for virtualization, allocation, and scheduling of host system
resources (CPU, memory, or storage) to multiple virtual machines (VMs) incurs an overhead
that has clear performance implications. Despite the latest hardware advances aimed at
improving the performance of VMs, in certain contexts, VMs fail to provide the necessary
scalability, agility, and flexibility. This is especially clear when running microservice
applications or other modern applications that demand the employing of continuous
integration/continuous deployment (CI/CD) best practices for agile development, where
teams need to automate and accelerate the process of application development, testing,
and deploying to eliminate the traditional approach of large and infrequent releases [3].

In response to these challenges and overhead, container-based virtualization presents
itself as a compelling alternative to VMs and is becoming increasingly popular [4].

Computers 2024, 13, 94. https://doi.org/10.3390/computers13040094 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13040094
https://doi.org/10.3390/computers13040094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-1524-891X
https://doi.org/10.3390/computers13040094
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13040094?type=check_update&version=1

Computers 2024, 13, 94 2 of 20

Unlike VMs, which virtualize resources at the hardware level, containers operate
at the operating system (OS) level, sharing the same OS kernel with reduced overhead
and eliminating the need for hypervisors. Containers are lightweight, requiring only the
necessary dependencies for the application and a minimal execution environment, thus
offering higher performance compared to VMs.

The most successful containers are Docker, CoreOS Rtk (also known as Rocket),
LXC/LXD, Podman, and OpenVz, while orchestration tools such as Kubernetes, Apache
Mesos, and Docker Swarm, allow for the deployment of container-based applications,
managing thousands of containers, and balancing loads across clusters.

Containers can be categorized into two main types, application containers and system
containers, each serving a different purpose. Application containers encapsulate a single
process of an application, while system containers behave as a complete OS environment.

The goal of this article is to investigate the performance of recent container-based
virtualization solutions, selecting as a target two of the most representative instances
of each type, Docker (application) and LXD/LXC (system), contrasting and quantifying
the overhead in relation to a native environment while trying to find a balance between
performance and the purpose of its adoption. For this, a variety of benchmarks and
workloads stressing these environments will be performed. Furthermore, this article aims
to demonstrate the high maturity state of both container virtualization technologies.

The main work contributions are as follows:

• Reviewing key concepts about the container-based form of virtualization;
• Analyzing the advantages and limitations of application and system containers;
• Formalizing and quantifying any overhead introduced;
• Conducting an up-to-date comparison of container technologies using modern in-

stances and recent hardware;
• Contrasting performance between container types (application vs. system);
• Investigating the variability in hardware–performance combinations;
• Demonstrating the maturity of container-based virtualization.

The rest of this paper is organized into six sections. Section 2 provides background
information, discusses the concepts of container virtualization, and analyzes the two candi-
date container instances selected for evaluation. In Section 3, the scope of the study and
related work are presented. Section 4 presents formal considerations regarding the expected
overhead. Sections 5 and 6 detail the implementation of the adopted testing methodology
and discuss the experimental results of the performance evaluation. Finally, Section 7
discusses major findings, presents conclusions, and suggests avenues for future work.

2. Background

This section aims to provide an overview of container-based virtualization technology,
contrasting it with hypervisor-based virtualization, and highlights the key differences
between Docker and LXD/LXC containers, which are the focus of this study.

2.1. Hypervisor Types and Containers

In traditional virtualization, a hypervisor, also known as a virtual machine monitor
(VMM), is implemented as a software layer situated between the host system hardware
and the virtual machine (VM) [5], as illustrated in Figure 1. The role of the hypervisor is
to manage the allocation and scheduling of host hardware resources (CPU, memory, and
input–output (I/O) devices) among multiple VMs. A hypervisor can provide VMs with
high performance and a highly isolated and secure environment, without the behavior of
one VM affecting the others. Examples of such hypervisors [6], which are usually HW-
assisted, are kernel-based virtual machines (KVMs) and include Microsoft Hyper-V and
VMware ESXi. Additionally, there are Type 2 or hosted hypervisors, which run as a host
application/extension on top of the host OS, adding more overhead, and are the VMware
Workstation/Fusion and the Oracle Virtual Box [7].

Computers 2024, 13, 94 3 of 20

Computers 2024, 13, x FOR PEER REVIEW 3 of 23

input–output (I/O) devices) among multiple VMs. A hypervisor can provide VMs with
high performance and a highly isolated and secure environment, without the behavior of
one VM affecting the others. Examples of such hypervisors [6], which are usually HW-
assisted, are kernel-based virtual machines (KVMs) and include Microsoft Hyper-V and
VMware ESXi. Additionally, there are Type 2 or hosted hypervisors, which run as a host
application/extension on top of the host OS, adding more overhead, and are the VMware
Workstation/Fusion and the Oracle Virtual Box [7].

Container-based virtualization offers a lightweight alternative to hypervisor-based
virtualization. Unlike a VM that runs a full operating system, a container can encapsulate
an individual process or application or behave like a full OS. As illustrated in Figure 1,
this virtualization solution precludes the use of a hypervisor to function as an
intermediary to take control and share resources. In container-based virtualization, the
need for an intermediary hypervisor is eliminated. Instead, virtualization occurs at the
kernel level of the host operating system (OS). Multiple isolated and independent slices
of the host OS are created for containerized guests, allowing applications to share the same
OS and, in some cases, common libraries. This approach reduces overhead and
streamlines booting and shutdown times, as there is no need to boot a complete guest OS
[8].

Figure 1. Hypervisors vs. containers.

There are essentially the following three types of containers: process or application
containers, system containers, and embedded containers. Embedded system containers
serve to alleviate complexity in the IoT (internet of things) or industrial systems but are
outside the scope of the present work. All these approaches use the host OS kernel. Figure
1 also shows the comparison between application containers (e.g., Docker or Rocket) and
system containers (e.g., LXD/LXC or OpenVz), which are used in different circumstances,
as described below.

Application containers, like Docker or Rocket, are process containers that bundle
and run one process or service per container. These containers include all the necessary
dependencies, configuration files, and libraries required for their operation, thus ensuring
consistent operation in multiple environments.

Originally, containerization in Linux relied on tools like chroot to isolate processes;
however, modern containerization leverages Linux kernel namespaces (an advanced form
of chroot that changes the root directory of running processes) to isolate resources, both
network and process identifiers (PID), and on cgroups to limit the use of resources and
distribute them to containers.

On Windows, containerization principles differ, including process containers
(isolated view of system resources within the same kernel), Hyper-V containers (running
within a separate, stateless Hyper-V guest VM), and HostProcess containers (running
directly on the host’s network namespace) [9,10].

To conclude, Table 1 summarily contrasts both forms of virtualization, with benefits
on both sides.

Figure 1. Hypervisors vs. containers.

Container-based virtualization offers a lightweight alternative to hypervisor-based
virtualization. Unlike a VM that runs a full operating system, a container can encapsulate
an individual process or application or behave like a full OS. As illustrated in Figure 1, this
virtualization solution precludes the use of a hypervisor to function as an intermediary
to take control and share resources. In container-based virtualization, the need for an
intermediary hypervisor is eliminated. Instead, virtualization occurs at the kernel level of
the host operating system (OS). Multiple isolated and independent slices of the host OS
are created for containerized guests, allowing applications to share the same OS and, in
some cases, common libraries. This approach reduces overhead and streamlines booting
and shutdown times, as there is no need to boot a complete guest OS [8].

There are essentially the following three types of containers: process or application
containers, system containers, and embedded containers. Embedded system containers
serve to alleviate complexity in the IoT (internet of things) or industrial systems but are
outside the scope of the present work. All these approaches use the host OS kernel. Figure 1
also shows the comparison between application containers (e.g., Docker or Rocket) and
system containers (e.g., LXD/LXC or OpenVz), which are used in different circumstances,
as described below.

Application containers, like Docker or Rocket, are process containers that bundle
and run one process or service per container. These containers include all the necessary
dependencies, configuration files, and libraries required for their operation, thus ensuring
consistent operation in multiple environments.

Originally, containerization in Linux relied on tools like chroot to isolate processes;
however, modern containerization leverages Linux kernel namespaces (an advanced form
of chroot that changes the root directory of running processes) to isolate resources, both
network and process identifiers (PID), and on cgroups to limit the use of resources and
distribute them to containers.

On Windows, containerization principles differ, including process containers (isolated
view of system resources within the same kernel), Hyper-V containers (running within a
separate, stateless Hyper-V guest VM), and HostProcess containers (running directly on
the host’s network namespace) [9,10].

To conclude, Table 1 summarily contrasts both forms of virtualization, with benefits
on both sides.

While containers offer lower complexity and overhead due to closer access to OS
services, they may exhibit lower levels of isolation and security compared to hypervisor-
based virtualization. Hypervisor-based solutions typically include advanced security
features like data encryption, network isolation, and granular access control. However,
potential OS-level vulnerabilities in containers necessitate additional security measures to
mitigate risks [11].

However, containers can offer a high-density solution and allow for a fast and con-
sistent deployment of applications, given the greater portability of applications, since all
the necessary dependencies are already grouped in the container. Both solutions tend to
provide an organization’s infrastructures, including Cloud with lower CapEx and OpEx

Computers 2024, 13, 94 4 of 20

costs, and can meet the following four major design objectives of these infrastructures:
scalability, reliability, dependability, and security compliance [2].

Table 1. Hypervisors vs. containers comparison.

Feature Virtual Machines Containers

Isolation Increased isolation between virtual
machines

Less effective. Shares the kernel of the host
operating system

Size Larger, include a complete operating
system and dependencies

Smaller; the image includes only
application-specific dependencies

Booting and Shutdown Slower due to OS size and startup Faster due to the use of the shared kernel

Management Managed as independent entities Managed on a large scale in clusters by
using orchestrators.

Scalability Vertical scaling; requires dedicated
resources for each virtual machine Horizontal scaling; can be managed on a large scale

Portability Less portable; depends on the hypervisor
compatible with the operating system

They can be easily moved between development and
production systems and environments.

Security

Greater isolation between machines,
hypervisors also have advanced features

such as encryption, network isolation,
and granular access control.

Potential risk of a compromised container affecting
other containers, due to OS vulnerabilities

OS flexibility Increased OS flexibility; depends only on
hypervisor and host architecture

Flexibility limited by OS; a container needs to use the
same OS

2.2. Docker and LXD/LXC

Docker is an open-source container platform that provides a comprehensive set of
tools to create and manage the lifecycle of containers, including monitoring their state [12].

One of Docker’s key strengths is its ability to streamline the deployment, testing, and
scaling of containerized applications, making it well-suited for environments adopting
the microservice design architecture pattern, as it facilitates the decomposition of applica-
tions into individual, isolated services that can scale horizontally, providing flexibility in
application development and deployment.

