
Citation: Tincu, C.-E.; Andrit,oiu,

C.V.; Popa, M.; Ochiuz, L. Recent

Advancements and Strategies for

Overcoming the Blood–Brain Barrier

Using Albumin-Based Drug Delivery

Systems to Treat Brain Cancer, with a

Focus on Glioblastoma. Polymers

2023, 15, 3969. https://doi.org/

10.3390/polym15193969

Academic Editor: Yajuan Sun

Received: 14 August 2023

Revised: 23 September 2023

Accepted: 26 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Recent Advancements and Strategies for Overcoming the
Blood–Brain Barrier Using Albumin-Based Drug Delivery
Systems to Treat Brain Cancer, with a Focus on Glioblastoma
Camelia-Elena Tincu (Iurciuc) 1,2, Călin Vasile Andrit,oiu 3,4, Marcel Popa 1,5,6,* and Lăcrămioara Ochiuz 2

1 Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and
Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street,
700050 Iasi, Romania; camelia_tincu83@yahoo.com

2 Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine
and Pharmacy, 16, University Street, 700115 Iasi, Romania; ochiuzd@yahoo.com

3 Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania; dr_calin_andritoiu@yahoo.com
4 Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad,

Liviu Rebreanu Street, 86, 310045 Arad, Romania
5 Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
6 Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
* Correspondence: marpopa2001@yahoo.fr

Abstract: Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most
prevalent primary malignant tumor affecting the brain and central nervous system. Recent research
indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the
main obstacle in treating GBM is transporting drugs through the blood–brain barrier (BBB). Albumin
is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery
systems is determined by their ability to improve tumor targeting and accumulation. In this review,
we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well
as the structure and some essential functions of the BBB, to transport drugs through this barrier. We
will also mention some aspects related to the blood–tumor brain barrier (BTBB) that lead to poor
treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in
targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining
albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer,
especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper
have improved properties and can overcome the BBB to target brain tumors.

Keywords: glioblastoma; albumin nanoparticles; overcoming blood–brain barrier; functionalization
of nanoparticles

1. Introduction

Glioblastoma multiforme (GBM) is a highly aggressive form of cancer and the most
prevalent primary malignant tumor found in the brain and central nervous system (CNS) [1].
On average, patients with GBM have a low median overall survival rate of only 15 months.
GBM is in the higher grade (IV) of primary brain tumors and is much more common
in men. The incidence of GBM in recent years has been increasing. However, it is still
challenging to determine the causes of its occurrence, and this is why additional research
on the etiology and treatment of GBM tumors should continue. It should also be noted
that the current therapy just slightly extends the life of patients, but cannot cure the cancer
itself [2]. Many strategies have been adopted to develop effective drug delivery systems
for the brain. The main mechanisms by which drugs cross the blood–brain barrier (BBB)
are absorption-mediated transcytosis, transporter-mediated transcytosis, and receptor-
mediated endocytosis. The blood–brain tumor barrier (BBTB), similar to the BBB, is located
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between brain tumor tissues and microvessels formed by specialized endothelial cells,
limiting the release of hydrophilic molecules into the tumor tissue. Proposed strategies for
targeting the BBTB are mainly based on receptors expressed on tumors, such as epidermal
growth factor receptors and integrin [3]. Nutrient transport molecules have attracted special
attention for possible applications in targeted drug delivery using various carriers [4]. The
effectiveness of drugs in overcoming the BBB is influenced by multiple factors, including
the physical and chemical characteristics of the drugs, their ability to bind with proteins,
cerebral blood flow, their clearance from the body, and the integrity of the BBB. First, the
physicochemical properties, such as lipophilicity, hydrogen bonding formation, particle
size, and surface charge, influence the permeability of the drug molecules through the
BBB [5].

Temozolomide (TMZ) is the standard chemotherapy for the treatment of GBM and is
either used alone or in combination with radiotherapy for the treatment of GBM. Studies
show that it provides clinical benefits in patient survival [6]. TMZ has indiscriminately
attacked DNA, and has been shown to cause damage in a patient’s hematopoietic stem
cells, leading to dose-dependent hematological toxicity. TMZ is poorly soluble under
physiological conditions and undergoes rapid hydrolysis that limits its antitumor efficacy
(the TMZ half-life is 1.8 h and requires frequent administration) [7–9]. A prolonged therapy
leads to the body’s resistance to TMZ and a poor reaction of the body in subsequent
treatments, leading to a tumor recurrence in 60–75% of cases. Current research shows that
the genetic profile of GBM leads to resistance to TMZ and radiation, but drug delivery
across the BBB is a significant struggle in treating GBM [10].

The limitations of chemotherapy highlight the need for a delivery system to increase
the drug’s therapeutic index. Several drug delivery systems (liposomes, solid lipid nanopar-
ticles, nanocapsules, and polymer nanoparticles) were tested to highlight their effectiveness.
However, the success of these formulations was limited due to the lack of a specific delivery
into cancer cells. The drug delivery system for glioma therapy should target the tumor
and have the ability to overcome the BBB [11]. Drugs encapsulated in various supports can
improve tumor cell targeting via the diffusion of drugs across the BBB using different mech-
anisms, such as specific tumor-targeting mechanisms based on an enhanced permeability
and retention (EPR) effect, with targeting molecules attached to delivery systems that bind
to the tumor cell receptors and the diffusion of these nanosystems with incorporated drugs
within the tumor ensuring a homogeneous distribution of anticancer drugs inside the
tumor [12].

There are many types of biomolecules used for controlled and targeted drug delivery.
A method that has been developed to overcome the limitations of polymer nanoparti-

cles is the use of lipid nanoparticles. These nanoparticles are advantageous as they have low
production costs and do not involve the use of solvents in their preparation stage, which can
cause high toxicity [13]. Liposomes were the first model of lipid-based nanoparticles. The
FDA has approved Doxil®/Caelyx®, a PEGylated doxorubicin liposomal formulation for
cancer treatment. Despite liposomes’ unique advantages, such as high biocompatibility, low
toxicity, non-immunogenicity, and biodegradability, their applications have been limited
due to some associated disadvantages. Phospholipids in liposomes can undergo oxidation
and hydrolysis reactions, resulting in poor stability, a short shelf life, low encapsulation effi-
ciency, and high production costs [14]. Solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs) are innovative drug delivery systems that are designed to replace
traditional delivery systems like polymeric nanoparticles, liposomes, and emulsions. These
newer systems have numerous advantages, including protecting drugs from environmental
factors and their potential for large-scale production using high-pressure homogenization
techniques. They are biocompatible and biodegradable, exhibiting superior stability and
release profiles compared to liposomes. Furthermore, they are considered safer than poly-
meric nanoparticles as they do not use organic solvents [15–18]. Solid lipid nanoparticles
(SLNs) and nanostructured lipid carriers (NLCs) can help deliver drugs to target cells
through various mechanisms, including passive and active targeting. In passive targeting,
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SLNs and NLCs utilize specific properties of the tumor microenvironment to enhance
drug release based on the EPR effect. The surface of SLNs and NLCs was modified for
active targeting to be recognized by overexpressed transporters or receptors in target cells,
leading to selective targeting and reducing side effects [17]. Although these nanoparticles
have numerous benefits, SLNs have drawbacks, like unexpected gelling, low encapsulation
efficiency, and drug expulsion due to solid lipid recrystallization during storage. This
makes it challenging to keep the drug encapsulated. In order to overcome these limitations,
a liquid lipid was introduced into the SLN formulation, leading to the development of
NLCs [19]. Another disadvantage is the burst effect caused by erosion that usually occurs
with these formulations, which can cause toxicity in the body due to the drug dose being
too high [15].

