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Abstract: To address the challenges associated with wind power integration, this paper analyzes
the impact of distributed renewable energy on the voltage of the distribution network. Taking into
account the fast control of photovoltaic inverters and the unique characteristics of photovoltaic arrays,
we establish an active distribution network voltage reactive power-optimization model for planning
the active distribution network. The model involves solving the original non-convex and non-linear
power-flow-optimization problem. By introducing the second-order cone relaxation algorithm, we
transform the model into a second-order cone programming model, making it easier to solve and
yielding good results. The optimized parameters are then applied to the IEEE 33-node distribution
system, where the phase angle of the node voltage is adjusted to optimize the reactive power of
the entire power system, thereby demonstrating the effectiveness of utilizing a second-order cone
programming algorithm for reactive power optimization in a comprehensive manner. Subsequently,
active distribution network power quality control is implemented, resulting in a reduction in network
loss from 0.41 MW to 0.02 MW. This reduces power loss rates, increases utilization efficiency by
approximately 94%, optimizes power quality management, and ensures that users receive high-
quality electrical energy.

Keywords: second-order cone relaxation algorithm; reactive power optimization; power quality control

1. Introduction

As global energy demand escalates and environmental sustainability takes center stage,
renewable energy sources, such as photovoltaic generation, wind power, and hydropower,
are gradually emerging as crucial choices for addressing energy supply and environmental
considerations. However, the large-scale integration and efficient utilization of renewable
energy in power systems still pose challenges due to the intermittent and stochastic nature
of these energy sources when connected to the grid. This results in phenomena, such as the
curtailment of renewable energy, wastage of energy, and other associated difficulties.

The objective of the power grid’s reactive power-optimization model is to achieve the
optimal allocation of reactive power during normal distribution network operations. Its
goals include minimizing network losses, ensuring node voltage stability, improving power
quality, and maintaining system stability under various operating conditions, such as
integration of the distributed power supply, load variations, and changes in energy-storage
devices. In general, achieving reactive power optimization in distribution networks in-
volves formulating objective functions and multiple constraints, defining various variables,
and employing optimization algorithms to find solutions. However, due to the non-convex
and non-linear nature of this problem, finding the globally optimal solution can be chal-
lenging. Currently, commonly used methods include classical non-convex and non-linear
programming algorithms, such as Newton’s method and quadratic programming, which
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may pose implementation difficulties. Another approach involves utilizing artificial intelli-
gence algorithms, such as genetic algorithms, improved BP neural networks, convolutional
networks, and particle swarm optimization algorithms [1]. While these methods effectively
enhance convergence speed, they may encounter challenges in updating and utilizing ex-
amples. Considering these challenges, this paper proposes the utilization of a second-order
cone relaxation algorithm for computing reactive power optimization in active distribution
networks. This approach effectively linearizes the problem while enhancing the ability
to obtain a globally optimal solution. Additionally, distributed energy storage with avail-
able capacity and flexible scheduling can establish scalable energy-storage clusters that
provide various auxiliary services to the power grid. The second-order cone optimization
algorithm [2] is primarily applied in various aspects of power system optimization, the
integration of distributed energy sources, solving reactive power optimization models, and
enhancing universality, computational accuracy, and efficiency. Firstly, the second-order
cone optimization algorithm is extensively utilized in power-system-optimization prob-
lems. With the widespread integration of distributed energy sources, such as photovoltaic
and wind power, managing reactive power optimization in the grid becomes increasingly
intricate. This complexity poses a challenge that all reactive power optimization models
must address. When faced with large-scale mixed-integer nonlinear optimization problems,
classical algorithms often encounter challenges in programming or exhibit limited applica-
bility for specific instances. Moreover, they may struggle with precision and solution speed,
which can be significant drawbacks when dealing with large-scale networked problems.
However, the second-order cone optimization algorithm can effectively address various
instances by offering improved solving efficiency while ensuring computational accuracy.
The second-order cone optimization algorithm can also be extended to unit commitment
problems, power grid management, bidding decisions, and other domains, showcasing its
remarkable versatility.

The article initially compiles historical and projected data on combined cooling, heat-
ing, and power (CCHP) systems, distributed energy resources, energy-storage devices,
and demand response systems. Next, it establishes an optimization model for reactive
power in the active distribution network with the objective of minimizing losses, while
incorporating constraints, such as branch power flow, voltage magnitude, load power,
inverter capacity, and energy-storage system capacity. Subsequently, it coordinates dis-
tributed energy storage and photovoltaic generation sources by considering their power
parameters and interactions and utilizes second-order cone optimization algorithms to
optimize system dispatch. Through this algorithmic approach, the scheduling of energy
storage and demand-side resources is achieved to enhance clean energy utilization while
adjusting the forecasts of distributed energy sources and loads. This enables the real-time
control and pre-scheduling of future electricity demand and renewable energy growth
while taking into account power loads. Finally, the use of an improved IEEE 33 test case for
simulation purposes demonstrates that the participation of energy-storage units in active
distribution network (ADN) optimization stabilizes node voltages effectively, smoothing
fluctuations from distributed energy sources. Additionally, utilizing photovoltaic gen-
eration sources as inverters assists in actively scheduling distributed generation sources
within the distribution network resulting in the improved quality of power generation and
reduced losses.