Docker provides a deployment model based on a layered file system (Unionfs), which
enables the creation of sharable images or libraries through public registry servers, such
as Docker Hub. Docker images facilitate the portability of applications or sets of services
between various environments, since the resulting container instance encapsulates the
application or microservice along with all required dependencies for execution on any
server (e.g., Linux or Windows). For example, in an application that requires the Apache
TomCat application server and a MySQL database, the developer only needs to create a
Dockerfile consisting of a sequence of commands to assemble a base image with these two
items. This image can then be distributed to other computers.

In technical terms, Docker is lightweight, and it was initially built on Linux containers
(LXC) on Linux systems, but it has gone its own direction, creating its own runtime
environment called libcontainer, which is integrated within the Docker engine. This
environment interfaces with kernel features such as namespaces and cgroups to provide
efficient containerization. Docker uses the QEMU emulator when needed and, in Windows,
leverages new Hyper-V/WSL2 technologies. In contrast to LXC, which launches an init OS
in each container and can then launch other processes, Docker provides an OS environment
by the Docker engine for running applications, specified in the Docker image.

At the core of the Docker architecture are several high-level components that enable the
creation, management, and execution of containers. These are the Docker CLI, Docker daemon,
and its REST API, which have collectively contributed to Docker’s widespread adoption.

Computers 2024, 13, 94 5 of 20

The Docker CLI serves as the primary interface for users to interact with Docker and
send commands. These are translated into requests to the Docker daemon via the REST API,
which then executes the necessary management operations (e.g., pull or run) on Docker
objects, such as images and containers.

The two components that support these operations and the execution of containers at
the lowest level are containerd and runC. The containerd provides a high-level execution
environment and manages the lifecycle of all containers on the host system and abstracts
the calls to the different OS kernels (Linux, Windows, or Solar). The runC component is
the lowest-level component used to run the container; for example, it uses native Linux
features to create and run containers, and runC includes libcontainer.

Finally, these low-level components, containerd and runC, follow the specifications of
the Open Container Initiative that aims to promote and ensure interoperability between
container platforms [13,14]. In this way, it is possible that the Kubernetes orchestration tool
can use the Docker containerd high-level execution environment, or CRI-O environment,
created for Kubernetes [15,16].

Linux LXC is an operating system-level virtualization technology that allows for the
creation and execution of multiple virtual environments (VEs) or Linux containers, which
are fully isolated on a single host [17]. These containers can be used in three ways, either as
a sandbox for running specific applications or microservices within a VE, as application
containers, or to virtualize a complete operating system as system containers.

LXC uses the namespaces mechanism to isolate the containers and the native Linux
functionality, cgroups, to share its kernel with the containers and limit the CPU, memory,
disk, and network between containers. This approach removes the overhead imposed by
an additional kernel and consumes fewer resources, thus having higher efficiency and
better performance [18].

In the case of system containers, LXC distinguishes itself from Docker by allowing
for a single init process to create an isolated virtual environment that supports multiple
application processes in a single container.

LXC can be combined with container management tools, such as Docker and LXD,
thus allowing the creation of multiple complex virtual environments with ease, increasing
their accessibility.

LXD is an extension of LXC and aims to turn it into a modern management tool for
containers and virtual machines, similar to Docker, by utilizing a REST API to communi-
cate with the LXC software library (libxlc), enhancing the LXC features, such as improved
security and isolation (e.g., rogue container detection), live migration of containers, and
limiting resources used by each container [19]. LXD is also image-based, offering a wide
range of images of various Linux distributions, enabling flexibility and scalability, support-
ing various backends and network types, and HW from laptops to rackmount servers in
the Cloud.

LXD platform enables an easy creation and management of containers, offering an ad-
ditional layer of container management that enables more refined control of each container
and its settings, including limiting resources, creating snapshots and migrating containers
between hosts, using a command line tool, using its REST API, or using third-party or
integrated tools [20,21].

3. Scope and Related Work

The primary focus of this research is to study container-based virtualization and to
assess its maturity through performance evaluation of modern containers, including both
process and system containers, which play a critical role in OS-level virtualization.

Traditional virtualization techniques face performance challenges due to the added
overhead compared to native environments. Initially, system VMs had significant overhead,
but this has been reduced over the years due to software optimizations and hardware
advances. By recognizing this, extensive performance evaluations of hypervisors and

Computers 2024, 13, 94 6 of 20

non-virtualized execution have been conducted and found, in some scenarios, significant
overhead [22–26].

More recently, other forms of virtualization, such as container-based virtualization
have been the focus of attention, and extensive performance evaluations have been con-
ducted, especially considering Docker due to the limited adoption of LXC in its early years.
Nevertheless, previous comparisons of containers mostly relied on older versions and
out-of-tree patches of containers [27–30].

This paper specifically provides an updated performance assessment of contain-
ers, considering two modern application and system containers platforms (Docker vs.
LXD/LXC) for evaluation. Notably, LXD is included due to its recent advances and efforts
in promoting adoption [19]. Thanks to LXD, LXC has been revitalized as a part of the
system container ecosystem. This evaluation will primarily assess the added overhead
on a resource-by-resource basis. To the best of our knowledge, this is also the first work
to lay the groundwork for formally describing the added overhead by container-based
virtualization, breaking it down into its main components and incorporating considerations
related to certain evaluation limitations.

We restrict our study to base container technologies. For instance, a recent assessment
of networking solutions for containers was conducted in [31]. Despite the performance
findings showing the superior performance of SR-IOV, the study focused on Kubernetes
and, apparently, their results and may not be replicated for both types of containers
(applicational and system).

Finally, assessing emerging solutions that are extending containerization into special-
ized domains such as high-performance computing (HTC) environments [32,33] or address-
ing security challenges raised by containers [34] are also out of the scope of this work.

4. Expected Overhead of Containers

As discussed in Section 2, containers are an abstraction placed directly on top of the
host OS for different processes or device namespaces, and, in the case of system containers,
it is possible to virtualize multiple, completely new hosts within a single operating system
kernel. For this reason, although there is a significant cost inherent to the configuration of
containers, the expected overhead is reduced.

To validate this expectation, this study aims to analyze the performance of these two
containerization solutions, using two of the most representative instances of application
and system containers, Docker vs. LXD, contrasting them and using the native machine as
a reference.

The different benchmarks and the different workloads they provide can be used dur-
ing the tests to stress and evaluate performance aspects of the containers. Thus, for each
workload, Wi, of a benchmark, a specific performance metric, Pi, will be measured on a
performance feature basis (computing, I/O, and network communications). When analyz-
ing each Pi value, it should be considered that it may be generically affected by several
overhead components sourced from different virtualization mechanisms or abstractions.
Though identifying all overhead components in a very fine-grained manner and providing
a full formal analysis of overhead components is beyond this study’s scope, we will next
delve a bit deeper.

To start, as discussed in Section 2, Docker and LXD containers are very lightweight
when compared to virtual machines (VMs), given that containers differ from VMs in the
way they use host resources. Instead of virtualizing system hardware, Docker, and LXD
share the kernel of their host, even though we have already seen that this is not exactly the
case. Docker and LXD/LXC containers use kernel features (e.g., kernel namespaces, chroot,
and cgroups) to create isolated processes and file systems, providing a completely isolated
virtual environment (VE) or container.

Initially, Docker used LXC to create isolation from the host system but later switched
to its own libraries (libcontainer). Despite this, Docker and LXD/LXC share many aspects.
Docker offers an abstraction for machine-specific settings, by abstracting the storage,

Computers 2024, 13, 94 7 of 20

networking, and other features. These are part of the Docker engine and make Docker
containers more portable, as they rely less on the underlying physical machine. Docker
supports layered containers by default due to its layered file system; this means that the
resulting container is the sequential combination of changes made to the file system.

In contrast, LXD complements LXC by handling networking and data storage, it
should be expected that LXD would add negligible overhead given that LXC uses kernel
extensions, operating similarly to a VM. With the absence of a virtualization hypervisor,
the containerized machine still has limited access to the hardware (compared with a native
OS), but the resources are accessed in a much easier fashion compared to a VM. The main
issue with LXD is its lower scalability due to the size of container images when compared
with Docker.

Even with all mentioned extra layers of abstraction, significant performance issues are
not expected in most cases when using Docker or LXD.

Consequently, with a focus on Docker, the overall performance of containers should
be influenced by some factors, such as the file system of the container image and the c-lib
component, which consist of libraries and dependencies that need to be loaded for each
container. For example, in a read-and-write benchmark test on the file system, the measured
metric Pi for a workload Wi of an I/O benchmark should be given by Equation (1).

Pi = f (Wi, e-gm, hOS-Fs, c-FS, c-lib/dependencies-loading, U-p), (1)

where e-gm is the management or processing component of the container engine, hOS-Fs is
the performance component of the host’s file system, c-FS is the performance of the layered
file system of the container image, and c-lib is the component of the libraries/dependencies
that need to be loaded for each container. The e-gm component would be almost negligible.
Finally, the U-p component includes the case of overhead due to unforeseen causes, such
as the existence of a driver that does not allow optimal utilization of the hardware. For
instance, to mitigate this component and enhance the performance and efficiency of the
Docker file system, it is recommended to use optimized storage drivers, like overlay2 or
aufs drivers. The first one was used in our experimental set-up.

Another important component that can impact container performance is the network
overhead sourced by additional network mechanisms, which are necessary for internal
communication between containers and with the public network. Different Docker network
configurations, such as Bridge and NAT, can result in varying performance outcomes.
Similarly, LXC also allows for the creation of custom network devices for containers, and
multiple methods can be used to setup a network, such as a host bridge or a NAT bridge
using a service call lxc-net.

Therefore, the value of the measured metric Pi for each workload Wi of a network
benchmark when the resource is the network is expected as shown in Equation (2). The
component that will potentially affect performance the most will be introduced by the ad-
ditional network mechanisms (Bridge, NAT, among others) and p-vNet, which are needed
for internal communication between containers and between containers and the public
network. The remaining components have a similar meaning regarding I/O benchmarks.

Pi = f (Wi, e-gm, p-hNet, p-vNet, c-lib/dependencies-loading, U-p), (2)

where e-gm is the management or processing component of the container engine, p-hNet
is the performance of host network communication stack, p-vNet is the performance of
virtual network mechanisms, c-lib is the component of the libraries/dependencies that
need to be loaded for each container, and U-p is the component that includes the case of
overhead due to unforeseen causes.

Finally, after listing and measuring the performance metric Pi for a workload Wi of a
benchmark, it is important to quantify the overhead Oi in a percentage (%). In effect, we
must treat a positive overhead value Oi in % as an indicator of performance loss, compared
typically to the performance of the native system or other systems used as a baseline, as

Computers 2024, 13, 94 8 of 20

suggested by Equation (3). Conversely, a negative overhead value Oi in % is an indicator of
a performance gain.