Drug delivery to the brain can be improved by using lipid nanoparticles. These
nanoparticles can increase the drug’s retention time in the blood of the cerebral capillaries
and induce a certain concentration of the drug from the blood to the brain tissues. This
helps to overcome the BBB by opening tight junctions (TJs) and utilizing the transcytosis of
the drug-loaded lipid nanoparticles through the endothelium layer. For optimal outcomes,
the nanoparticles can be coated with polysorbate 80. Furthermore, lipid nanoparticles with
a positive surface charge can enhance drug accumulation in the brain. One of the main
drawbacks of using lipid nanoparticles for cerebral administration is that they can be de-
tected by the reticuloendothelial system (RES) cells, which can lead to the rapid elimination
of drug-loaded SLNs from the systemic circulation. The intravenous administration of
these delivery systems also has a few disadvantages. Firstly, a significant amount of the
drug is initially expelled due to matrix erosion, which can cause side effects. Additionally,
limited clinical studies are available, and the capacity for encapsulating hydrophilic drugs
is reduced. Furthermore, the drug may be lost before it reaches the target site in the body,
and in the case of the systemic administration of cytotoxic drugs, there is a chance that
the RES may eliminate them. Lastly, the accumulation of lipids in the liver and spleen
could cause pathological changes [20]. In order to improve drug delivery systems for the
treatment of brain cancer and administration to the CNS, researchers have explored new ap-
proaches. One such promising approach is the use of albumin-based nanoparticles, which
can address the limitations of SNLs. In the upcoming paragraphs, we will summarize the
role of albumin in the body and its benefits as a drug delivery system for brain delivery.

Serum albumin, a globular protein secreted within the body, has some advantages
that have attracted the attention of researchers. Albumin is not toxic, is non-immunogenic,
ensures excellent biocompatibility with the nanoparticles, and has high stability in water
and diluted salt solutions. The half-life of albumin in the bloodstream is 19 days, so the
drugs encapsulated in albumin-based nanoparticles can be maintained in the bloodstream
for an extended period of time compared with free drugs due to their role in the body,
which is to interact with lipophilic molecules, such as hormones, fatty acids, vitamins (C,
D, folic acid), and minerals (copper, zinc, calcium). Albumin stabilizes the blood pH and is
responsible for 80% of the osmotic pressure of plasma [21,22].

Research carried out until now has shown that various drugs, genes, peptides, vac-
cines, and antibodies can effectively bind to albumin. This protein can be successfully
used to obtain delivery systems with a controlled and targeted release of the encapsulated
bioactive compounds. Albumin-based delivery systems have a high drug-loading capacity,
good biocompatibility, and biodegradability. Albumin-based nanoparticles are efficient,
easy to prepare, have a well-defined and controllable size and shape, and have charac-
teristics for surface modification. Albumin nanoparticles are dried via freeze-drying and
could be successfully used in nanomedicine. These nanoparticles can be redispersed in
injectable solutions, ensuring the stability of the encapsulated active biological compound
and avoiding premature drug release, agglomeration, and precipitate formation [23].
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Albumin has been frequently identified in the protein corona on the surface of dif-
ferent types of nanoparticles, thus modulating their tissue localization and cellular tar-
geting. Large amounts of albumin are found in human blood (30–50 g/L), and albumin-
based nanoparticles are considered excellent delivery systems due to their non-toxicity
and non-immunogenicity. Albumin contains three functional groups—COOH, NH2, and
SH—which determine an easy functionalization of the protein with different ligands, and
the targeted release of the encapsulated drugs is improved. It was shown that the incuba-
tion of polystyrene-based microparticles/nanospheres with HSA reduced phagocytosis in
the dendritic cells, even in the presence of opsonins such as immunoglobulins and human
serum glycoproteins [24].

Albumin influences various delivery systems’ stability, pharmacokinetics, and biodis-
tribution by binding to their surface and forming the protein corona. The development of
albumin-based drug delivery systems with controlled and targeted drug delivery is gaining
increased importance in cancer therapy. Magnetic nanoparticles can be directed to a specific
area in the body using a magnetic field. This method can potentially target drug delivery
in cancer treatment and can be enhanced with heat treatment and MRI monitoring [22,25].
Magnetite, Fe3O4, has perspectives in this area but requires surface functionalization to pre-
vent aggregation. Protein-coating magnetic nanoparticles, such as with albumin, provides
them with biocompatibility, biodegradability, lower immunogenicity, and low cytotoxicity,
and increases the targeting efficiency in various tissues and cells [25].

Radiopharmaceuticals for diagnosis are used in subtherapeutic amounts and have an
excellent safety profile. The most common radionuclide is the gamma technetium-99m
(99mTc) emitter, with a half-life of 9 h. Albumin can cover radionuclides used in imaging
techniques to prevent their possible side effects by forming albumin nanocolloids. A human
serum albumin nanocolloid labeled with the radionuclide 99mTc was initially developed for
magnetic resonance imaging in the diagnosis of inflammation but quickly became used in
the field of lymphoscintigraphy. These albumin-based nanocolloids are recommended in
most European guidelines as a procedure for sentinel node localization [26].

The efficiency of albumin-based delivery systems is determined by their ability to
improve tumor targeting and accumulation. For example, the increased accumulation of
albumin nanoparticles in tumors is due to the increased passive uptake mediated by the
EPR effect. In addition, albumin can bind to special receptors expressed in cancer cells and
improve the binding and internalization of the nanoparticles. Various tumors overexpress
the 60 kDa glycoprotein receptor (gp60) and the secreted protein acidic and rich in cysteine
(SPARC) [27,28].

The binding ability of the gp60, gp30, gp18, and FcRn receptors to albumin ensures
the transcytosis of albumin-based nanoparticles within the tumor cells. Its accumulation in
tumors is facilitated by interactions with the SPARC receptor and the EPR effect [25].