2. Related Works

With the worsening of environmental pollution and the depletion of traditional fos-
sil fuels, the development and utilization of new energy sources have become a global
trend [3–6]. To achieve the high penetration of renewable energy and enhance the per-
formance of power systems, researchers have focused on the safety, stability, and energy
quality benefits of power systems.

Wang Ke et al. [7] proposed a power feedforward method combining dynamic induc-
tance, capacitance power, and static load power to stabilize grid-side current and reduce DC
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bus voltage fluctuations. Simulation results indicated that the combined dynamic and static
power feedforward strategy can suppress grid-side harmonic components and reduce DC
bus voltage fluctuations. Xu Dan et al. [8] introduced a daily planning model based on the
interconnection of line sections and provincial standby control. Simulation results showed
that the model, under safety constraints, could flexibly control inter-provincial support
methods, optimizing the coordination of generation units and interconnection line plans
to achieve reasonable re-balancing. Lü Sizhuo et al. [9] proposed an optimized solution
for voltage stability issues in weak receiving-end power grids in Tibet by employing a
flexible DC control system with a newly developed fault-crossing strategy with PSD-BPA
transient simulation software. Simulation results demonstrated that optimizing critical
parameters in the flexible DC fault-crossing control could improve recovery performance
after faults in weak receiving-end power grids. Zhao Xinkuan et al. [10] addressed the
heterogeneity inherent to diverse power sources by formulating mathematical models for
both photovoltaics and fuel cells. They used an improved droop control method to achieve
power distribution balance in a microgrid with heterogeneous power sources. The results
demonstrated the effectiveness of the proposed control method in ensuring the microgrid’s
reliable operation. Wang Yue et al. [11] proposed a method to optimize the controller
parameters of energy-storage devices to improve the inertia characteristics and damping
ability of synchronous machine systems. Simulation verification confirmed its effectiveness.
Wang Fuzhong et al. [12] introduced a PI parameter online optimization algorithm based on
population partitioning and multi-strategy adaptive fruit fly optimization. Experimental re-
sults using a microgrid constant power control system validated the enhanced performance
and accelerated response of inverters following optimization with the introduced algo-
rithm. Wang Qi et al. [13] proposed a power distribution optimization control strategy for
interconnecting converters. Simulation analysis using MATLAB/Simulink confirmed that
introducing capacity weighting factors could optimize power distribution among micro-
grids, fully utilizing the regulating capabilities of distributed power sources for the rational
sharing and flow of energy between sub-microgrids. Wang Jianping et al. [14] developed a
multi-objective reactive power optimization control model using an improved quantum
particle swarm algorithm. Case studies confirmed the convenience and efficiency of the
proposed voltage reactive power optimization control algorithm. Dong Feifei et al. [15]
optimized the average demand loss of each load bus through dynamic line rating technol-
ogy, incorporating the peak shaving and valley filling demand response. The approach
enhanced system reliability, reduced the average line aging rate, and significantly improved
economic benefits. Cao Shankang et al. [16] established a quantitative evaluation model, an-
alyzed system and component constraints, and applied a time-based optimization strategy
based on the INSGA2-DS algorithm to achieve a rational active-reactive power distribution
mode and microgrid control strategy, enhancing the stability of DC microgrids and AC
power grids. Guo Ya et al. [17] proposed an optimization strategy for regenerative braking
energy utilization and comprehensive negative sequence compensation. This strategy was
designed to address limitations in compensation device capacity and account for voltage
imbalance conditions in the grid. Using a sequential quadratic programming method and
simulation verification, the strategy was shown to increase the utilization of regenerative
braking energy and reduce the energy demand of traction loads on traction substations. Li
Zhenkun et al. [18] devised a carbon trading market architecture for a park microgrid, de-
signed carbon trading quota and pricing mechanisms, and established optimization models
with minimum actual operating costs as the objective and a multi-objective optimization
model based on game theory combined weighting for scheduling flexible resources within
the park microgrid. The simulation results of the two optimization models were analyzed
to show the rationality and subjectivity of the multi-objective optimization model based
on game theory, providing strong reference value for practical park microgrid optimiza-
tion operation. Ouyang Sen et al. [19] established a dual-layer optimization model for a
light-storage microgrid considering guaranteed power supply demand and employed a
genetic algorithm to effectively solve the model. The comprehensive evaluation of the
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microgrid power quality was performed using a combined weighting method. The results
confirmed the effectiveness of the proposed model, showing that considering guaranteed
power supply demand could improve microgrid power quality and increase user satis-
faction within a certain range. Jia Honggang et al. [20] proposed an optimization model
for voltage and frequency control in AC/DC hybrid transmission systems considering the
integration of new energy clusters. An improved differential evolution algorithm was used,
and the effectiveness of the method was verified through a simulation using grid data from
a certain region in the Northwest.