Oi = (Pb − Pi)/Pb × 100%, (3)

where Oi is the performance overhead in %, Pb is the baseline performance, and Pi is the
actual performance metric Pi for a workload Wi.

Equation (3) assumes that an increasing Pb or Pi is better. However, in some cases,
both have a reverse behavior, where lower is better (e.g., latency measurement or access
times), and the modification suggested in Equation (4) can be adopted. It is important to
note, however, that in our present study, we did not utilize any kind of these metrics.

Oi = (1 − Pb/Pi) × 100%. (4)

5. Methodology and Experimental Environment

This section describes the implementation aspects of the testing methodology, includ-
ing the research questions, the performance features to be evaluated, and the experimental
environment factors such as host systems, operating systems, and configurations, as well
as the benchmarks and workloads used.

5.1. Research Questions and Performance Features

The purpose of this study is to investigate the performance of recent container-based
virtualization solutions by selecting two instances, Docker vs. LXD/LXC. Objectively, we
aim to perform a quantitative comparison of performance in different usage scenarios.
Empirically, we aspire to answer the following three research questions (RQs):

RQ1: Does Docker induce the same overhead on different operating systems?
RQ2: How do different container environments compare with native systems in terms of
performance?
RQ3: How do Docker and LXD/LXC containers compare with each other in terms of
performance?

The features or performance aspects of the containers to be evaluated are composed of
the physical part and its capacity. For instance, the processing (CPU) and its capacity is
typically measured by the CPU speed or CPU score. In the present study, we identify three
candidate features essential to the performance evaluation of containerization solutions
(the processor, the network communications, and I/O storage).

Processing (CPU): This refers to the processing offered by each type of container ana-
lyzed. Evaluating the CPU performance associated with a system container or application
contender will reflect the overhead in processing.

I/O Storage: This refers to data transfers within the data storage system.
Network Communications: This refers to data transfers between container clients and

between different containers or between different container instances. The evaluation of
data transfer rates will reflect the overhead of network resources.

5.2. Host Systems, Operating Systems, and Configurations

This section details various experimental factors, such as the characteristics of the
computer systems and operating systems used in the tests and important considerations in
the configurations.

5.2.1. Host Systems

During the creation of the testbed, two computer systems with standard characteristics
(CPU, RAM, GPU, storage, and network) were chosen to perform and repeat different
evaluation experiments and stress the virtualized environment. It was intentional to choose
two distinct platforms and two different vertices in terms of performance but of typical
consumer use. The characteristics of the host systems used in the benchmarks are as follows:

(1) Intel Laptop

Computers 2024, 13, 94 9 of 20

• CPU: Intel Core i7 6700 HQ;
• RAM: 16 GB (2 × 8 GB) DDR4 2133 Mhz CL15;
• Storage: SSD NVMe Gen3 × 4 Kingston NV2 500 GB;
• Network: Killer E2400 Gigabit.

(2) AMD Desktop

• CPU: AMD Ryzen 7 5900X @5.0 Ghz;
• RAM: 16 GB (2 × 8 GB) DDR4 3600 Mhz CL16;
• Storage: SSD NVMe Gen4 × 4 Samsung 980 Pro 1 TB;
• Network: Realtek 8111H Gigabit.

5.2.2. Operating Systems

In the configuration step of the benchmark environments, Docker Desktop was in-
stalled on both host operating systems used (Windows 10 22H2 and Garuda Linux), and
LXD was installed on the Linux host operating system running an Arch-based system
container. These were chosen for the following reasons.

Windows [35]: Windows 10, despite being replaced by Windows 11, is still currently
one of the most widely used OSs for personal use, with a large and extensive documentation.
Windows 10 is compatible both as host OS and guest OS, with different virtualization and
containerization platforms, such as Oracle VirtualBox, Hyper-V, and Docker, which makes
it one of the preferred OSs in virtualization, containerization, and testing environments.

Garuda Linux Xfce [36]: Among several existing options (e.g., Debian, Ubuntu,
Garuda), Garuda Linux Xfce was chosen, because it is an OS based on Arch that is light,
stable, and efficient. Also, it is a “ready-to-use” distribution, with several packages already
pre-installed with good device driver support. Xfce is a stable and lightweight desktop
environment that is visually appealing and easy to use.

Arch Linux [37]: Arch Linux is a lightweight and highly customizable Linux distribu-
tion known for its simplicity and flexibility. It follows a “do-it-yourself” approach, allowing
users to build their systems from the ground up. With its minimalistic design and focus on
user control, Arch was chosen as the base image for all LXD containers.

5.2.3. Specific Configurations

The host systems where the tests were conducted were equipped with all software
updated to the date of execution, including all programs, system updates, and drivers.

Docker and LXD were configured to use only four threads, and, for better performance
and compatibility on the systems, VT-d was enabled in the BIOS of the Intel computer and
secure virtual machine (SVM) on the AMD computer.

5.3. Benchmarks and Workloads

In this study, the selection of software testing tools or utilities, also called benchmarks,
which allow for analyzing and comparing the performance between several systems, was
based on specific requirements. These included the need for multiplatform support and
compatibility with the containerization technologies targeted of our analysis, as well as
offering reliable measurements of relevant metrics.

Table 2 outlines the benchmarks selected by the category of resource to be evaluated
and the performance metric measured. Some of tools may test more than one perfor-
mance aspect.

Table 2. Selected benchmarks.

Physical Properties Benchmarks Performance Metrics

Processing Geekbench6 Single-core/multi-core score
Network communications Iperf3 Network speed, packet loss

I/O Disk CrystalDiskMark Read/write speed

Computers 2024, 13, 94 10 of 20

Next, certain considerations are described and made for each tool selected.
GeekBench6 [38]: Geekbench6 is a cross-platform CPU benchmarking utility. It runs a

set of different CPU tests to evaluate different aspects of CPU performance. Two key CPU
performance values are returned, single and multi-core scores. The most relevant tests,
which deserved our focus, were Clang, Asset Compression, and Ray Tracer, because they
showed the best scalability in terms of the number of threads and memory usage.

CrystalDiskMark [39]: CrystalDiskMark is a tool that allows for evaluating the per-
formance of storage drives, such as hard disks and USB flash drives. It performs read-
and-write tests with different block sizes and conditions. Sequential read/write tests can
be performed to measure the maximum read and write speeds that the unit can reach or
random read/write tests.

iPerf3 [40]: Iperf3 is a tool used to perform network tests, which can create TCP and
UDP streams and then measure the corresponding throughput of a network. Iperf3 allows
for the definition of various parameters to test or optimize a network. Like CrystalDiskMark,
it was chosen, because it is a simple, portable, and cross-platform tool.

The workloads used to stress each performance aspect of the containers and the native
machines used as reference include the following factors.

Iterations and durations: Each instance (native system, Docker, and LXD/Linux)
and each performance aspect (CPU, I/O storage, and network) was tested five times. A
two-minute waiting period was introduced between tests to minimize interference from
previous processes or cached data in the system’s performance; additionally, all containers
were restarted between tests to ensure consistency and validity of the results.

To obtain repeatable, comparable, and scientifically relevant results, we kept as many
of the parameters as similar as possible. The major example was CPU tests, where each test
was conducted with each environment limited to four threads to ensure an easier and fair
comparison with each other, as some containerization environment setups are limited on
the number of threads that can be assigned to them.

Workload size: The workload sizes were defined by the benchmark tools used. For
benchmarking I/O device performance with CrystalDiskMark, it was configured to use
2 GB blocks and to saturate the 1 GB cache of both SSDs. The number of loops was set
to five to demonstrate consistent performance. In network benchmarks using iPerf3, the
maximum bandwidth was set for both TCP and UDP tests to accurately measure the
network throughput.

In this the study, we analyzed the differences in performance by calculating a geometric
mean of the various test runs, which were executed multiple times to ensure data accuracy
according to best practices in benchmarks [41].

6. Experimental Results and Analysis

In this section, we present the experimental results obtained based on the employed
metrics measured to quantify the performance and overhead differences between both
native systems, the various containerization environments, and distinct hardware configu-
rations. Finally, our analysis seeks to identify trends present within the collected data.

6.1. CPU Benchmarks

The CPU benchmark results will be presented in various tables with color-coded
heatmaps to facilitate reading comprehension. Within each table, the last two columns will
present the overhead results in percentages, where a positive number reflects an uplift and
a negative number represents an overhead (as discussed in Section 4).

In the following tests, the benchmarking tool Geekbench6 was employed to assess
the performance of the processor in the machines and containers. This tool encompasses
multiple tests aiming to evaluate various aspects of processor performance. As mentioned
earlier in Section 5.3, the Clang, Asset Compression, and Ray tracer tests of the Geekbench
tool were given relevance, as they proved to be more scalable in terms of the number of
threads. The results of these particular tests will be highlighted in bold.

Computers 2024, 13, 94 11 of 20

6.1.1. Native System CPU Benchmarks

For the initial set of tests regarding the CPU benchmarks, we conducted evaluations
on native systems, and the resulting performance results are shown in Figure 2. The
data presented is from tests performed on the AMD desktop system and compares the
performance between Windows and Linux OS.

Computers 2024, 13, x FOR PEER REVIEW 13 of 23

Figure 2. Native Windows (4T) vs. native Linux (4T).

6.1.2. Overhead Implications of Docker
As stated in Section 2.2, the Docker containerization software is implemented

differently depending on the operating system being used. In this section, we evaluate
how well these different implementations are employed.

First, we started with the Windows OS running Docker and running on the AMD
desktop system, with both environments being limited to four threads, as referred
previously. From the analysis of the results, we can infer that the Docker implementation
on Windows suffers from various overhead issues.

As shown in Figure 3, while the single-core scores reveal only slight performance
degradation with only about a 2% of overhead compared to their native counterparts,
there is a huge downward trend in the multi-core scores, corresponding to about 30%
overhead. From the more scalable results, marked in bold, we can see that they are higher
on average than the overall mean, both on single-core and multi-core results. This suggests
that it is not solely an issue related to different scalability but rather to inferior resource
management.

It sounds like the promising Hyper-V/WSL2 technologies employing in Windows OS
may need additional refinements or special attention from users during Docker
configurations, even though single-core results show negligible overhead or performance
gain when using certain workloads.

Analyzing the Linux results on the AMD desktop system, with both environments
being restricted to four threads, a different set of conclusions emerges when comparing
the native Linux performance to running Docker on Linux. Both environments are seen
trading blows depending on the workload and the workload type, single- or multi-core,
as can be seen on the results heatmap presented in Figure 4.