This paper is a literature review covering several aspects of the prevalence of tumoral
brain cancer, especially human glioblastoma, and the currently adopted treatment. Also,
this literature review presents some essential BBB features for drug delivery systems’
transport and some factors related to the blood–tumor–brain barrier that determine the
poor effectiveness of drugs in brain tumor tissue. The properties and structure of serum
albumin and its role in targeting brain tumors were presented. We have chosen to discuss
serum albumins and albumin-based nanoparticles because they have been mentioned as
having suitable properties and an essential role in cancer targeting, especially in brain
cancer. Many papers have demonstrated that serum albumins could specifically bind to
60 kDa glycoprotein (gp60) and SPARC (an acidic and cysteine-rich protein), determining
its uptake into cancer cells via transcytosis. Also, albumin-based delivery systems have the
ability to avoid the efflux mechanisms of the drug, determining an improved absorption
of albumin-based nanoparticles into brain tumors. The novelty of this review article
consists of a critical analysis of the progress made by researchers until now in developing
albumin-based nanoparticles that can improve the treatment of brain cancer, especially
glioblastoma multiform. This review article provides a new comprehensive analysis of
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albumin-based nanoparticles that have been used in research studies for the diagnosis and
treatment of brain cancer. It also discusses the techniques for modifying and administering
these nanoparticles to overcome the BBB, and the specific targeting methods used to
treat malignant brain tumors. Several review articles have been published that detail the
methods for producing albumin-based nanoparticles and their potential use in overcoming
drug resistance for various types of cancer [23,27].

Additionally, another review article explores the application of serum albumin-based
delivery systems as nanoprobes for cancer diagnosis and treatment [28]. However, they
do not describe in detail the mechanisms underlying the treatment of a specific type of
cancer and the biological limitations that appear in the administration of specific anticancer
drugs. A recently published article discusses using albumin nanoparticles for administer-
ing chemotherapeutic drugs in breast cancer therapy, exploring various multifunctional
theranostics [29]. In order to enhance the effectiveness of albumin-based nanoparticles that
are used for treating different types of cancer, researchers must concentrate on compre-
hending and communicating the relationship between the preparation conditions and the
intended therapeutic use. Scientists must take an interdisciplinary approach to develop
multifunctional, next-generation albumin-based delivery systems to treat brain cancer.

Albumin represents a promising candidate for radiopharmaceuticals’ conjugation and
for the magnetic nanoparticle coating that is used in the theranostic field, and can provide
biocompatibility, prolonged blood circulation, immunogenicity, and low toxicity. The drug
delivery nanosystems mentioned in this paper have improved properties and can overcome
the BBB and target brain tumors.

Considering the benefits of using albumin as a drug delivery system and the fact that
there are only two clinical trials (phase 1 and 2) for the treatment of glioblastoma using
these delivery systems, we believe that this literature synthesis could help researchers in the
field to develop new drug delivery systems based on albumin with improved properties to
overcome the biological barriers that limit CNS drug delivery and aid in the early diagnosis
and treatment of brain cancer.

2. Classification of Brain Tumors

The most common brain tumors (gliomas) arise from glial cells, ranging from low-
infiltrating to highly aggressive forms. In 2007, the World Health Organization (WHO)
classified gliomas into four categories based on their histopathological features. These
features include the mitotic index, anaplasia, cytological atypia, microvascular prolifer-
ation, and necrosis: grade I (i.e., pilocytic astrocytoma), grade II (i.e., astrocytomas and
oligodendrogliomas), grade III (i.e., anaplastic astrocytomas and oligodendrogliomas) and
grade IV (i.e., glioblastoma multiforme). In 2016, the WHO included molecular diagnostic
criteria for infiltrating gliomas, including isocitrate dehydrogenase mutation, chromosome
1p/19q deletion, and histone mutations in the classification [30]. However, malignant or
high-grade (III and IV) gliomas are characterized by a poor prognosis. In addition, 8–10%
of adult cancer patients develop brain metastases, with a considerably variable incidence
between different types of primary cancer. Lung, breast, colon, kidney, or melanoma cancer
can lead to brain metastases, of which 70% are from lung and breast cancer [31].

3. Prevalence and Treatment

It is well-known that glioblastoma (GBM) stands out as one of the most aggressive
forms of cancer. It is a primary malignant tumor that affects the brain and central nervous
system (CNS), accounting for 14.5% of all CNS tumors and 48.6% of all types of CNS
cancer [1]. Unfortunately, patients diagnosed with GBM have a low median overall survival
rate of only 15 months. This type of cancer originates from astrocytic glial cells [32] and
is classified as a high-grade (grade IV) malignant glioma. It is not easy to establish the
incidence of GBM because it varies according to different reports, from 3.19 cases per 100,000
people [33,34] to 4.17 per 100,000 people [2,35]. The incidence in the pediatric population
is 0.85 per 100,000, where pediatric glioblastoma multiforme represents 3–15% of primary



Polymers 2023, 15, 3969 6 of 76

brain tumors [2,36–38] in this age group. It is important to note that the second most
common form of cancer in children is primary central nervous system (CNS) tumors [2].
The incidence of GBM shows slight variation based on location and is most frequently
found in the frontal, temporal, parietal, and occipital lobes. However, it can also affect
other areas, such as brain stem cells, the cerebellum, and the spinal cord, although less
commonly [39]. Age is a significant factor in the incidence of GBM, with almost half of
all cases diagnosed in individuals aged 40–65 years [40,41]. In addition, GBM is slightly
more prevalent in males than females, and in Caucasians compared to other ethnicities [42].
Treating GBM requires a comprehensive approach involving multiple disciplines. The most
effective plan of action involves a thorough surgical procedure to remove as much of the
tumor as possible, followed by radiotherapy and a concomitant oral administration of
TMZ, an alkylating chemotherapeutic agent. After that, adjuvant chemotherapy with TMZ
is given [43,44].

Removing GBM through surgery represents a significant challenge due to the invasive
nature of tumors that typically occur in essential brain regions that control speech, motor
function, and sensory perception. Unfortunately, surgery alone cannot completely elimi-
nate the primary tumor mass, as infiltrated tumor cells remain in the surrounding brain
tissue, leading to disease progression or recurrence [45]. Even with advances in surgical
resection, the prognosis for patients with GBM remains poor, with a median survival of
15 months [41].

Despite maximal resection therapy and multiple treatment options, approximately
70% of patients with GBM will experience disease progression within one year after diag-
nosis [46], and less than 5% of patients survive five years after diagnosis [47].

Chemotherapy is an alternative treatment for this type of cancer. However, its effective-
ness is limited by the toxic effects on healthy cells, the chemoresistance of tumor cells, and
the poor selectivity of anticancer drugs. Finally, the BBB is the principal limit in releasing the
chemotherapeutic agents into the tumor mass [48]. Thus, the chemotherapeutics currently
used for high-grade glioma are still limited to a few chemical compounds with a limited
administration of up to six months [49]. After surgery, the preferred first-line treatment for
low-risk or progressive gliomas is oral TMZ. However, the Radiation Therapy Oncology
Group recommends combining radiation therapy with chemotherapeutics such as procar-
bazine, lomustine, and vincristine as the standard treatment method [50]. The Food and
Drug Administration (FDA) has recognized oral TMZ as the standard chemotherapy for
GBM and anaplastic astrocytoma.