Currently, the active control of photovoltaic (PV) output is one of the main methods
to mitigate voltage violations in low-voltage distribution networks. Tonkoski R et al. [21]
established a predetermined droop coefficient for voltage-reactive power, which deter-
mines the amount of active power curtailed by PV systems in response to overvoltage
at nodes, ensuring that the grid-connected point voltage remains within the upper limit.
Tonkoskit et al. [22] employed a voltage sensitivity matrix to effectively coordinate the
reduction of PV grid-connected power at different nodes, aiming for an optimized design of
control parameters. However, it is important to note that controlling voltage by curtailing
PV generation may have potential drawbacks, such as compromising user revenue and
overlooking under-voltage issues in the network. In this regard, energy-storage devices
offer a viable solution by enabling the optimization of network voltage through active
power absorption or injection. Worthmann, Karl et al. [23] investigated predictive control
techniques for household photovoltaic and energy-storage systems, proposing centralized,
distributed, and decentralized control schemes to optimize user energy storage output.
Wang Pengfei [24] introduced a centralized energy-storage-control strategy with the goal of
voltage regulation economics, efficiently utilizing energy storage. However, the prevalence
of energy storage in low-voltage distribution networks is very low, with a short lifespan and
relatively high operation and maintenance costs, posing difficulties in widespread adoption.
Additionally, the mentioned control strategies are challenging to apply in low-voltage dis-
tribution networks where communication networks are not robust. Traditional distribution
networks achieve reactive power optimization by adjusting transformer tap positions and
switched reactive power compensation devices. These adjustments aim to minimize net-
work losses, system losses, and voltage differences and achieve the lowest possible system
operating cost while meeting the energy supply needs of the demand side. However, the
simultaneous integration of distributed energy sources into active distribution networks
requires more reactive power compensation devices, increasing costs and operational con-
trol difficulties. By transforming distributed energy sources into inverters and considering
the reactive power characteristics of inverters, it is possible to leverage inverter-controlled
distributed generation (DG) for reactive power optimization, significantly reducing op-
erating losses in distribution networks. Liu Yang et al. [25] proposed a reactive power
optimization method for distribution networks with distributed power sources based on
a multi-objective differential evolution algorithm, demonstrating the algorithm’s strong
optimization capability for multi-objective problems. Yuan Changhao et al. [26] proposed a
voltage-optimization method for distribution networks considering coordinated control at
the feeder layer and substation layer, effectively controlling voltage deviations, reducing
equipment switching times, and improving system economic efficiency. Adjusting the
reactive power control voltage of PV inverters [27] can effectively utilize the capacity of PV
inverters without increasing equipment investment, providing an economically feasible
method. Therefore, this paper addresses the reactive power-optimization problem of active
distribution networks based on the characteristics of PV inverters.

3. Proposed Method
3.1. Reactive Power-Optimization Scheduling Model

The reactive power-optimization and scheduling model for an active distribution
network with distributed energy storage consists of three main parts: model establishment,
algorithm solution, and load regulation.
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Firstly, after determining the impact of the integration of distributed energy sources
on the voltage distribution in the distribution network, we calculate the voltage difference
before the integration of distributed energy sources and the node voltage when the power
factor of residential loads is high. Subsequently, the node voltage and voltage difference af-
ter the integration of distributed energy sources into the distribution network are calculated,
demonstrating that the possibility of exceeding the upper limit of node voltage increases
when the output power of distributed energy sources is too high. Next, a voltage-reactive
power optimization model for the distribution network with distributed energy sources is
established. The objective function is to minimize network losses, including line, inverter,
and system energy losses. Constraints are modeled around these components and include
branch flow constraints, voltage magnitude constraints, load power constraints, inverter
capacity constraints, and energy-storage system capacity constraints. After completing
the overall model establishment, the second-order cone relaxation algorithm is chosen to
relax the phase angle of the objective function, transforming it into a function related to a
certain optimization variable. This results in the corresponding relaxed second-order cone
programming model, and the optimization is carried out using the second-order cone’s
phase angle relaxation method. The model is then applied to the IEEE 33-node distribution
system with preset parameters to obtain the corresponding optimization results, ultimately
demonstrating the effectiveness of the second-order cone programming algorithm in reac-
tive power optimization. The technical roadmap of the second-order cone programming
model is shown in Figure 1.
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3.1.1. Objective Function