On average, there was a 6% decrease for single-core workloads and a 5% decrease for
multi-core workloads. While these results still represent a negative trend for the
containerized environment, it is notably less pronounced compared to its Windows
counterpart. Only on certain workloads the performance behavior may be considered
poor (e.g., navigation, file compression, or photo filter). However, notably when
analyzing the more scalable results, denoted in bold, we can observe an average difference
remarkably close to zero percent. Based on this, we can conclude that the Linux
implementation of Docker does not suffer from many scalability issues. This clearly
suggests Docker containers on Linux are well-suited to encapsulate applications for
highly demanding developer tasks, also including asset compression, such as 3D textual
and geometric assets, as well as intensive image synthesis.

Test Single-Core Multi-Core
File Compression 2457 5515
Navigation 2355 7577
HTML5 Browser 2272 6318
PDF Renderer 2355 8714
Photo Library 2046 7238
Clang 2191 8171
Text Processing 2141 2775
Asset Compression 2268 8420
Object Detection 1232 3974
Background Blur 2089 7194
Horizon Detection 2982 9366
Object Remover 2506 7968
HDR 2661 7715
Photo Filter 2507 5936
Ray Tracer 2015 8093
Structure Motion 2235 7017
AVG 2236 6728

Native Windows (4T)
Test Single-Core Multi-Core

File Compression 2473 5453
Navigation 2607 8389
HTML5 Browser 2364 6689
PDF Renderer 2420 9230
Photo Library 2088 7597
Clang 2406 9201
Text Processing 2434 3081
Asset Compression 2365 8895
Object Detection 1252 4179
Background Blur 2135 7514
Horizon Detection 3070 9443
Object Remover 2670 8652
HDR 2529 7641
Photo Filter 2693 6565
Ray Tracer 2342 8997
Structure Motion 2434 7661
AVG 2357 7163

Native Linux (4T)
SC MC

-1% 1%
-11% -11%
-4% -6%
-3% -6%
-2% -5%

-10% -13%
-14% -11%
-4% -6%
-2% -5%
-2% -4%
-3% -1%
-7% -9%
5% 1%
-7% -11%

-16% -11%
-9% -9%
-5% -6%

% Overhead

Figure 2. Native Windows (4T) vs. native Linux (4T).

Upon analyzing the data from native Windows versus native Linux in CPU bench-
marks, it was observed that Linux OS achieved better processor performance, exhibiting
a performance gain of 5% in single-core and 6% in multi-core over OS Windows, as indi-
cated by the negative sign of overhead. In the most scalable tests, denoted in bold, the
performance increase was slightly above average, increasing 8% in single-core and 9.5% in
multi-core. Notably, Clang and Ray Tracer workloads clearly show Linux OS outperform
Windows OS, indicating Linux OS can handle highly demanding developer tasks, such as
compiling code as well as intensive image synthesis tasks, such as creating artificial images.
The results heatmap, along with the last two columns of the figure representing overhead,
or in this case mostly uplifts, reveals that the Linux OS natively makes more efficient use
of system resources. Only on the HDR and file compression tests, Linux shows a slight
downward trend; however, it more than makes up for it in other areas.

6.1.2. Overhead Implications of Docker

As stated in Section 2.2, the Docker containerization software is implemented differ-
ently depending on the operating system being used. In this section, we evaluate how well
these different implementations are employed.

First, we started with the Windows OS running Docker and running on the AMD
desktop system, with both environments being limited to four threads, as referred previ-
ously. From the analysis of the results, we can infer that the Docker implementation on
Windows suffers from various overhead issues.

As shown in Figure 3, while the single-core scores reveal only slight performance
degradation with only about a 2% of overhead compared to their native counterparts, there
is a huge downward trend in the multi-core scores, corresponding to about 30% overhead.
From the more scalable results, marked in bold, we can see that they are higher on average
than the overall mean, both on single-core and multi-core results. This suggests that it is not
solely an issue related to different scalability but rather to inferior resource management.

Computers 2024, 13, 94 12 of 20Computers 2024, 13, x FOR PEER REVIEW 14 of 23

Figure 3. Native Windows (4T) vs. Docker Windows (4T) AMD Desktop.

Figure 4. Native Linux (4T) vs. Docker Linux (4T) AMD Desktop.

6.1.3. Overhead Implications of LXD
The last batch of tests related to CPU performance is centered on the LXD environ-

ment, introduced earlier in Section 2.2. As this environment is exclusive to Linux, there is
an expectation that the results should be more favorable, especially in scenarios of multi-
ple processes within a container and multi-core processors. In contrast, Docker should be
faster while using single-core processors, because Docker is a single process per container.

Upon analyzing the results presented in Figure 5 and the resulting heatmap, we can
see that that expectation is indeed met. The LXD environment on Linux stands out as the
only one to consistently provide on average better performance than its native environ-
ment. This is most likely attributed to the fact that disabling threads on a native system
usually disables some cache access, something that does not happen in a software-limited
case like our LXD environment. Although the performance gain over the native system is
modest, only 2% in single-core workloads and 5% in multi-core workloads, it represents
the best or optimal scenario to run containerized software.

Test Single-Core Multi-Core
File Compression 2457 5515
Navigation 2355 7577
HTML5 Browser 2272 6318
PDF Renderer 2355 8714
Photo Library 2046 7238
Clang 2191 8171
Text Processing 2141 2775
Asset Compression 2268 8420
Object Detection 1232 3974
Background Blur 2089 7194
Horizon Detection 2982 9366
Object Remover 2506 7968
HDR 2661 7715
Photo Filter 2507 5936
Ray Tracer 2015 8093
Structure Motion 2235 7017
AVG 2236 6728

Native Windows (4T)
Test Single-Core Multi-Core

File Compression 2140 3920
Navigation 2162 5687
HTML5 Browser 2140 4875
PDF Renderer 2358 5700
Photo Library 2047 4845
Clang 2329 6056
Text Processing 2343 2856
Asset Compression 2317 5816
Object Detection 1231 2369
Background Blur 2088 4133
Horizon Detection 2775 5927
Object Remover 2312 4956
HDR 2407 4793
Photo Filter 2260 3956
Ray Tracer 2304 6670
Structure Motion 2369 5163
AVG 2198 4700

Docker on Windows (4T)
SC MC

13% 29%
8% 25%
6% 23%
0% 35%
0% 33%
-6% 26%
-9% -3%
-2% 31%
0% 40%
0% 43%
7% 37%
8% 38%

10% 38%
10% 33%
-14% 18%
-6% 26%
2% 30%

% Overhead

Test Single-Core Multi-Core
File Compression 2473 5453
Navigation 2607 8389
HTML5 Browser 2364 6689
PDF Renderer 2420 9230
Photo Library 2088 7597
Clang 2406 9201
Text Processing 2434 3081
Asset Compression 2365 8895
Object Detection 1252 4179
Background Blur 2135 7514
Horizon Detection 3070 9443
Object Remover 2670 8652
HDR 2529 7641
Photo Filter 2693 6565
Ray Tracer 2342 8997
Structure Motion 2434 7661
AVG 2357 7163

Native Linux (4T)
Test Single-Core Multi-Core

File Compression 2136 5106
Navigation 2154 7267
HTML5 Browser 2263 7004
PDF Renderer 2430 8511
Photo Library 2111 7705
Clang 2374 9222
Text Processing 2317 3029
Asset Compression 2366 9049
Object Detection 1263 4209
Background Blur 2202 7410
Horizon Detection 2585 8269
Object Remover 2340 7544
HDR 2414 7211
Photo Filter 2211 4835
Ray Tracer 2343 9328
Structure Motion 2451 8271
AVG 2224 6832

Docker on Linux (4T)
SC MC

14% 6%
17% 13%
4% -5%
0% 8%
-1% -1%
1% 0%
5% 2%
0% -2%
-1% -1%
-3% 1%
16% 12%
12% 13%
5% 6%

18% 26%
0% -4%
-1% -8%
6% 5%

% Overhead

Figure 3. Native Windows (4T) vs. Docker Windows (4T) AMD Desktop.

It sounds like the promising Hyper-V/WSL2 technologies employing in Windows OS
may need additional refinements or special attention from users during Docker configura-
tions, even though single-core results show negligible overhead or performance gain when
using certain workloads.

Analyzing the Linux results on the AMD desktop system, with both environments
being restricted to four threads, a different set of conclusions emerges when comparing
the native Linux performance to running Docker on Linux. Both environments are seen
trading blows depending on the workload and the workload type, single- or multi-core, as
can be seen on the results heatmap presented in Figure 4.

Computers 2024, 13, x FOR PEER REVIEW 14 of 23

Figure 3. Native Windows (4T) vs. Docker Windows (4T) AMD Desktop.

Figure 4. Native Linux (4T) vs. Docker Linux (4T) AMD Desktop.

6.1.3. Overhead Implications of LXD
The last batch of tests related to CPU performance is centered on the LXD environ-

ment, introduced earlier in Section 2.2. As this environment is exclusive to Linux, there is
an expectation that the results should be more favorable, especially in scenarios of multi-
ple processes within a container and multi-core processors. In contrast, Docker should be
faster while using single-core processors, because Docker is a single process per container.

Upon analyzing the results presented in Figure 5 and the resulting heatmap, we can
see that that expectation is indeed met. The LXD environment on Linux stands out as the
only one to consistently provide on average better performance than its native environ-
ment. This is most likely attributed to the fact that disabling threads on a native system
usually disables some cache access, something that does not happen in a software-limited
case like our LXD environment. Although the performance gain over the native system is
modest, only 2% in single-core workloads and 5% in multi-core workloads, it represents
the best or optimal scenario to run containerized software.