Bevacizumab is a monoclonal antibody that specifically binds to the vascular endothe-
lial cell growth factor (VEGF). Despite the FDA’s accelerated approval of bevacizumab for
brain tumors, based on its effectiveness against recurrent glioblastoma, this anti-angiogenic
therapy failed to improve overall patient survival, although it effectively reduced or
stopped tumor growth [51].

In 1996, the FDA approved biodegradable polyanhydride wafers loaded with car-
mustine (Gliadel®) for the chemotherapy of recurrent high-grade gliomas. Patients with
recurrent tumors benefited from the 8-week survival increase when wafers were admin-
istered after the second surgery. Survival was increased by 2.3 months in patients with
early-diagnosed tumors undergoing primary tumor resection followed by wafer adminis-
tration [52].

Glioma oncogenesis is complicated, with different barriers preventing the drug from
being delivered to the tumor site. The drugs must overcome three main barriers to treat
brain tumors: the BBB, the blood–brain tumor barrier (BBTB), and the relatively low EPR
effect. New strategies are required to develop a drug delivery system that is able to
overcome these barriers and be directed to the tumor site [3].
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4. The Blood–Brain Barrier (BBB)

The BBB, or blood–brain barrier, is a semipermeable physiological membrane that
separates the brain tissue from the blood. It is a complex system consisting of endothelial
cells, astroglia, pericytes, and perivascular mastocyte cells. Its primary function is main-
taining the central nervous system’s homeostasis and preventing harmful substances, such
as toxins and germs, from entering the brain [53].

The BBB consists of endothelial cells that are in close proximity to the basement
membrane. Astrocytes act as a protective barrier between neurons and capillaries. They
surround the cerebral capillaries and ensure that the permeability of the BBB is continuously
regulated [54].

Several distinguishing features of the brain endothelium contribute to its unique
barrier properties, which differ from those of peripheral tissues’ endothelium.

The TJs found in the brain endothelium are highly complex and have been observed
through imaging techniques as a chain-like network consisting of intramembranous par-
ticles that are extremely efficient in blocking intracellular clamps [55]. Researchers have
established that transmembrane proteins, such as occludin and claudin, play a significant
role in TJ structure and regulation [56]. They limit the paracellular flow of hydrophilic
molecules across the BBB. Together with adherens junctions, they form a tight structure
between adjacent endothelial cells, maintaining distinct tissue spaces by separating the
luminal part from the abluminal one of the plasma membrane. In normal physiological
conditions, molecules weighing more than 180 Da cannot overcome TJs [57]. These junc-
tions significantly restrict even the mobility of small ions such as Na+ and Cl−; thereby,
the transendothelial electrical resistance (TEER), which generally has values between 2
and 20 Ω·cm2 in peripheral capillaries, can reach the value of 1000 Ω·cm2 in the cerebral
epithelium. However, the barrier properties of the TJs can vary between brain endothelial
cells from different areas.

As drug substances move from the capillaries of the endothelial cells to the postcapil-
lary venules, their ability to permeate through TJs increases [58]. When designing drug
delivery systems, most researchers focus on the BBB capillaries. However, postcapillary
venules are a better option for transporting nanoparticles across the BBB because they are
more easily accessible within the vascular segment [59].

Three essential transmembrane proteins govern the maintenance of TJs: claudins,
occludin, and tight junction adhesion molecules (JAMs) [60].

Therapeutical substances can overcome the BBB through various mechanisms, in-
cluding transmembrane diffusion, saturable transport, endocytosis, and extracellular path-
ways [61]. Overcoming the BBB requires lipid-soluble molecules that are smaller than
400 Da and not substrates of active efflux transporters. If a molecule does not meet these
criteria, it can only cross the BBB through either carrier-mediated transport (CMT) or
receptor-mediated transport (RMT) [62].

In some pathological conditions, such as inflammation, brain trauma, or ischemic
vascular accidents, the BBB is compromised and allows for the passage of hydrophilic
substances more easily. Because polysaccharides are large hydrophilic molecules, they are
not expected to overcome the BBB under normal conditions unless they have been actively
transported via CMT or RMT [63]. CMT is used for small hydrophilic nutrients such as
glucose or amino acids [64]. RMT uses the vesicular trafficking mechanisms of the brain
endothelial cells to deliver a range of proteins, including transferrin, insulin, leptin, and
lipoproteins, to the CNS [65].
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The existence of the BBB was first reported in 1885 by Elrich. After injecting a dye
into the plasma, it was found in all organs except the brain and spinal cord. The first
interpretation was that of the lack of the dye’s affinity to the CNS tissue. Later, the lack
of a transfer of substances from the cerebrospinal fluid to the blood was also described.
Lewandowski first introduced the term blood–brain barrier in 1900, and its structure began
to be characterized in 1960, with subsequent additions [66].

Anatomically, the endothelial cells of the cerebral microvessels are distinguished from
the rest of the cells of the same kind by a large number of mitochondria, the absence of
fenestrations, low pinocytotic activity, and the presence of TJs [64]. Transmembrane proteins
such as occludin and claudin-5, as well as junction adhesion molecules, are expressed in
TJs. Zonula occludens (ZO) act as scaffolding proteins that connect these proteins to the
cytoskeleton and help to maintain structural integrity and reduce permeability through the
BBB [60,67–69]. The pericytes located on the outer surface of endothelial cells are irregularly
attached to the basement membrane. The basement membrane is composed of various
components, including type IV collagen fibers, proteoglycans, heparin sulfate, laminin,
fibronectin, and other cell-matrix proteins [70]. The basement membrane continues with
the astrocyte’s end feet, which cover the cerebral capillaries.

Astrocytes serve as mediators between neurons and cerebral microvessels, always
maintaining the proper regulation of cerebral microcirculation [71,72]. In response to
hypoxia or brain trauma, pericytes have the ability to move away from cerebral vessels,
which can cause an increase in BBB permeability. Various pathological conditions can
lead to BBB damage, including those associated with cerebral oxidative stress, such as
ischemia, alcohol abuse, cocaine use, and neuroinflammation [73,74]. The inability of the
BBB to function properly is a significant factor in the development and pathophysiology
of a range of neurological diseases. These may include stroke, multiple sclerosis, brain
trauma, neurodegenerative disorders, meningitis, epilepsy, optic neuromyelitis (Devic
disease), trypanosomiasis (sleeping disease), progressive multifocal leukoencephalopathy,
De Vivo disease, Alzheimer’s, and HIV encephalopathy. Disruption of the BBB can cause
the dysregulation of the level of ions, the disturbance of signaling homeostasis, and the in-
filtration of immune cells and molecules into the CNS. These factors are likely to contribute
to the dysfunction and degeneration of neurons [56,75]. Figure 1 schematically shows the
structure of the BBB with its constituent elements.