The major issue with traditional distribution networks lies in their slow response to
load variations, typically limited to hourly adjustments. In particular, the parallel opera-
tion of capacitor units and voltage regulators makes the control of traditional distribution
networks cumbersome. However, in an active distribution network where photovoltaic
(PV) inverters serve as reactive power-regulation devices, the system can adapt to rapid
control changes on a minute-by-minute scale. This aligns well with the fluctuating de-
mands associated with renewable energy generation. Therefore, this model considers the
study of the inverter’s short-term reactive power-optimization calculation in the active
distribution network.
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In this paper, we establish an optimal period of 24 h and formulate an objective
function for minimizing the active power loss in the distribution network throughout the
day. The objective function is expressed as follows:

minPloss =
T

∑
t=1

∑
ij∈E

I2
ij,trij (1)

In the above equation, Ploss represents the total active power loss in the distribution
network over the entire day; ij represents the branch connecting node i and node j; E
represents the set of branches in the distribution network; T is the total number of time
periods in a day; rij is the resistance of branch ij; t is the time period index, and Iij,t
represents the current through branch ij during time period t.

3.1.2. Constraints

The development of active distribution networks has reached a certain stage where
more controllable units can be connected. Through adjustments to these controllable units,
the optimization of distribution network scheduling can be achieved. Constraints are
imposed based on distributed energy sources, discrete reactive compensation devices, and
continuous reactive compensation devices. Optimal power flow constraints are established
according to the distribution network’s power flow and the outputs of control units.

(1) Branch Flow Constraints

Taking a radial distribution network as an example, the analysis focuses on establishing
the branch flow model for a specific branch at time t. The model is shown in Figure 2:
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The branch flow for this specific branch should satisfy the following constraints:

U2
j,t = U2

i,t − 2
(
rijPij,t + xijQij,t

)
+

(
r2

ij + x2
ij

)
I2
ij,t

pj,t = Pij,t − rij I2
ij,t − ∑

k:j→k
Pjk,t

qj,t = Qij,t − xij I2
ij,t − ∑

k:j→k
Qjk,t

I2
ij,t =

P2
ij,t+Q2

ij,t

U2
i,t

(2)

In the above equation, i and j are the node indices; Ui,t and Uj,t are the voltages at
nodes i and j, respectively. pi,t and pj,t are the active power injections at nodes i and j,
respectively; qi,t and qj,t are the reactive power injections at nodes i and j, respectively; Pij,t
and Qij,t are the active and reactive power at the sending end of branch ij, respectively;
rij + jxij represents the impedance of branch ij; Pjk,t and Qjk,t represent the active and
reactive power at the sending end of branch jk, respectively; k : j → k is the set of child
nodes with node j as the parent node.

(2) Distributed Generation Operation Constraints
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If node i is connected to a Distributed Generation (DG) unit, the output range should
satisfy the following constraints:

0 ⩽ PDG
i,t ⩽ PDG

i,t,max (3)

In the above equation, PDG
i,t represents the actual output of the DG installed at node

i during time period t; PDG
i,t,max is the maximum allowable output of the DG during time

period t. The model assumes that the output of DG is continuous.

(3) Constraints on Discrete Reactive Power Compensation Devices

If the capacitor bank (CB) is connected with group switching, the reactive power
compensation is a discrete variable, and CB must satisfy the following constraints:

Qcb
i,t = ncb

i,tQ
cb
one

0 ⩽ ncb
i,t ⩽ ncb

i,max
ncb

i,t ∈ Z
(4)

In the above equation, Qcb
i,t represents the reactive power compensation capacity of the

capacitor bank at node i during time period t, ncb
i,t is the number of CB groups activated

(integer), Qcb
one is the reactive power compensation capacity of each capacitor bank group,

ncb
i,max is the maximum number of activated groups, and Z is the set of integers.

(4) Constraints on Continuous Reactive Power Compensation Devices

If the static reactive power compensation device is continuous, the reactive power
compensation is also continuous. Therefore, the operational constraints for SVC are as follows:

Qsvc
i,min ⩽ Qsvc

i,t ⩽ Qsvc
i,max (5)

In the above equation, Qsvc
i,t represents the reactive power compensation amount of

the SVC device at node i during time period t, and Qsvc
i,min and Qsvc

i,max are the minimum and
maximum reactive power compensation values of the SVC device.

(5) Node Voltage Constraints

Distribution network loads exhibit characteristics of time-series variation. If we
consider the characteristics of distributed power supply and reactive power compensation
devices, it will affect the system operation. To ensure that the system node voltage operates
normally in each time period, node voltage constraints are set as follows:

Umin ⩽ Ui,t ⩽ Umax (6)

In the above equation, Umin and Umax represent the lower and upper limits of the node
voltage operation, respectively.