Test Single-Core Multi-Core
File Compression 2457 5515
Navigation 2355 7577
HTML5 Browser 2272 6318
PDF Renderer 2355 8714
Photo Library 2046 7238
Clang 2191 8171
Text Processing 2141 2775
Asset Compression 2268 8420
Object Detection 1232 3974
Background Blur 2089 7194
Horizon Detection 2982 9366
Object Remover 2506 7968
HDR 2661 7715
Photo Filter 2507 5936
Ray Tracer 2015 8093
Structure Motion 2235 7017
AVG 2236 6728

Native Windows (4T)
Test Single-Core Multi-Core

File Compression 2140 3920
Navigation 2162 5687
HTML5 Browser 2140 4875
PDF Renderer 2358 5700
Photo Library 2047 4845
Clang 2329 6056
Text Processing 2343 2856
Asset Compression 2317 5816
Object Detection 1231 2369
Background Blur 2088 4133
Horizon Detection 2775 5927
Object Remover 2312 4956
HDR 2407 4793
Photo Filter 2260 3956
Ray Tracer 2304 6670
Structure Motion 2369 5163
AVG 2198 4700

Docker on Windows (4T)
SC MC

13% 29%
8% 25%
6% 23%
0% 35%
0% 33%
-6% 26%
-9% -3%
-2% 31%
0% 40%
0% 43%
7% 37%
8% 38%

10% 38%
10% 33%
-14% 18%
-6% 26%
2% 30%

% Overhead

Test Single-Core Multi-Core
File Compression 2473 5453
Navigation 2607 8389
HTML5 Browser 2364 6689
PDF Renderer 2420 9230
Photo Library 2088 7597
Clang 2406 9201
Text Processing 2434 3081
Asset Compression 2365 8895
Object Detection 1252 4179
Background Blur 2135 7514
Horizon Detection 3070 9443
Object Remover 2670 8652
HDR 2529 7641
Photo Filter 2693 6565
Ray Tracer 2342 8997
Structure Motion 2434 7661
AVG 2357 7163

Native Linux (4T)
Test Single-Core Multi-Core

File Compression 2136 5106
Navigation 2154 7267
HTML5 Browser 2263 7004
PDF Renderer 2430 8511
Photo Library 2111 7705
Clang 2374 9222
Text Processing 2317 3029
Asset Compression 2366 9049
Object Detection 1263 4209
Background Blur 2202 7410
Horizon Detection 2585 8269
Object Remover 2340 7544
HDR 2414 7211
Photo Filter 2211 4835
Ray Tracer 2343 9328
Structure Motion 2451 8271
AVG 2224 6832

Docker on Linux (4T)
SC MC

14% 6%
17% 13%
4% -5%
0% 8%
-1% -1%
1% 0%
5% 2%
0% -2%
-1% -1%
-3% 1%
16% 12%
12% 13%
5% 6%

18% 26%
0% -4%
-1% -8%
6% 5%

% Overhead

Figure 4. Native Linux (4T) vs. Docker Linux (4T) AMD Desktop.

On average, there was a 6% decrease for single-core workloads and a 5% decrease for
multi-core workloads. While these results still represent a negative trend for the container-
ized environment, it is notably less pronounced compared to its Windows counterpart.
Only on certain workloads the performance behavior may be considered poor (e.g., naviga-
tion, file compression, or photo filter). However, notably when analyzing the more scalable
results, denoted in bold, we can observe an average difference remarkably close to zero
percent. Based on this, we can conclude that the Linux implementation of Docker does

Computers 2024, 13, 94 13 of 20

not suffer from many scalability issues. This clearly suggests Docker containers on Linux
are well-suited to encapsulate applications for highly demanding developer tasks, also
including asset compression, such as 3D textual and geometric assets, as well as intensive
image synthesis.

6.1.3. Overhead Implications of LXD

The last batch of tests related to CPU performance is centered on the LXD environment,
introduced earlier in Section 2.2. As this environment is exclusive to Linux, there is an
expectation that the results should be more favorable, especially in scenarios of multiple
processes within a container and multi-core processors. In contrast, Docker should be faster
while using single-core processors, because Docker is a single process per container.

Upon analyzing the results presented in Figure 5 and the resulting heatmap, we can
see that that expectation is indeed met. The LXD environment on Linux stands out as the
only one to consistently provide on average better performance than its native environment.
This is most likely attributed to the fact that disabling threads on a native system usually
disables some cache access, something that does not happen in a software-limited case like
our LXD environment. Although the performance gain over the native system is modest,
only 2% in single-core workloads and 5% in multi-core workloads, it represents the best or
optimal scenario to run containerized software.

Computers 2024, 13, x FOR PEER REVIEW 15 of 23

Figure 5. Native Linux (4T) vs. LDX Linux (4T) AMD Desktop.

Furthermore, taking a closer examination of the results, we can observe that the more
scalable workloads, denoted in bold, have a similar average and closely mirror the global
results. This, once again, suggests the fact that containerization on Linux does not present
any scalability issues. Thus, as Docker containers on Linux, LXC/LXD containers are well-
suited to encapsulate highly demanding developer workloads.

6.1.4. Replicability of the Results on a Different System
To ensure the robustness of our findings and to confirm if observed trends are hard-

ware-dependent, we conducted the same benchmarks on a different system, presented in
Section 5.2.1, while maintaining consistent software specifications

To summarize the results obtained, we opted again to compile them into the various
heatmaps, presented below in Figure 6. These are formatted in a heat-map where the best
result across each test is shaded in green, while the worst result is shaded in red.

Upon analyzing these heatmaps, we can confirm most, if not all, trends noticed be-
fore. As a native system, Linux offers better performance compared to Windows in con-
tainerized environments. Docker on Linux outperforms Docker on Windows, and the best
performance for containerized environments is achieved using LXD on Linux.

The only oddity is presented in the comparison between a native Windows system
and Docker running on Windows, where, against expectations, the containerized environ-
ment performs better than its native counterpart.

Test Single-Core Multi-Core
File Compression 2473 5453
Navigation 2607 8389
HTML5 Browser 2364 6689
PDF Renderer 2420 9230
Photo Library 2088 7597
Clang 2406 9201
Text Processing 2434 3081
Asset Compression 2365 8895
Object Detection 1252 4179
Background Blur 2135 7514
Horizon Detection 3070 9443
Object Remover 2670 8652
HDR 2529 7641
Photo Filter 2693 6565
Ray Tracer 2342 8997
Structure Motion 2434 7661
AVG 2357 7163

Native Linux (4T)
Test Single-Core Multi-Core

File Compression 2512 6041
Navigation 2627 9137
HTML5 Browser 2407 7198
PDF Renderer 2510 9138
Photo Library 2138 7524
Clang 2449 9469
Text Processing 2458 3080
Asset Compression 2402 9165
Object Detection 1265 4256
Background Blur 2138 7809
Horizon Detection 3140 10238
Object Remover 2714 8906
HDR 2595 8163
Photo Filter 2762 7227
Ray Tracer 2362 9314
Structure Motion 2493 8122
AVG 2398 7493

LDX on Linux (4T)
SC MC

-2% -11%
-1% -9%
-2% -8%
-4% 1%
-2% 1%
-2% -3%
-1% 0%
-2% -3%
-1% -2%
0% -4%
-2% -8%
-2% -3%
-3% -7%
-3% -10%
-1% -4%
-2% -6%
-2% -5%

% Overhead

Test Single-Core Multi-Core
File Compression 1122 1590
Navigation 1345 3157
HTML5 Browser 1318 2879
PDF Renderer 1315 3130
Photo Library 992 2311
Clang 1275 3041
Text Processing 1118 1400
Asset Compression 1290 3190
Object Detection 532 1066
Background Blur 1592 3180
Horizon Detection 1757 3876
Object Remover 1034 2244
HDR 1245 2660
Photo Filter 1678 3326
Ray Tracer 1019 2731
Structure Motion 1364 2972
AVG 1211 2540

Native Linux (4T)
Test Single-Core Multi-Core
File Compression 1079 1529
Navigation 1293 3036
HTML5 Browser 1267 2766
PDF Renderer 1263 3009
Photo Library 954 2224
Clang 1226 2926
Text Processing 1075 1346
Asset Compression 1240 3067
Object Detection 512 1025
Background Blur 1531 3058
Horizon Detection 1689 3729
Object Remover 995 2158
HDR 1198 2558
Photo Filter 1614 3198
Ray Tracer 980 2628
Structure Motion 1312 2858
AVG 1164 2443

Native Windows (4T)

Figure 5. Native Linux (4T) vs. LDX Linux (4T) AMD Desktop.

Furthermore, taking a closer examination of the results, we can observe that the more
scalable workloads, denoted in bold, have a similar average and closely mirror the global
results. This, once again, suggests the fact that containerization on Linux does not present
any scalability issues. Thus, as Docker containers on Linux, LXC/LXD containers are
well-suited to encapsulate highly demanding developer workloads.

6.1.4. Replicability of the Results on a Different System

To ensure the robustness of our findings and to confirm if observed trends are
hardware-dependent, we conducted the same benchmarks on a different system, presented
in Section 5.2.1, while maintaining consistent software specifications

To summarize the results obtained, we opted again to compile them into the various
heatmaps, presented below in Figure 6. These are formatted in a heat-map where the best
result across each test is shaded in green, while the worst result is shaded in red.

Computers 2024, 13, 94 14 of 20

Computers 2024, 13, x FOR PEER REVIEW 15 of 22

Figure 5. Native Linux (4T) vs. LDX Linux (4T) AMD Desktop.

Figure 6. Tests of various environments in the Intel system.

Test Single-Core Multi-Core
File Compression 2473 5453
Navigation 2607 8389
HTML5 Browser 2364 6689
PDF Renderer 2420 9230
Photo Library 2088 7597
Clang 2406 9201
Text Processing 2434 3081
Asset Compression 2365 8895
Object Detection 1252 4179
Background Blur 2135 7514
Horizon Detection 3070 9443
Object Remover 2670 8652
HDR 2529 7641
Photo Filter 2693 6565
Ray Tracer 2342 8997
Structure Motion 2434 7661
AVG 2357 7163

Native Linux (4T)
Test Single-Core Multi-Core

File Compression 2512 6041
Navigation 2627 9137
HTML5 Browser 2407 7198
PDF Renderer 2510 9138
Photo Library 2138 7524
Clang 2449 9469
Text Processing 2458 3080
Asset Compression 2402 9165
Object Detection 1265 4256
Background Blur 2138 7809
Horizon Detection 3140 10238
Object Remover 2714 8906
HDR 2595 8163
Photo Filter 2762 7227
Ray Tracer 2362 9314
Structure Motion 2493 8122
AVG 2398 7493

LDX on Linux (4T)
SC MC

-2% -11%
-1% -9%
-2% -8%
-4% 1%
-2% 1%
-2% -3%
-1% 0%
-2% -3%
-1% -2%
0% -4%
-2% -8%
-2% -3%
-3% -7%
-3% -10%
-1% -4%
-2% -6%
-2% -5%

% Overhead

Test Single-Core Multi-Core
File Compression 1122 1590
Navigation 1345 3157
HTML5 Browser 1318 2879
PDF Renderer 1315 3130
Photo Library 992 2311
Clang 1275 3041
Text Processing 1118 1400
Asset Compression 1290 3190
Object Detection 532 1066
Background Blur 1592 3180
Horizon Detection 1757 3876
Object Remover 1034 2244
HDR 1245 2660
Photo Filter 1678 3326
Ray Tracer 1019 2731
Structure Motion 1364 2972
AVG 1211 2540

Native Linux (4T)
Test Single-Core Multi-Core
File Compression 1079 1529
Navigation 1293 3036
HTML5 Browser 1267 2766
PDF Renderer 1263 3009
Photo Library 954 2224
Clang 1226 2926
Text Processing 1075 1346
Asset Compression 1240 3067
Object Detection 512 1025
Background Blur 1531 3058
Horizon Detection 1689 3729
Object Remover 995 2158
HDR 1198 2558
Photo Filter 1614 3198
Ray Tracer 980 2628
Structure Motion 1312 2858
AVG 1164 2443