The BBB serves multiple functions, such as providing essential nutrients to the brain
and mediating the efflux of waste products. The interstitial fluid has a composition similar
to blood plasma but contains lower levels of proteins and reduced amounts of K+ and Ca2+

ions. However, it has a higher concentration of Mg2+ ions. The BBB protects the brain
against any changes in the levels of ions that may arise after eating or exercising. These
changes have the potential to disrupt the signaling between neurons and axons [76–78].
The BBB plays an essential role in separating the neurotransmitters and neuroactive agents
that act in the central nervous system, and those that act in the peripheral tissues and blood.
The choroid plexus epithelium (the blood–cerebrospinal fluid barrier between the CSF and
the extracellular space of the brain) that is responsible for cerebrospinal fluid production
also contributes to this process and has other roles, such as the secretion of growth factors.
The continuous flow and drainage of cerebrospinal and interstitial fluid further aid in the
homeostasis of the brain microenvironment [79].
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Figure 1. Schematic structure of the blood–brain barrier (BBB) with its constituent elements [80].

5. Other Central Nervous System Barriers

The cerebral ventricles and subarachnoid space contain the cerebrospinal fluid (CSF)
secreted by the choroid plexuses into the lateral (third and fourth) ventricles. Three
barrier layers (one being the BBB, as described previously) limit and regulate the molecular
exchange at the interface between the blood and neuronal tissue or its fluid spaces [81,82].

The brain’s largest barrier is the BBB, which is formed by the cerebral endothelium.
The barrier that separates the blood and cerebrospinal fluid (CSF) is made up of epithelial
cells in the choroid plexus and vascular arachnoid epithelium around the brain, which
together form the blood–CSF and CSF–blood barriers [83]. The central nervous system
has additional interfaces that connect with the blood and neural tissue, namely the blood–
retinal barrier and the blood–spinal cord barrier. These barriers perform crucial protective
roles for the brain, protecting it against harmful pathogens and regulating its immunologic
status [84].

The blood–cerebrospinal fluid barrier (BCSFB) is a protective barrier that separates the
blood from the CSF. It is formed from the epithelial cells of the choroid plexus that regulate
the entry of substances into the brain’s ventricles [85]. The BBB capillaries’ endothelium
ensures the reverse flow of the brain’s extracellular fluid [86].

The arachnoid barrier consists of a vascular arachnoid epithelium [87]. It contributes
insignificantly to blood–brain exchange due to its limited surface area compared to other
barriers [88]. Individual neurons are rarely larger than 8–20 µm from a brain capillary,
although the size can be on the order of millimeters in a given CSF compartment. The
barrier controls the microenvironment regulation close to the brain cells [89,90].
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The presence of intracellular and extracellular enzymes creates a “metabolic barrier”.
Ectoenzymes like peptidases and nucleosidases can metabolize enzymes and ATP (Adeno-
sine 5′-triphosphate), while intracellular enzymes like monoamine oxidase and cytochrome
P450 can inactivate various neuroactive and toxic substances [91].

6. Transport through the BBB

The main BBB functions are to restrict the entry of unwanted substances in the brain
that circulate into the blood to prevent the loss of necessary substances, and, at the same
time, to provide the means for the transport of O2, CO2, and glucose to support the
metabolic requirements of the brain cells. The essential substances transferred inside or
outside of the brain parenchyma are water, glucose, O2, CO2, and, in smaller amounts,
amino acids. Most fluxes of these substances must overcome the BBB because blood flow
to the choroid plexuses is insufficient to provide or remove the required amounts [92].

Therefore, BBB has two main functions: protecting the brain and transporting sub-
stances [76]. Substances enter into the brain through two different pathways: paracellular
and transcellular transport. TJs prevent molecules from passing through the paracellu-
lar pathway, while the transcellular pathway allows molecules to pass based on their
electrochemical gradients, such as their concentration, electrical charge, and lipophilicity.
Active transport, which requires adenosine triphosphate (ATP) as an energy source, drives
molecules through the BBB against their concentration gradient. Other processes, such
as pericyte and endothelial ion transporters, facilitate the movement of less lipophilic
molecules. Additionally, endothelial transporters for various substances like carbohydrates,
amino acids, monocarboxylates, hormones, fatty acids, nucleotides, organic anions, and
cation transporters play a vital role in this process. Active endothelial efflux (ATP-binding
cassettes) and receptor-mediated transporters also help to move substances through the
BBB (Figure 2) [93].

The endothelial transporters of the brain that supply it with nutrients include the
glucose transporter, several amino acid transporters (LAT1-system L for large neutral
amino acids, y+), and the transporter for nucleosides, nucleobases, and many other
substances [56,94]. About 90–95% [92,95] of the metabolism of 0.6 moles of glucose per
day in the brain shows complete oxidation, consuming about 3.3 moles per day of O2 and
producing the same amounts of CO2 and water daily [96].

During neuronal activity, more O2 enters into the brain parenchyma to provide the
necessary means to increase the metabolism [97,98]. The O2 in the blood comes into contact
with the hemoglobin from the red blood cells, and normal blood flow is adequate to
support the activity of the O2 in the brain [99]. If there are relatively significant changes
in the plasma glucose concentration, they have no effect on neurovascular coupling [100].
Conversely, even some minor increases in CO2 in the arterial blood or decreases in the
CSF pH can cause vasodilation, and decreases in CO2 or increases in pH can produce
vasoconstriction [101,102] and clinical consequences [103].

The brain’s glucose requirement is approximately 0.6 mol/day, with this glucose
amount being able to exceed the BBB. The blood flow to the brain is, on average, 800 mL/min
and contains about 400 mL/min of plasma, in which 5 mmol/l glucose is found, corre-
sponding to about 20% of the required glucose. The experimentally measured amount
of glucose in physiological plasma varies between 15 and 35%. D-glucose transport is
very fast, while L-glucose is slow, comparable to other polar solutes such as sucrose and
mannitol [104,105]. Glucose transport across the BBB is passive but mediated by specific
transporters, such as GLUT1, expressed in endothelial cells’ luminal and abluminal mem-
branes [106]. The glucose influx from the blood into the brain exceeds the glucose efflux
from the brain into the blood, leaving behind a relatively large net flow of about 30% of
the total amount that crosses the BBB [107]. After crossing the endothelial cells, glucose
can be infiltrated into the astrocytes’ feet and does not diffuse through the space between
them. A part of the glucose can be transported back from the astrocytes’ feet and through
the endothelial cells, contributing to the efflux.
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Figure 2. Methods used to overcome the BBB via controlled drug release systems. Nanoparticles
based on biopolymers are transported via the cellular adsorption method by electrostatic forces
using surface charges (a). Administration of small molecules of active substances encapsulated in
nanoparticles using transport mediated by membrane proteins (b). Transport via endocytosis of
natural inorganic nanoparticles into the cell (c). Mechanism of the efflux pump that causes drug
resistance in the brain (d). Nanoparticle transport using surface receptors such as transferrin and
LDL targeting receptors (e) [93].