3.2. Second-Order Cone Algorithm

Second-Order Cone Programming (SOCP) is a novel approach to linear programming.
Currently, there has been significant development in the techniques for solving SOCP. Meth-
ods, such as dual interior-point methods and commercial solvers, can be applied to solve
optimal power flow problems based on Second-Order Cone Programming. Furthermore,
SOCP is a special form of convex programming, meaning that a unique global optimal
solution can be obtained by solving SOCP.

The standard formulation of Second-Order Cone Programming is as follows:

min
{

cTx | Ax = b, xi ∈ K, i = 1, 2, . . . , N
}

(7)
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In the above equation, the variables x ∈ RN , b ∈ RM, c ∈ RN , AM×N ∈ RM×N
and K are the second-order cone or rotated second-order cone as defined in the follow-
ing expression:

Second-order cone:

K =

{
xi ∈ RN | y2 ≥

N

∑
i=1

x2
i , y ≥ 0

}
(8)

Rotated second-order cone:

K =

{
xi ∈ RN | yz ≥

N

∑
i=1

x2
i ; y, z ≥ 0

}
(9)

The relaxed theory and relaxation algorithm for the second-order cone program
involve two aspects: relaxation and convergence after the superposition of second-order
cone programs. Initially, the challenging nonlinear constraints are relaxed into second-
order cone constraints that are easier to solve. Simultaneously, an appropriate optimization
objective function is set to drive the second-order cone relaxation to “tighten” the optimal
solution. The concept of relaxation tightening is illustrated in the following Figure 3:
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If the objective function is an increasing function of branch currents and the network is
a radial-type network, then the use of second-order cone relaxation would be quite precise.
The algorithm steps of the second-order cone relaxation algorithm are shown in Figure 4.
The operators specified in MATLAB for executing the second-order cone algorithm and
their respective functionalities are presented in Table 1.

Table 1. Operators defined in matlab and their purposes.

The Name of the Operator Purpose

Transfer_node_num_to_consecutive.m Transfer node numbers into a continuous process

Search_Praents_Node.m The connections between nodes are obtained by
calculating the node admittance matrix

NR_PF_Cal.m Calculate the node voltage location
makeZbus_self_build.m Construction of a system of bypasses
Main_Opt__SOCP.mlx The main boot file of the second-order cone algorithm

Init_Device_Info.m Enter the device parameters
Generate_Standard_Case_Vector.m Generate standard compute vectors

Find_Wihtout_Which.m Look for complementary arrays



Computers 2024, 13, 95 9 of 19

Table 1. Cont.

The Name of the Operator Purpose

find_line_num.m Use the case file to find the node ID and branch ID
Define_Pos_VariableVector.m Define the Position of Variable in Vector

CPLEX_Optimization_Distflow_Dispatch.m Use CPLEX to solve optimization problems
CPLEX_DLPF_Optimization.m Enter the data that need to be calculated by CPLEX

Case_Info.m Enter a case
Case33.m Case 33
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3.3. Power Quality Control

In contrast to traditional power grids, improvements in this project involve three com-
ponents in the Active Distribution Network’s power quality control. The first component
entails the installation of IDUs and safety interlocking devices between two substations.
By controlling the interlocking in a normal state, the current impact of the interlocking at
substation A is examined for corresponding quality. This is achieved through software
adjustments, and the feedback from substation B regulates the acceptance of the current
from substation A. The loop closing device in the substation is shown in Figure 5.
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Figure 5. Loop closure device inside the substation.

The second component involves risk management for key users. If the interlocking
system detects an increased operational risk at substation A, the emergency disconnection
of critical users is executed through the interlocking device. This prevents voltage elevation
from affecting the electricity consumption for critical users. The loop closing device for the
client is shown in Figure 6.
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Figure 6. Loop closure device at the user end.

The third component involves designing a corresponding loop cabinet for the fast
detection of low voltage and reverse power to achieve rapid switching during temporary
voltage drops and short interruptions. The central control unit adjusts independently,
and the supply to critical users is switched through the tripping and loop closure of the
fast-switching device. The switching device for voltage dips and short interruptions is
shown in Figure 7.
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The implementation of power quality control in active distribution networks enables
efficient management and optimized scheduling of the distribution grid. This contributes
to enhancing the reliability, safety, and economic efficiency of the power grid. It aids power
utility companies in reducing power losses, improving supply quality, and meeting the
electricity needs of users, thereby promoting the sustainable development of the power
system. The main evaluation criteria of power quality are shown in Table 2.

Table 2. The main criterion of power quality.