Native Windows (4T)

Test Single-Core Multi-Core
File Compression 1256 2503
Navigation 1678 4500
HTML5 Browser 1446 3993
PDF Renderer 1338 5020
Photo Library 990 3220
Clang 1476 5020
Text Processing 1272 1523
Asset Compression 1397 4821
Object Detection 582 1647
Background Blur 1260 3896
Horizon Detection 1630 4820
Object Remover 1077 3216
HDR 1309 3811
Photo Filter 1578 4099
Ray Tracer 1181 4261
Structure Motion 1432 3891
AVG 1273 3568

LDX on Linux (4T)
Test Single-Core Multi-Core
File Compression 1007 1691
Navigation 1163 3390
HTML5 Browser 1206 3432
PDF Renderer 1213 3651
Photo Library 904 2712
Clang 1190 3827
Text Processing 1147 1415
Asset Compression 1261 4059
Object Detection 493 1418
Background Blur 1146 3527
Horizon Detection 1433 4113
Object Remover 874 2621
HDR 1205 3194
Photo Filter 1255 2948
Ray Tracer 1068 3614
Structure Motion 1289 3447
AVG 1089 2914

Docker on Windows (4T)
Test Single-Core Multi-Core
File Compression 1050 1727
Navigation 1344 3502
HTML5 Browser 1353 3844
PDF Renderer 1239 4063
Photo Library 954 3156
Clang 1413 4872
Text Processing 1278 1506
Asset Compression 1330 4628
Object Detection 450 1566
Background Blur 1135 3810
Horizon Detection 1471 3925
Object Remover 904 2720
HDR 1236 3494
Photo Filter 1299 3112
Ray Tracer 1141 4153
Structure Motion 1389 4176
AVG 1150 3201

Docker on Linux (4T)

Figure 6. Tests of various environments in the Intel system.

Upon analyzing these heatmaps, we can confirm most, if not all, trends noticed
before. As a native system, Linux offers better performance compared to Windows in
containerized environments. Docker on Linux outperforms Docker on Windows, and the
best performance for containerized environments is achieved using LXD on Linux.

The only oddity is presented in the comparison between a native Windows system and
Docker running on Windows, where, against expectations, the containerized environment
performs better than its native counterpart.

6.2. I/O Benchmarks

In this category of tests, the benchmarking tool CrystalDiskMark was used to run
various tests and ascertain the various performance metrics of the input and output (I/O)
system of storage. Two specific tests were chosen, sequential writes and random reads, as
they best represent the average use case for a normal user.

These tests were run multiple times with a two-minute break in between on the
native environments and a complete reboot on the containerized environments. This
procedure was performed to ensure that no past results were cached, providing an accurate
evaluation of the environment’s true performance. As mentioned before, these tests were
also conducted with an increased file size to saturate the SSD controller’s cache.

The results will be presented next in the upcoming subsections. Now, we opt to
present the averaged raw results for each system graphically, where higher values indicate
better performance. Additionally, we provide extra graphs illustrating the performance
overhead as a percentage (%) of performance loss compared to the baseline system, again

Computers 2024, 13, 94 15 of 20

for the Native Windows, where a positive number represents an effective overhead, and a
negative number represents a gain.

6.2.1. Sequential Writes

The sequential write test results are now presented in Figures 7 and 8. Firstly, it is
observed that, when using the Windows OS, both systems provided performance close
to the theoretical maximum for each disk, 2800 MB/s for the Intel system and 5000 MB/s
for the AMD system. This does not occur in the Linux OS, which demonstrates a decrease
in write speeds on the Intel system, with a corresponding overhead of over 20%. This
observation remained consistent in all tests, leading to the conclusion that this OS may have
less compatibility with this hardware combination, as in the AMD system the decrease was
only about 5%.

Computers 2024, 13, x FOR PEER REVIEW 17 of 23

6.2. I/O Benchmarks
In this category of tests, the benchmarking tool CrystalDiskMark was used to run

various tests and ascertain the various performance metrics of the input and output (I/O)
system of storage. Two specific tests were chosen, sequential writes and random reads, as
they best represent the average use case for a normal user.

These tests were run multiple times with a two-minute break in between on the na-
tive environments and a complete reboot on the containerized environments. This proce-
dure was performed to ensure that no past results were cached, providing an accurate
evaluation of the environment’s true performance. As mentioned before, these tests were
also conducted with an increased file size to saturate the SSD controller’s cache.

The results will be presented next in the upcoming subsections. Now, we opt to pre-
sent the averaged raw results for each system graphically, where higher values indicate
better performance. Additionally, we provide extra graphs illustrating the performance
overhead as a percentage (%) of performance loss compared to the baseline system, again
for the Native Windows, where a positive number represents an effective overhead, and
a negative number represents a gain.

6.2.1. Sequential Writes
The sequential write test results are now presented in Figures 7 and 8. Firstly, it is

observed that, when using the Windows OS, both systems provided performance close to
the theoretical maximum for each disk, 2800 MB/s for the Intel system and 5000 MB/s for
the AMD system. This does not occur in the Linux OS, which demonstrates a decrease in
write speeds on the Intel system, with a corresponding overhead of over 20%. This obser-
vation remained consistent in all tests, leading to the conclusion that this OS may have
less compatibility with this hardware combination, as in the AMD system the decrease
was only about 5%.

Secondly, in both Docker implementations for both systems, lower write speeds were
observed, which is expected, as Docker is more susceptible to overhead due to the ineffi-
ciency of the layered file system used in the containers. The AMD-based system demon-
strated less overhead, benefiting from its higher CPU performance.

In contrast, the LXD environment outperforms Docker and closely approaches the
performance of the native Linux system. In particular, it exhibits a superior performance
on the AMD system.

Figure 7. I/O benchmarks sequential write (MB/s). Figure 7. I/O benchmarks sequential write (MB/s).

Computers 2024, 13, x FOR PEER REVIEW 18 of 23

(a) (b)

Figure 8. I/O benchmarks overhead of sequential write (%). (a) Overhead on an Intel-based system;
(b) overhead on an AMD-based system.

6.2.2. Random 4K Read
Figures 9 and 10 show the results of the 4K random read test. Their analysis shows

that the overhead caused by Docker on Windows affects the performance of both systems,
with 27% overhead on AMD systems and 65% overhead on Intel systems.

On Linux, there are two opposite trends. On the Intel system, there is a notable per-
formance uplift of 41% while using a native Linux OS compared to the baseline perfor-
mance of native Windows and 35% while using a LXD environment. In other words, LXD
adds a 6% overhead. On the other hand, using Docker on Linux shows a 6% performance
overhead, which, when combined with the 41% performance uplift from Linux, effectively
transforms that overhead into 47%, nearly halving its performance.

The other Linux trend is present in the AMD-based system, where it is compared to
the baseline values of Windows. Moving to a Linux-based system introduces an overhead
of 4% instead of a significant uplift. LXD results also show a similar trend. Finally, the
Linux-based Docker results also show an inverse trend to the Intel results, gaining a 9%
uplift instead of experiencing a small decrease.

Figure 9. I/O benchmarks random reads (MB/s).

Figure 8. I/O benchmarks overhead of sequential write (%). (a) Overhead on an Intel-based system;
(b) overhead on an AMD-based system.

Secondly, in both Docker implementations for both systems, lower write speeds
were observed, which is expected, as Docker is more susceptible to overhead due to the
inefficiency of the layered file system used in the containers. The AMD-based system
demonstrated less overhead, benefiting from its higher CPU performance.

In contrast, the LXD environment outperforms Docker and closely approaches the
performance of the native Linux system. In particular, it exhibits a superior performance
on the AMD system.

6.2.2. Random 4K Read

Figures 9 and 10 show the results of the 4K random read test. Their analysis shows
that the overhead caused by Docker on Windows affects the performance of both systems,
with 27% overhead on AMD systems and 65% overhead on Intel systems.

Computers 2024, 13, 94 16 of 20

Computers 2024, 13, x FOR PEER REVIEW 18 of 23

(a) (b)

Figure 8. I/O benchmarks overhead of sequential write (%). (a) Overhead on an Intel-based system;
(b) overhead on an AMD-based system.

6.2.2. Random 4K Read
Figures 9 and 10 show the results of the 4K random read test. Their analysis shows

that the overhead caused by Docker on Windows affects the performance of both systems,
with 27% overhead on AMD systems and 65% overhead on Intel systems.

On Linux, there are two opposite trends. On the Intel system, there is a notable per-
formance uplift of 41% while using a native Linux OS compared to the baseline perfor-
mance of native Windows and 35% while using a LXD environment. In other words, LXD
adds a 6% overhead. On the other hand, using Docker on Linux shows a 6% performance
overhead, which, when combined with the 41% performance uplift from Linux, effectively
transforms that overhead into 47%, nearly halving its performance.

The other Linux trend is present in the AMD-based system, where it is compared to
the baseline values of Windows. Moving to a Linux-based system introduces an overhead
of 4% instead of a significant uplift. LXD results also show a similar trend. Finally, the
Linux-based Docker results also show an inverse trend to the Intel results, gaining a 9%
uplift instead of experiencing a small decrease.

Figure 9. I/O benchmarks random reads (MB/s). Figure 9. I/O benchmarks random reads (MB/s).

Computers 2024, 13, x FOR PEER REVIEW 19 of 23

(a) (b)

Figure 10. I/O Benchmarks overhead and uplifts of random reads (%): (a) Intel-based system; (b)
AMD-based system.

6.3. Network Benchmarks
In the network benchmarks, to ascertain the network performance of the studied in-

stance types (native, Docker, and LXD/LXC), the iPerf3 tool was used, and configured to
use unlimited bandwidth. The tests were performed on a 1 GB/s internal network.

To ensure accuracy, these tests were conducted multiple times with a two-minute
break in between on the native environments and a complete reboot on the containerized
environments. This procedure was employed to eliminate any potential influence from
past cached results, ensuring an accurate evaluation of the true performance of the envi-
ronment.

In the following subsections, we present the network results graphically, considering
TCP and UDP traffic performance. The average results of each system are presented with
raw numbers.

6.3.1. TCP Bandwidth
Figure 11 shows the results of the network benchmarks in inbound TCP traffic. From

these very similar and consistent results, it can be deduced that in a common network
setup, the use of Docker and LXD tools adds minimal to no overhead during transfers on
both Windows and Linux OS.

Figure 11. TCP bandwidths (MB/s).

Figure 10. I/O Benchmarks overhead and uplifts of random reads (%): (a) Intel-based system;
(b) AMD-based system.