The difference in the glucose concentration between the blood and the interstitial fluid
causes a flow through the endothelial cells located in the basement membrane. The glucose
present in the basement membrane needs to be transported to the rest of the brain. A
certain amount of glucose in astrocytes is metabolized into lactic acid and is not directly
transmitted to neurons. The supply of glucose to the brain increases during sustained
neuronal activity [108–110].

It is essential to mention amino acid transport because the efflux of these molecules
from the brain into the endothelial cells is connected to the transportation of Na+ ions. The
importance of the functional polarity of the BBB has been demonstrated for the transport of
amino acids [111]. The BBB greatly restricts amino acid influx, including the glutamate and
glycine neurotransmitters, but allows a rapid, passive efflux of many other essential amino
acids [112]. The BBB controls amino acid concentrations in the brain for their transport
from the plasma to the cerebrospinal fluid and their active removal from the brain via
Na+-dependent transporters located in the abluminal membrane (LAT1 and γ+) [113]. Five
active transporters that require Na+ ions are present in the abluminal membrane and are
responsible for the efflux of amino acids from the brain into the endothelial cells, and then
into the blood [114]. Na+ is transported through the apical membrane of the epithelial cells,
primarily via the Na+ ion pump, and through the basolateral membrane via cotransport
with HCO3

−. Cl− is transported through the basolateral membrane via a Cl−/HCO3
−

exchange, and through the apical membrane via multiple mechanisms. The transcellular
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transport of K+ ions is in the direction from the cerebrospinal fluid to the blood because its
only transport route is through the basolateral membrane, which represents the cotransport
of K+ and Cl−, which mediates the efflux from the epithelial cells [92].

The BBB is responsible for ionic homeostasis in the brain microenvironment. Through
ion channels, the BBB can regulate the concentration levels of not only potassium ions
(K+), but also of calcium (Ca2+) and magnesium (Mg2+) ions. The concentration of K+ in
the blood plasma is about 1.8 times higher compared to the cerebrospinal and interstitial
liquid [115,116]. Homeostatic regulation through ion channels (K+, Ca2+, and Mg2+)
ensures the normal function of the neural network [88,117].

High-molecular-weight hydrophilic molecules such as peptides and proteins are
generally excluded if they cannot be transported or mediated by a specific receptor or via
less-specific adsorption-mediated transcytosis. However, the cerebral endothelium has a
lower degree of endocytosis/transcytosis activity than the peripheral endothelium and
determines transport activity through the BBB. Therefore, the term BBB covers a number of
passive and active features of the brain [62,118,119].

Because TJs severely restrict the entry of hydrophilic drugs into the brain and there
is a limited diffusion of large molecules such as peptides, as well as drug transport and
delivery strategies to the CNS, these features must be considered [90]. The transendothelial
electrical resistance (TEER) of cerebral microvessels is 100 to 500 times higher than that of
non-cerebral capillaries [120]. However, the BBB is not a static barrier; there is a massive
exchange of substances across the BBB through nutrient transport molecules. Nutrient
transport molecules have attracted particular attention for possible applications in targeted
drug delivery [120].

7. Blood–Brain Tumor Barrier

The oncogenesis of gliomas is complicated, with different barriers preventing drugs
from reaching the tumor site. There are three main barriers to treating brain tumors: the
BBB, the blood–brain tumor barrier (BBTB), and the relatively weak EPR effect [3].

The BBTB is similar to the BBB and serves as a barrier between brain tumor tissues and
the microvessels composed of specialized endothelial cells. Its function is to limit the influx
of hydrophilic molecules into the tumor tissue. As brain tumors advance, they infiltrate the
surrounding healthy brain tissue. The BBB is damaged, and the BBTB is formed when the
tumor cell clusters reach a specific size. Solid malignant tumors found in the peripheral
tissues generally have a more permeable blood–tumor barrier than those growing in the
brain. Over time, the BBTB becomes the main obstacle to nanosystems designed for drug
delivery. The BBB is compromised in the case of malignant gliomas, and the permeability
differs from the other regions. Gliomas that infiltrate around the tumors’ edge continue to
utilize the available cerebral vasculature, but the BBB continues to restrict the delivery of
specific chemotherapy drugs to the tumor.

Identifying receptors in the BBB/BBTB offers a promising opportunity for the targeted
administration of medications in glioma therapy. When targeting the BBTB, common strate-
gies include focusing on receptors that are abundant in tumors, such as epidermal growth
factor receptors and integrins. In order to avoid the BBB, methods such as opening TJs
using a hyperosmotic mannitol solution or a chemical (such as bradykinin), blocking efflux
drug transporters, and using receptor-mediated drug delivery systems can be employed
to enhance the selective release of drugs into brain tumors. Additionally, peptide-coated
nanoparticles that increase cell permeability may effectively overcome the BBTB [75,121].
Figure 3 schematically shows the cerebral capillary, showing the normal endothelial cell
and in glioblastoma.
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8. Factors Influencing the Passage of Drug Molecules through the BBB

Several drug delivery methods have been developed to overcome the barriers that
limit the delivery of drugs or potential therapeutic agents in the CNS. These strategies can
be categorized into invasive, non-invasive, and miscellaneous techniques [123–125].

Drugs’ ability to overcome the BBB depends on several factors, such as a drug’s
physicochemical properties, protein binding, the cerebral blood flow, drug clearance, and
barrier integrity. The permeability of drug molecules through the BBB is influenced by its
physicochemical features, such as the lipophilicity, the ability to form hydrogen bonds, the
particle size, and the influence of the surface charge. A drug must possess both lipophilic
and hydrophilic characteristics to reach its intended target in the brain effectively. If a drug
is highly lipophilic, it risks being trapped within the cell membrane, which reduces its
ability to reach the brain parenchyma. On the other hand, highly hydrophilic drugs cannot
cross the lipid-soluble cell membrane, which means that the partition coefficient of a drug
plays a crucial role in its effective delivery into the brain [5].

It is worth noting that a drug’s particle size significantly impacts its BBB permeability.
Small molecules and peptides have been observed to be able to overcome the BBB. Peptides
can be either simple or complex, and the folding of their secondary structure largely
influences their permeability. This folding hides the charges present on their primary
structures, which causes increased lipophilicity [126]. High-flux-dependent drugs will be
based only on the cerebral blood flow for their proper delivery into the brain, despite their
physicochemical properties; thus, an increased blood flow increases the drug amount that
overcomes the BBB [93].

There are various methods for delivering drugs to the brain and overcoming the BBB,
but most of them are invasive. These methods include the transient disruption of the
BBB, infusion through intracerebroventricular or intrathecal routes, the direct injection of
the drug into the targeted area, exposure to osmotically active (mannitol) or vasoactive
(bradykinin) drugs for BBB disruption, and localized or diffuse exposure to low-intensity
ultrasound [127]. These methods pose a significant health risk and could cause major
problems such as nerve damage or infection [128,129]. Invasive drug delivery is localized,
and the drug concentration in the brain is very low, especially when large molecules
are administered [130]. The temporal disruption of brain endothelial TJs by chemical or
physical stimuli carries the risk of toxicity and neuronal damage [131]. In experiments
where inflammatory cells were used to induce lesions in the BBB, there was a notable



Polymers 2023, 15, 3969 14 of 76

decrease in the concentration of occludin and zonula occludens 1 in microvessels, caused
by the release of cytokines such as TNF-α, interleukin 1B, and interferon γ [54,132,133].