Normal Operation Risk Interruption

Grid frequency 50 Hz +/−0.5 Hz other

Voltage deviation Three-phase power supply of 20 kV and
below ±7% other

Three-phase voltage
imbalance The imbalance does not exceed 2% other

Harmonics in public network The total harmonic distortion rate does
not exceed 4% other

4. Experiments and Result
4.1. Model Solution

Firstly, introduce the variable through Equation (10), that is

αi,t = U2
i,t

βij,t = I2
ij,t

(10)

In the equation, αi,t and βij,t represent the square of the voltage at node i and the
square of the current in branch ij during time period t, respectively.

The objective function and constraints (2) and (6) of the optimal power flow can be
transformed into

minPloss =
T

∑
t=1

∑
ij∈E

βij,trij (11)

αj,t = αi,t − 2
(
rijPij,t + xijQij,t

)
+

(
r2

ij + x2
ij

)
βij,t (12)

pj,t = Pij,t − rijβij,t − ∑
k:j→k

Pjk,tβij,t (13)
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qj,t = Qij,t − xijβij,t − ∑
k:j→k

Qjk,t (14)

βij,t =
P2

ij,t + Q2
ij,t

αi,t
(15)

U2
i,t,min ⩽ βi,t ⩽ U2

i,t,max (16)

It can be observed that Equation (11) is a linear function, and Equations (12) to (14) and
Equation (16) are linear constraints, while Equation (15) is a nonlinear equality constraint. In
this case, the second-order cone optimization (SOCO) is employed to handle Equation (15),
resulting in the following:

βij,t ⩾
P2

ij,t + Q2
ij,t

αi,t
(17)

After equivalent transformation, Equation (17) can be substituted into the standard
second-order cone form, yielding the following:∣∣∣∣∣

∣∣∣∣∣
2Pij,t
2Qij,t

βij,t − αi,t

∣∣∣∣∣
∣∣∣∣∣
2

⩽ βij,t + αi,t (18)

In the given equation, the symbol ||||2 denotes the Euclidean norm. By applying
transformations to the aforementioned equations, the optimal power flow model is refor-
mulated into a second-order cone optimization problem. The resulting complete expression
is provided below:

minPloss =
T

∑
t=1

∑
ij∈E

βij,trij (19)

where some expressions involve integer variables due to the operational constraints of
CB, making the final model a Mixed-Integer Second-Order Cone Programming (MISOCP)
problem. Additionally, from the discussion of this problem, it is found that the approach to
handling second-order cone programming is to relax the constraints to achieve efficient
solutions. Although there may be relaxation errors, these errors can be defined as follows:

errij,t = βij,tαi,t − P2
ij,t − Q2

ij,t (20)

For the minimal second-order cone programming problem, based on the MATLAB
platform, the YALMIP modeling package is utilized to formulate the model, set basic
parameters of the distribution network grid, branch impedance and DG, define timing
control variables for optimal power flow model and set constraints, and use CPLEX solver
to solve the model. The implementation process of the program is illustrated in Figure 8.
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4.2. Simulation and Analysis
4.2.1. Simulation System and Parameter Settings

In this study, simulation analysis is conducted using the IEEE 33-bus test case designed
with the Matepower toolbox. The IEEE 33-bus system is depicted in Figure 9, and relevant
data are presented in Table 3.
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Table 3. Branch parameters of IEEE 33-node distribution system.

Branch Number Start Node End Node Resistance/Ω Reactance/Ω

1 1 2 0.0922 0.0470
2 2 3 0.4930 0.2511
3 3 4 0.3660 0.1864
4 4 5 0.3811 0.1941
5 5 6 0.8190 0.7070
6 6 7 0.1872 0.6188
7 7 8 0.7114 0.2351
8 8 9 1.0300 0.7400
9 9 10 1.0440 0.7400
10 10 11 0.1966 0.0650
11 11 12 0.3744 0.1238
12 12 13 1.4680 1.1550
13 13 14 0.5416 0.7129
14 14 15 0.5910 0.5260
15 15 16 0.7463 0.5450
16 16 17 1.2890 1.7210
17 17 18 0.3720 0.5740
18 6 26 0.2030 0.1034
19 26 27 0.2842 0.1447
20 27 28 1.0590 0.9337
21 28 29 0.8042 0.7006
22 29 30 0.5075 0.2585
23 30 31 0.9744 0.9630
24 31 32 0.3105 0.3619
25 32 33 0.3410 0.5362
26 2 19 0.1640 0.1565
27 19 20 1.5042 1.3554
28 20 21 0.4095 0.4784
29 21 22 0.7089 0.9373
30 3 23 0.4512 0.3083
31 23 24 0.8980 0.7091
32 24 25 0.8960 0.7011