On Linux, there are two opposite trends. On the Intel system, there is a notable perfor-
mance uplift of 41% while using a native Linux OS compared to the baseline performance of
native Windows and 35% while using a LXD environment. In other words, LXD adds a 6%
overhead. On the other hand, using Docker on Linux shows a 6% performance overhead,
which, when combined with the 41% performance uplift from Linux, effectively transforms
that overhead into 47%, nearly halving its performance.

The other Linux trend is present in the AMD-based system, where it is compared to
the baseline values of Windows. Moving to a Linux-based system introduces an overhead
of 4% instead of a significant uplift. LXD results also show a similar trend. Finally, the
Linux-based Docker results also show an inverse trend to the Intel results, gaining a 9%
uplift instead of experiencing a small decrease.

6.3. Network Benchmarks

In the network benchmarks, to ascertain the network performance of the studied
instance types (native, Docker, and LXD/LXC), the iPerf3 tool was used, and configured to
use unlimited bandwidth. The tests were performed on a 1 GB/s internal network.

To ensure accuracy, these tests were conducted multiple times with a two-minute
break in between on the native environments and a complete reboot on the containerized
environments. This procedure was employed to eliminate any potential influence from past
cached results, ensuring an accurate evaluation of the true performance of the environment.

In the following subsections, we present the network results graphically, considering
TCP and UDP traffic performance. The average results of each system are presented with
raw numbers.

Computers 2024, 13, 94 17 of 20

6.3.1. TCP Bandwidth

Figure 11 shows the results of the network benchmarks in inbound TCP traffic. From
these very similar and consistent results, it can be deduced that in a common network
setup, the use of Docker and LXD tools adds minimal to no overhead during transfers on
both Windows and Linux OS.

Computers 2024, 13, x FOR PEER REVIEW 19 of 23

(a) (b)

Figure 10. I/O Benchmarks overhead and uplifts of random reads (%): (a) Intel-based system; (b)
AMD-based system.

6.3. Network Benchmarks
In the network benchmarks, to ascertain the network performance of the studied in-

stance types (native, Docker, and LXD/LXC), the iPerf3 tool was used, and configured to
use unlimited bandwidth. The tests were performed on a 1 GB/s internal network.

To ensure accuracy, these tests were conducted multiple times with a two-minute
break in between on the native environments and a complete reboot on the containerized
environments. This procedure was employed to eliminate any potential influence from
past cached results, ensuring an accurate evaluation of the true performance of the envi-
ronment.

In the following subsections, we present the network results graphically, considering
TCP and UDP traffic performance. The average results of each system are presented with
raw numbers.

6.3.1. TCP Bandwidth
Figure 11 shows the results of the network benchmarks in inbound TCP traffic. From

these very similar and consistent results, it can be deduced that in a common network
setup, the use of Docker and LXD tools adds minimal to no overhead during transfers on
both Windows and Linux OS.

Figure 11. TCP bandwidths (MB/s).

Figure 11. TCP bandwidths (MB/s).

6.3.2. UDP Bandwidth and Packet Loss

For the case of the tests involving UDP-based inbound traffic, Figure 12 shows the
measured bandwidths, while Figure 13 presents the corresponding packet loss rates in the
various environments.

Computers 2024, 13, x FOR PEER REVIEW 20 of 23

6.3.2. UDP Bandwidth and Packet Loss
For the case of the tests involving UDP-based inbound traffic, Figure 12 shows the

measured bandwidths, while Figure 13 presents the corresponding packet loss rates in the
various environments.

Similar to the TCP results, in a conventional network setup, the use of Docker and
LXD adds minimal to no overhead on network UDP communications in both environ-
ments. Only a slight packet loss was observed in the Docker tests on both Windows and
Linux OSs, specifically on the less powerful Intel-based system, where it experienced a
barely noticeable packet loss of 1%.

Figure 12. UDP bandwidths (MB/s).

Figure 13. UDP packer loss (%).

7. Discussion, Conclusions, and Future Work
The results and the analysis conducted in this study lead us to the conclusion that

Docker and LXD are both powerful and useful container solutions in various contexts and
circumstances. In effect, through extensive benchmarks and adopting well-known work-
load metrics such as CPU scores, disk speed, and network throughput, our results showed
a clear overall trend toward meritorious performance and the maturity of both technolo-
gies; even we also observed cases of divergent variations and trends.

In network performance tests, in contrast to what was expected for container tech-
nologies, the containerization solutions studied performed identically, and they virtually
equaled native systems and contributed to negligible overhead, making them not a limit-
ing factor on network performance.

Figure 12. UDP bandwidths (MB/s).

Computers 2024, 13, x FOR PEER REVIEW 20 of 23

6.3.2. UDP Bandwidth and Packet Loss
For the case of the tests involving UDP-based inbound traffic, Figure 12 shows the

measured bandwidths, while Figure 13 presents the corresponding packet loss rates in the
various environments.

Similar to the TCP results, in a conventional network setup, the use of Docker and
LXD adds minimal to no overhead on network UDP communications in both environ-
ments. Only a slight packet loss was observed in the Docker tests on both Windows and
Linux OSs, specifically on the less powerful Intel-based system, where it experienced a
barely noticeable packet loss of 1%.

Figure 12. UDP bandwidths (MB/s).

Figure 13. UDP packer loss (%).

7. Discussion, Conclusions, and Future Work
The results and the analysis conducted in this study lead us to the conclusion that

Docker and LXD are both powerful and useful container solutions in various contexts and
circumstances. In effect, through extensive benchmarks and adopting well-known work-
load metrics such as CPU scores, disk speed, and network throughput, our results showed
a clear overall trend toward meritorious performance and the maturity of both technolo-
gies; even we also observed cases of divergent variations and trends.

In network performance tests, in contrast to what was expected for container tech-
nologies, the containerization solutions studied performed identically, and they virtually
equaled native systems and contributed to negligible overhead, making them not a limit-
ing factor on network performance.

Figure 13. UDP packer loss (%).

Computers 2024, 13, 94 18 of 20

Similar to the TCP results, in a conventional network setup, the use of Docker and
LXD adds minimal to no overhead on network UDP communications in both environments.
Only a slight packet loss was observed in the Docker tests on both Windows and Linux
OSs, specifically on the less powerful Intel-based system, where it experienced a barely
noticeable packet loss of 1%.

7. Discussion, Conclusions, and Future Work

The results and the analysis conducted in this study lead us to the conclusion that
Docker and LXD are both powerful and useful container solutions in various contexts
and circumstances. In effect, through extensive benchmarks and adopting well-known
workload metrics such as CPU scores, disk speed, and network throughput, our results
showed a clear overall trend toward meritorious performance and the maturity of both
technologies; even we also observed cases of divergent variations and trends.

In network performance tests, in contrast to what was expected for container tech-
nologies, the containerization solutions studied performed identically, and they virtually
equaled native systems and contributed to negligible overhead, making them not a limiting
factor on network performance.

In I/O tests, the same overhead was expected, mainly due to the use of layered file
systems or the use of non-optimized drivers/HW. After completing the analysis of the I/O
benchmarks results, it was not possible to indicate a general optimal recommendation for
all usage types.

In our results, divergent variations and trends were observed; even though LXD
tends to produce less overhead, it didn’t perform well under all circumstances. However,
it is important to note that, in environments with good processing power, containers
demonstrated good scalability. It is, therefore, recommended that containers for I/O-
intensive tasks be pre-tested and implemented case-by-case. In tasks where sequential
write performance is essential, like audio or video production, the difference becomes
less noticeable, thus making the use of containers recommended. In tasks where 4k write
performance is essential, like database management, a careful evaluation of the type of
virtualization is also recommended.

In closing, it was observed that, of the tested tools, LXD consistently obtained superior
results, being the most stable platform in terms of performance. This, as well as the operat-
ing system where it is located, Linux points to being an excellent choice for containerization,
something already expected due to the large adoption of Linux in this area.

While this study provides valuable insights into the performance and overhead of
Docker and LXD containers, there are some limitations to consider. First, comparing
workload metrics, such as CPU values, disk speeds, and network throughput, does not
provide the full range of performance characteristics for all types of applications and
scenarios. Different workloads can behave differently, and additional metrics and real-
world use cases can provide a more complete understanding of container performance.

Additionally, these research results are based on a specific set of hardware and software
configurations, and results may not be directly applicable to different environments. Factors
such as underlying infrastructure, network architecture, and host configuration can affect
container performance and should be considered when generalizing results. It is also
worth noting that there is a lack of research regarding the performance of containers
in ARM-based systems. As ARM-based systems gain popularity in various domains,
investigating container performance on such platforms becomes increasingly important for
a comprehensive understanding of container technology’s capabilities and limitations.

To mitigate these limitations, further research should explore a broader range of
metrics, incorporating a variety of workloads and real-world use cases.

Furthermore, to improve further investigations and to offer a more exhaustive testing
suite, things of note we recommend being improved would have been the following.

Firstly, to increase the maximum bandwidth of the network tests, even though our
methodology is thorough, it is limited to a consumer-grade gigabit connection, while in

Computers 2024, 13, 94 19 of 20

some containerized use cases, mostly cloud-based ones, this connection speed could easily
exceed the 10-gigabit range. Further network intensive benchmarks may also play an
important role when selecting certain drivers (e.g., bridge, host, or overlay), considering
factors such as container communication requirements, network isolation, compatibility
with host hardware, or complexity of configuration.

Secondly, to test further scalability of containers benchmarks, multiple instances
may be deployed and run concurrently on a single system or across a cluster system.
This would involve utilizing orchestration tools for automating the deployment, scaling,
and management of containerized applications. Despite the fact that LXD lacks built-in
orchestration tools, Docker provides robust orchestration options like Docker Swarm and
Kubernetes that can be the target of several compelling benchmark studies, including
analyzing the latency impacts on users’ experiences and the throughputs achievable with
these platforms. However, conducting these studies would require more capable hardware
to test these tools and technologies’ true limits but would offer important insights for use
case in on-premises or cloud environments, especially when adopting CI/CD best practices.

Finally, the assessment of energy efficiency of both studied container-based solutions
emerges as another crucial research direction to balance or control the energy consumption,
while maintaining quasi-optimal performance across diverse workloads.

Author Contributions: Conceptualization, D.S., J.R. and A.F.; methodology, D.S., J.R. and A.F.;
software, D.S. and J.R.; validation, D.S., J.R. and A.F.; formal analysis, D.S., J.R. and A.F.; investigation,
D.S., J.R. and A.F.; resources, D.S. and J.R.; data curation, D.S. and J.R.; writing—original draft
preparation, D.S. and J.R.; writing—review and editing, A.F.; visualization, A.F.; supervision, A.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. AbdElRahem, O.; Bahaa-Eldin, A.M.; Taha, A. Virtualization security: A survey. In Proceedings of the 2016 11th International

Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 20–21 December 2016; pp. 32–40. [CrossRef]
2. Dan Marinescu, D. Cloud Computing: Theory and Practice, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2022.
3. Silva, D.; Rafael, J.; Fonte, A. Virtualization Maturity in Creating System VM: An Updated Performance Evaluation. Int. J. Electr.