Researchers have conducted studies on improving drug delivery to the brain by
enhancing transportation through the endothelial cells. They typically use methods such as
increasing the lipophilicity and positive charge levels of a drug, which aid in the passive
diffusion and interaction with the anionic glycocalyx. However, these modifications cause
a greater nonspecific drug uptake in many tissues, often leading to off-target effects, and in
addition, they enhance the drug recognition of efflux pumps [129,134]. A more selective
way to stimulate the diffusion of specific small molecules in the brain is to modify them by
mimicking the endogenous substrates of the BBB [135].

A more general approach to drug delivery to the central nervous system refers to
delivery and transport vectors. Although biological vectors, such as viruses [136,137] and
engineered cells [138], have been used to increase transport through the BBB, their safety,
permeability across an intact barrier, and brain selectivity are still limited [136,139]. Drug
delivery methods usually focus on the vascular BBB, but there may be benefits to targeting
the cerebrospinal fluid barrier as well. In both cases, the BBB consists of a single layer of
endothelial cells that are linked together by TJs, but has other mechanisms that control or
delay plasma leakage through the CNS [140].

9. Challenges in Drug Delivery for the Treatment of Brain Tumors

Chemotherapy is a treatment that involves the use of anticancer drugs. These drugs
target cancer cells’ DNA, RNA, and protein synthesis or function through different mech-
anisms. For instance, doxorubicin, an anthracycline, inhibits DNA and RNA synthesis,
while bevacizumab antibodies target the vascular endothelial growth factor. Nitrosoureas
drugs like carmustine and lomustine interfere with the DNA repair pathways in cancer
cells. Chemotherapy can cause side effects like nausea, vomiting, fatigue, and hair loss
due to its impact on healthy cells. Other side effects may include changes in taste, a dry
mouth, constipation, and a decreased appetite [141,142]. Anticancer drugs have limitations
for brain cancer due to the BBB, which prevents most drugs from penetrating it. Only
a few drugs are approved by the FDA, such as everolimus, bevacizumab, carmustine,
naxitamab-gqgk, and temozolomide [143]. One of the reasons why molecules do not ac-
cumulate in the brain is due to the activity of efflux transporters in the brain vasculature,
including P-glycoprotein/MDR1 (Pgp), multidrug resistance-associated protein 1 (MRPs),
breast cancer-resistant protein (BCRP), and influx transporters like organic anion trans-
porters [144–146]. These transporters may efflux substances back into the blood circulation,
preventing the accumulation of molecules in the brain [78,147,148].

Delivering therapeutic drugs to the brain is challenging due to the BBB. The BBB has
TJs made of proteins that seal the gaps between endothelial cells, making it difficult for
drugs to pass through. This selectivity restricts the passage of many drugs, as only small
lipophilic or gaseous molecules can undergo passive diffusion [76].

Efflux transporters can also remove the drugs that could overcome the BBB, sending
them back into the systemic circulation and decreasing the drug concentration in the brain
tissues. Metabolic enzymes from the BBB can also metabolize the drugs, reducing their
concentration and effectiveness [149].

The BBB-overcoming ability of a drug depends on its size, lipophilic properties,
hydrogen bonding formation, and molecular weight. Cerebral blood flow also affects drug
transport to the CNS [62].

The size and electrostatic properties of pharmaceutical compounds determine their
ability to cross the BBB. Large, polar molecules struggle to overcome this barrier, while
small, lipophilic ones (with a molecular weight lower than 400 Da) have a better chance.
However, even smaller molecules have obstacles due to the efflux mechanisms. The spleen
removes nanoparticles bigger than 200 nm; liver cells catch those between 100 and 150 nm,
and particles under 5.5 nm are eliminated through the kidneys [149]. The BBB can also
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change under pathological conditions, making drug delivery difficult. Hence, delivering
drugs across the BBB remains a significant challenge in treating brain tumors [150].

The charge of nanoparticles affects their ability to cross the BBB. Nanoparticles with
a positive charge have an advantage due to the electrostatic interactions with the BBB’s
negatively charged proteoglycans [151]. In contrast, neutral particles are less permeable
than positively charged nanoparticles by about 100 times [152]. Research studies on rat
brains have found that cationic nanoparticles can damage the BBB, while neutral and
anionic nanoparticles at low concentrations do not have this effect on barrier integrity [153].
Cationic nanoparticles can cause neuron loss when directly injected via the intracerebroven-
tricular route into the brain [154]. Positively charged nanoparticles can generate reactive
oxygen species that damage cells and cause necrosis or apoptosis [155,156]. The BBB
endothelial cells’ resistance to anionic charges suggests cationic nanoparticles as a deliv-
ery mechanism for negatively charged genetic material, e.g., small interfering RNA, for
tumor-targeted gene therapy [157–159].

The way in which pharmaceutical substances are metabolized and eliminated in the
human body affects their concentration in the bloodstream, which can impact their ability
to enter the CNS. Certain pharmaceutical substances can bind with blood proteins, which
reduces their free concentration and prevents them from overcoming the BBB. The BBB
exhibits heterogeneity throughout the CNS, meaning that some regions may have higher
or lower permeability than others, resulting in different levels of drug diffusion in the
CNS [160]. Researchers are looking for ways to improve drug delivery to the central nervous
system (CNS). One approach involves administering high doses of chemotherapeutic drugs
through intravenous injections to increase their concentration in the CNS. This method,
known as systemic therapy, offers benefits such as consistent drug dispersion throughout
the neural axis, regardless of cerebrospinal fluid flow rate or direction. However, it also
has drawbacks, such as higher toxicity and the need to exceed a certain drug concentration
threshold to overcome the BBB and be effective. Disrupting the BBB can also lead to drug
diffusion and penetration into the CNS [88].

The infusion of a hyperosmotic solution such as mannitol is the most clinically used
approach. This method has been investigated in adult patients with malignant supratento-
rial gliomas. However, this method is not specific to the tumor, and it is unclear what the
exact levels of drug exposure and concentration should be. Other techniques that may be
effective include using cytokines or vasoactive substances like bradykinin to disrupt the
BBB [161]. However, the use of bradykinin analogs for drug delivery has been abandoned
due to its ineffectiveness when combined with carboplatin [162,163].

Drugs can enter the CNS through intranasal administration via olfactory or trigeminal
pathways via intracellular or extracellular routes. Sensory neurons uptake the drug in the
intracellular pathway and send it to the olfactory bulb or shaft. The extracellular pathway
can allow molecules to reach the subarachnoid space successfully. Intranasal administration
distributes drugs in the olfactory bulb and brainstem [164].