During the phase of model establishment, the paper primarily incorporated photo-
voltaic (PV) as the selected distributed energy source. A total of 11 PV nodes were installed
at specific locations: nodes 5, 10, 13, 15, 17, 22, 24, 26, 28, 30, and 32. The cumulative in-
stalled capacity amounted to a significant value of approximately 1.5 MW. The installation
of capacitor banks (CBs) is located at node 18, while a Static Var Compensator (SVC) is
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installed at node 31, providing compensation within the range of −0.2 to 1 Mvar. The
reference voltage specified in the paper is 12.66 kV, with a corresponding operating range
for nodes set between 0.95 and 1.05 per unit (pu), equivalent to 12.027 kV and 13.293 kV,
respectively. It should be noted that subsequent control group node voltages are also refer-
enced against the value of 12.66 kV, but with upper and lower limits adjusted accordingly.
The optimization model in the paper still focuses on minimizing voltage deviations, as well
as variations in active and reactive power, for each node in the IEEE 33 power system when
control group calculations are included, with the ultimate goal of obtaining optimized
network losses. The parameters of IEEE 33 branches, obtained through power flow calcula-
tions and resulting in the voltages at corresponding nodes, are illustrated in Figure 10. This
provides a fundamental basis for reactive power optimization and voltage optimization.
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4.2.2. Simulation Results

The optimization process focuses on voltage, active power, and reactive power based
on the provided branch parameters and calculated node voltages. In particular, it empha-
sizes the significant role of photovoltaic inverters in optimizing node voltages and reactive
power. The data are partitioned, and matrices are constructed to facilitate the importation of
the problem into the CPLEX solver, resulting in a simplification to 53 quadratic constraints.
Subsequently, these constraints are prioritized using approximate minimum degree order-
ing to address more significant issues first. Finally, aided by the CPLEX solver, the model
was successfully solved within a mere 0.64 s. The ultimate optimization outcomes reveal
a remarkable decrease in total network losses from 0.410318 MW prior to optimization
to a mere 0.024680 MW post-optimization over a span of 24 h, signifying an impressive
reduction in active power losses by 94%. The graphical representation of these optimization
results can be observed in Figure 11.
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The node voltage analysis in Figure 11 clearly demonstrates significant adjustments in
the key nodes’ voltages before and after optimization. Notably, node 17, initially exhibiting
a voltage peak, experienced a decrease from 1.09 pu to 1.07 pu following the optimization
process. By mitigating the fluctuations of distributed energy sources, grid stability is
ensured, meeting the requirements for stable operation after integrating these sources.
Furthermore, it is crucial to avoid rapid voltage magnitude changes within the specified
limits at nodes when adjusting them. Such changes could result in significant variations
in voltage phase angles and consequently impact the overall stability of grid operations.
Indeed, stable voltage reduction has been proven to be an effective adjustment measure
for distribution network systems when combined with distributed energy sources and
energy-storage units.

The comparison of active power distribution at nodes before and after optimization
reveals that the integration of distributed energy sources, particularly photovoltaics, mod-
ifies the original distribution in the network. However, it is important to note that the
incorporation of distributed energy sources does not universally lead to an increase in opti-
mized active power output. In fact, slight decreases are observed in active power output
within certain branches. The optimization model effectively achieves load demand and a
generation supply balance by efficiently scheduling energy-storage units and distributed
energy sources, thereby minimizing ineffective active power losses and maximizing the
utilization of existing generation resources. It ensures uninterrupted power supply without
blindly increasing the output of distributed energy sources.

After optimization, the reactive power distribution at nodes was strategically concen-
trated at key points to ensure overall stability of the power system and facilitate efficient
energy transfer. The integration of distributed energy sources, such as photovoltaic in-
verters, into the distribution network necessitates the consideration and control of their
reactive power characteristics, resulting in a more balanced allocation of reactive power
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among various branches. This effectively reduces instances of local surplus or deficiency in
reactive power, thereby enhancing grid stability.

The installation of photovoltaic inverters at corresponding nodes ensures consistent
active power output from them. However, slight variations in active power may occur at
other nodes where photovoltaic inverters are not installed. While simulation scenarios are
used to maintain consistent active power at nodes primarily for reactive power optimization
through voltage phase angle adjustments, the actual situation may differ.

The reactive power output from photovoltaic inverters is achieved through an adjust-
ment of the node voltage and phase angle, ensuring stability in the operation of the overall
power system. This mechanism prevents excessive phase angle deviations at correspond-
ing nodes, thereby mitigating excessive energy consumption. It represents an effective
approach for optimizing reactive power using photovoltaic inverters.