Comput. Eng. Res. 2023, 3, 7–17. [CrossRef]
4. Casalicchio, E.; Iannucci, S. The Emiliano state-of-the-art in container technologies: Application, orchestration and security.

Concurr. Comput. Pract. Exp. 2020, 32, 17. [CrossRef]
5. Popek, G.; Goldberg, R. Formal requirements for virtualizable third generation architectures. Commun. ACM 1974, 17, 412–421.

[CrossRef]
6. Kim, S.; Park, H.; Choi, J. Direct-Virtio: A New Direct Virtualized I/O Framework for NVMe SSDs. Electronics 2021, 10, 2058.

[CrossRef]
7. Muench, D.; Isfort, O.; Mueller, K.; Paulitsch, M.; Herkersdorf, A. Hardware-based I/O virtualization for mixed criticality

real-time systems using PCIe SR-IOV. In Proceedings of the IEEE 16th International Conference on Computational Science and
Engineering, Sydney, Australia, 3–5 December 2013; pp. 706–713.

8. What Is Windows Containers ?|Definition from TechTarget. Available online: https://www.techtarget.com/searchwindowsserver/
definition/Microsoft-Windows-Containers (accessed on 20 January 2024).

9. Yellin, N. Modern Containers Do Not Use Chroot (Updated), Updated 11 November 2022, Robusta. Available online: https:
//home.robusta.dev/blog/containers-dont-use-chroot (accessed on 20 January 2024).

10. Van Laere, T. Exploring Windows Containers, 30 June 2021. Available online: https://thomasvanlaere.com/posts/2021/06/
exploring-windows-containers/ (accessed on 20 January 2024).

11. Edge, J. A Seccomp Overview, 2 September 2015. Available online: https://lwn.net/Articles/656307/ (accessed on 20
January 2024).

12. Docker: Accelerated, Containerization. Available online: http://www.docker.com/ (accessed on 10 June 2023).
13. Containerd—An Industry-Standard Container Runtime with an Emphasis on Simplicity, Robustness and Portability. Available

online: https://containerd.io (accessed on 20 January 2024).
14. Open Container Initiative. Available online: https://opencontainers.org (accessed on 20 January 2024).

https://doi.org/10.1109/ICCES.2016.7821971
https://doi.org/10.53375/ijecer.2023.341
https://doi.org/10.1002/cpe.5668
https://doi.org/10.1145/361011.361073
https://doi.org/10.3390/electronics10172058
https://www.techtarget.com/searchwindowsserver/definition/Microsoft-Windows-Containers
https://www.techtarget.com/searchwindowsserver/definition/Microsoft-Windows-Containers
https://home.robusta.dev/blog/containers-dont-use-chroot
https://home.robusta.dev/blog/containers-dont-use-chroot
https://thomasvanlaere.com/posts/2021/06/exploring-windows-containers/
https://thomasvanlaere.com/posts/2021/06/exploring-windows-containers/
https://lwn.net/Articles/656307/
http://www.docker.com/
https://containerd.io
https://opencontainers.org

Computers 2024, 13, 94 20 of 20

15. Docker vs. Containerd vs. CRI-O: An In-Depth Comparison. Available online: https://phoenixnap.com/kb/docker-vs-
containerd-vs-cri-o (accessed on 20 January 2024).

16. Lightweight Container Runtime for Kubernetes. Available online: https://cri-o.io (accessed on 20 January 2024).
17. Linux Containers. Available online: https://linuxcontainers.org/ (accessed on 20 January 2024).
18. Singh, S.; Singh, N. Containers & Docker: Emerging roles & future of Cloud technology. In Proceedings of the 2016 2nd

International Conference on Applied and Theoretical Computing and Communication Technology, iCATccT 2016, Bengaluru,
India, 21–23 July 2016; pp. 804–807. [CrossRef]

19. Run System Containers with LXD. Available online: https://canonical.com/lxd (accessed on 22 March 2024).
20. Jain, H. LXC and LXD: Explaining Linux Containers, 2 June 2016. Available online: www.sumologic.com/blog/lxc-lxd-linux-

containers/ (accessed on 20 January 2024).
21. Andrei, A. What Is the Difference between Docker, LXC, and LXD Containers? 22 August 2022. Available online: https:

//kodekloud.com/blog/what-is-the-difference-between-docker-lxc-and-lxd-containers/ (accessed on 20 January 2024).
22. Hwang, J.; Zeng, S.; Wu, F.; Wood, T. A component-based performance comparison of four hypervisors. In Proceedings of the

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, Belgium, 27–31 May 2013;
pp. 269–276.

23. Pawar, S.; Singh, S. Performance comparison of VMWare and Xen hypervisor on guest OS. Int. J. Innov. Comput. Sci. Eng. 2015, 2,
56–60.

24. Vojnak, D.; Eordevic, S.; Timcenko, S.; Strbac, M. Performance Comparison of the type-2 hypervisor VirtualBox and VMWare
Workstation. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019;
pp. 1–4. [CrossRef]

25. Dordevic, B.; Timcenko, V.; Sakic, D.; Davidovic, N. File system performance for type-1 hypervisors on the Xen and VMware ESXi.
In Proceedings of the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), Sarajevo, Bosnia and Herzegovina,
16–18 March 2022; pp. 1–6. [CrossRef]

26. Rahman, H.; Wang, G.; Chen, J.; Jiang, H. Performance Evaluation of Hypervisors and the Effect of Virtual CPU on Perfor-
mance. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 772–779. [CrossRef]

27. Yadav, A.; Garg, M.; Ritika. Docker containers versus virtual machine-based virtualization. In Proceedings of the Emerging
Technologies in Data Mining and Information Security 2018 (IEMIS 2018), Kolkata, India, 23–25 February 2018; Springer:
Singapore, 2019; Volume 3, pp. 141–150.

28. Bhardwaj, A.; Krishna, C. Virtualization in Cloud Computing: Moving from Hypervisor to Containerization—A Survey. Arab. J.
Sci. Eng. 2021, 46, 8585–8601. [CrossRef]

29. Li, Z.; Kihl, M.; Chen, Y.; Zhang, H. Two-Stage Performance Engineering of Container-based Virtualization. Adv. Sci. Technol. Eng.
Syst. J. 2018, 3, 521–536. [CrossRef]

30. Arango, C.; Dernat, R.; Sanabria, J. Performance evaluation of container-based virtualization for high performance computing
environments. Rev. UIS Ing. 2019, 18, 31–42. [CrossRef]

31. Liu, H.; Luo, Y.; Chen, B.; Yang, Y. Performance Evaluation of Container Networking Technology. In Proceedings of the 2023 IEEE
3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 26–28
May 2023; pp. 815–818. [CrossRef]

32. Zhou, N.; Zhou, H.; Hoppe, D. Containerization for High Performance Computing Systems: Survey and Prospects. IEEE Trans.
Softw. Eng. 2022, 49, 2722–2740. [CrossRef]

33. Tesser, R.; Borin, E. Containers in HPC: A survey. J. Supercomput. 2023, 79, 5759–5827. [CrossRef]
34. Yang, Y.; Shen, W.; Ruan, B.; Liu, W.; Ren, K. Security Challenges in the Container Cloud. In Proceedings of the 2021 Third IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA,
13–15 December 2021; pp. 137–145. [CrossRef]

35. Explore Windows 10 OS, Computers, Apps & More|Microsoft. Available online: https://web.archive.org/web/20210203032518
/http://www.microsoft.com/en-gb/windows/ (accessed on 10 June 2023).

36. Garuda Linux|Home. Available online: https://garudalinux.org/index.html (accessed on 20 January 2024).
37. Arch Linux. A Simple, Lightweight Distribution. Available online: https://archlinux.org/ (accessed on 20 January 2024).
38. Geekbench 6—Cross-Platform Benchmark. Available online: https://www.geekbench.com (accessed on 20 January 2024).
39. CrystalDiskMark. Available online: https://crystalmark.info/en/software/crystaldiskmark/ (accessed on 20 January 2024).
40. iPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP. Available online: https://iperf.fr/ (accessed on 20 January 2024).
41. Fleming, P.J.; Wallace, J.J. How not to lie with statistics: The correct way to summarize benchmark results. Commun. ACM 1986,

29, 218–221. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://phoenixnap.com/kb/docker-vs-containerd-vs-cri-o
https://phoenixnap.com/kb/docker-vs-containerd-vs-cri-o
https://cri-o.io
https://linuxcontainers.org/
https://doi.org/10.1109/ICATCCT.2016.7912109
https://canonical.com/lxd
www.sumologic.com/blog/lxc-lxd-linux-containers/
www.sumologic.com/blog/lxc-lxd-linux-containers/
https://kodekloud.com/blog/what-is-the-difference-between-docker-lxc-and-lxd-containers/
https://kodekloud.com/blog/what-is-the-difference-between-docker-lxc-and-lxd-containers/
https://doi.org/10.1109/TELFOR48224.2019.8971213
https://doi.org/10.1109/INFOTEH53737.2022.9751288
https://doi.org/10.1109/SmartWorld.2018.00146
https://doi.org/10.1007/s13369-021-05553-3
https://doi.org/10.25046/aj030163
https://doi.org/10.18273/revuin.v18n4-2019003
https://doi.org/10.1109/ICIBA56860.2023.10165552
https://doi.org/10.1109/TSE.2022.3229221
https://doi.org/10.1007/s11227-022-04848-y
https://doi.org/10.1109/TPSISA52974.2021.00016
https://web.archive.org/web/20210203032518/http://www.microsoft.com/en-gb/windows/
https://web.archive.org/web/20210203032518/http://www.microsoft.com/en-gb/windows/
https://garudalinux.org/index.html
https://archlinux.org/
https://www.geekbench.com
https://crystalmark.info/en/software/crystaldiskmark/
https://iperf.fr/
https://doi.org/10.1145/5666.5673

	Introduction
	Background
	Hypervisor Types and Containers
	Docker and LXD/LXC

	Scope and Related Work
	Expected Overhead of Containers
	Methodology and Experimental Environment
	Research Questions and Performance Features
	Host Systems, Operating Systems, and Configurations
	Host Systems
	Operating Systems
	Specific Configurations

	Benchmarks and Workloads

	Experimental Results and Analysis
	CPU Benchmarks
	Native System CPU Benchmarks
	Overhead Implications of Docker
	Overhead Implications of LXD
	Replicability of the Results on a Different System

	I/O Benchmarks
	Sequential Writes
	Random 4K Read

	Network Benchmarks
	TCP Bandwidth
	UDP Bandwidth and Packet Loss

	Discussion, Conclusions, and Future Work
	References