In practical scenarios, there are inherent limitations to the adjustment of photovoltaic
inverters. These limitations pertain to the loading capacity and voltage constraints at the
nodes. In order to assess the efficacy of reactive power optimization utilizing photovoltaic
inverters, adjustments were made to the upper and lower limits of the voltage range for
IEEE 33 nodes, setting them at 0.95–1.5 pu, while maintaining a reference value of 12.66 kV;
all other parameters of IEEE 33 remained unchanged throughout this analysis. The final
results are depicted in Figure 12.
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Compared to Figure 11, significant voltage changes are observed in nodes 10–18
in Figure 12. However, as the loading capacity of the photovoltaic inverters remains
unchanged, there will be no variation in active power. Nevertheless, there is a more uniform
variation in reactive power across branches. This can be attributed to the significant changes
in voltage limits for IEEE 33 nodes, while the actual installed capacity has not reached an
equal level across all nodes, resulting in lower adjustment levels. Additionally, notable
adjustments are seen in the phase angles of voltage nodes concentrated between nodes 13
and 18, with an average phase angle deviation of 6.13◦, and nodes 28 and 33, with an
average deviation of 4.8◦. Finally, considering the overall network losses, which decreased
from 0.410318 MW before optimization to 0.225484 MW after optimization, a reduction
of 45% is achieved. This demonstrates that under larger voltage adjustment amplitudes,
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the impact of relatively small photovoltaic inverter loading capacities on optimization
is limited.

Finally, the forward generation-reflow method is used to predict and optimize voltage
amplitudes during the time period. The IEEE 33-node case is simulated for the analysis,
revealing the changing trend in voltage amplitudes during the time period. It is observed
that the voltage deviations closely approximate those from the second-order cone optimiza-
tion. This demonstrates that within the approximation range, normal voltage amplitudes
decrease when the load is low, aligning with the optimization goals of the second-order
cone for its load calculation. The prediction of IEEE 33 voltage amplitude in the time
interval is shown in Figure 13.
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5. Limitations

1. Model Applicability: The proposed model for reactive power optimization in active
distribution networks, which utilizes the second-order cone relaxation algorithm, is
specifically tailored to optimize distribution networks that encompass intricate scenar-
ios involving distributed renewable energy sources, such as photovoltaic generation
and energy-storage systems. The study has been validated through simulation on the
IEEE 33-node system, showcasing significant reductions in network losses. However,
it should be noted that the model’s applicability may vary depending on the type
and scale of distribution network structures, particularly for transmission networks
operating at voltage levels exceeding 13 kV and distribution networks encompassing
a diverse range of distributed energy resources and distinct topological structures.
Further verification is required to ascertain the universality of the model.

2. Assumptions and Simplifications: The study made certain assumptions and simplifica-
tions regarding specific conditions, such as assuming that distributed energy sources
primarily consist of photovoltaics. However, it did not fully consider the uncertainty
and complementary effects of other types of renewable energy sources, like wind or
hydroelectric power. Furthermore, the study lacked the extensive exploration of the
issue of coordinated optimization among multiple types of energy-storage devices.

3. Incomplete Coverage of All Influencing Factors: While the study primarily focuses
on enhancing power quality, it solely provides a detailed analysis of phase angle
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deviation in individual nodes and overall node voltage deviation to meet operational
standards and improve power quality. However, it fails to comprehensively address
all factors that impact power quality and system stability, such as harmonic mitigation,
system stability, and frequency control, which were not directly integrated into the
proposed reactive power-optimization model.

6. Conclusions

The paper conducts a comprehensive investigation and analysis of reactive power
optimization in distribution networks, considering the impact of integrating distributed
renewable energy sources on voltage levels within the distribution network. Based on this
thorough analysis, an active distribution network reactive power-optimization model is
established using a second-order cone algorithm. The paper employs the second-order cone
relaxation algorithm to convert non-convex, non-linear power flow optimization models
into easily solvable and efficient second-order cone programming models. By utilizing
the IEEE 33 test case and the CPLEX solver, simulation experiments are conducted in
this study to validate the superior performance of the second-order cone programming
algorithm in addressing distribution network loss problems. The results demonstrate
a remarkable enhancement in system efficiency resulting from optimization strategies,
leading to a significant reduction in distribution network losses from 0.410318 MW to
0.024680 MW, representing a decrease of nearly 94%. This substantial improvement notably
optimizes power quality management while enhancing the efficiency and utilization of
the power system. Furthermore, this study provides a comprehensive description of how
intelligent distribution units (IDUs) and safety ring devices effectively control and enhance
power quality in the grid system. Additionally, it establishes stringent standards for power
quality compliance. By comparing optimized node voltages, it is demonstrated that they
successfully meet power quality standards encompassing the grid frequency, voltage devi-
ation, and three-phase voltage imbalance while adhering to operational requirements for
power quality. Consequently, within the IEEE 33 system these technologies exhibit notable
advantages in augmenting power quality while mitigating harmonics and minimizing
voltage fluctuations in the power system.

Taken together, this research underscores the importance of reactive power optimiza-
tion and power quality control in distribution networks, demonstrating the effectiveness
and feasibility of corresponding technologies. It is believed that with further in-depth
research and ongoing improvements in these technologies, they will play a greater role
in the field of distribution networks, contributing significantly to improving efficiency,
reliability, and power quality in the power grid.
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