Receptor-mediated transport systems enable therapeutic compounds to enter brain
tumors by crossing the BBB via receptor-mediated endocytosis and exocytosis. Monoclonal
antibody drugs that are targeted at receptors are delivered across the BBB [163].

There are specific receptors that can help drugs pass through the BBB. Adenosine
receptors have been discovered to aid in drug delivery to the brain by activating A2A
receptors or blocking harmful substances and inflammatory immune cells [165]. Glutamate
receptors also play a role in the permeability of the BBB, and N-methyl-D-aspartate receptor
antagonists have been shown to decrease the permeability. Furthermore, high-intensity
magnetic stimulation can increase the barrier permeability and aid in drug delivery by
promoting neuronal activity [166].

One way to overcome the BBB is to inhibit efflux transporters directly. P-glycoprotein
(P-gp) acts as a drug efflux pump, restricting certain drugs from crossing the BBB and
entering the CNS. Cyclosporine A is a pharmaceutical agent that can inhibit P-gp’s function.
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The inhibition of Pgp can affect the clearance of drugs from other organs besides the
BBB [167].

P-glycoproteins (P-gps) are present in malignant glioma cells and low-grade brain
tumors. Modifying P-gp can help to deliver drugs to the tumor area, but first-generation
modulators such as verapamil, cyclosporine A, tamoxifen, and some calmodulin antag-
onists have low binding affinities, requiring high doses and leading to toxicity [168,169].
Second-generation modulators such as dexverapamil, dexniguldipine, valspodar (PSC
833), and biricodar (VX-710) [170,171] have limited success in clinical trials, leading to the
development of third-generation modulators, including tariquidar (XR9576), zosuquidar
(LY335979), laniquidar (R101933), and elacridar (GF120918) [172–175]. A research study
found that a combination of elacridar with the usual treatment led to a 5-fold increased
brain uptake of paclitaxel (PTX) [175]. Other transport inhibitors like sulfinpyrazone,
probenecid, and fumitremorgin C have also been reported [163,169,176]. In a study con-
ducted by Tournier and colleagues, it was found that the ABCB1 (Pgp) and ABCG2 (BCRP)
efflux transporters in the BBB work together to limit the entry of tyrosine kinase inhibitors.
Elacridar is a widely known inhibitor of both ABCB1 and ABCG2, and has been tested
in models of central nervous system metastases. In mice, elacridar effectively improved
the uptake of erlotinib in the brain. However, similar results were not observed in pre-
clinical human data [177]. In preclinical and clinical studies, elacridar has shown a po-
tential to enhance the brain diffusion of certain drugs such as dasatinib, gefitinib, and
sorafenib [178–180]. Researchers have also developed a dual inhibitor called Si306, which
is twice as effective as dasatinib at inhibiting cancer cell growth and suppressing Pgp
activity. Administering the prodrug form of Si306 increased the median survival in mice
with GBM tumors [181,182]. A research study conducted by Becker and colleagues ex-
plored the use of PI3K/mTOR inhibitors for treating GBM in mice models. The researchers
modified two inhibitors, GDC-0980 and its analog GNE-317, to have a lower affinity for
efflux transporters. The results showed that both inhibitors had a reduced efflux and a
3-fold higher drug penetration into the tumor core, as well as decreased staining for effector
proteins in histology [183].

A clinical trial was conducted in pediatric patients with various solid tumors, including
brain tumors, and aimed to test the effectiveness of tariquidar (XR9576) in inhibiting Pgp
when it was combined with doxorubicin, vinorelbine, or docetaxel. The trial results showed
that tariquidar administration increased the tumor accumulation of the Pgp substrate
fluorescent dye 99mTc-sestamibi by 22%. Out of the 29 participants, one patient had a
complete objective response, and two had partial responses. The toxicities caused by
tariquidar were minimal, including transient hypotension, a loss of taste, and nausea.
However, when combined with chemotherapeutic agents such as docetaxel and vinorelbine,
tariquidar reduced the systemic clearance, leading to increased drug exposure and toxicities.
(NCT00011414) [184]. Despite the abundance of preclinical studies investigating Pgp
inhibitors, translating them into clinical settings has been challenging. As a result, the
search for more potent, selective, and efficacious Pgp inhibitors continues [185].

Various drugs and drug delivery methods have shown potential in crossing the BBB.
Nitrosourea drugs, such as carmustine and lomustine, have effectively treated cancer-
ous brain tumors due to their lipid solubility and ability to overcome the BBB. Other
commercially available drugs for brain tumor treatment include thiotepa, temozolomide,
methotrexate, topotecan, irinotecan, cisplatin, and carboplatin. Additionally, the conju-
gation of drugs or nanocarriers with ligands that have an affinity for specific receptors
presents a receptor-mediated approach to bypass the BBB, allowing for easier entry into
brain tumors [159,161]. Peptide–drug conjugates are classified as prodrugs because they
link a peptide to a drug using specific linkers. These conjugates usually consist of a cy-
totoxic agent, a peptide derived from a tumor, and a linker connecting them. In order
to develop peptide–drug conjugates, drugs are linked with peptides that can overcome
the BBB. The peptide must be able to selectively bind to a specific receptor on the cell
surface of the target tissue that is unique or overexpressed in cancer cells and present in
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sufficient amounts to transport the drug to the tumor. The site and linker of the peptide–
drug conjugate must not affect the binding affinity or stability of the target receptor so
that it can reach the tumor site and release the drug while minimizing the off-target tox-
icity. Some commonly used linear and cyclic peptides include arginine-glycine-aspartic
acid (RGD peptide) [186,187], gonadotropin-releasing hormone, somatostatin [188], epi-
dermal growth factor, and Angiopep-2 [189]. These peptides are delivered to cells using
adsorption-mediated endocytosis/transcytosis, except for Angiopep-2, which enters cells
via the low-density lipoprotein receptor-related protein 10 (LRP-1) transporter. These
peptides are often associated with cytotoxic agents such as gemcitabine, doxorubicin (Dox),
daunorubicin, PTX, and camptothecin [185].

Various methods exist for administering drugs to improve their delivery to brain tu-
mors.

The intracerebral implantation of drugs into the brain has been used in clinical trials,
but it is complex and potentially harmful. The implant is made of a biodegradable and
biocompatible matrix or reservoir containing the chemotherapeutic agents. It releases
drugs over time, but the amount delivered is limited, and reloading may be needed [190].
One example is treating high-grade gliomas with BCNU (carmustine) contained in a
polyanhydride polymeric wafer. The drug is released for 2 months, but there is an increased
risk of trauma, and other treatments may be more effective [191].

CED, or convection-enhanced delivery, is a method that enables the direct administra-
tion of pharmaceuticals to a specific brain region or localized tumor site. This technique
utilizes a pressure gradient to increase the drug dispersion in the brain tissue, resulting
in precise drug delivery and a controlled spread. Although effective, CED is an invasive
technique and requires close monitoring to prevent tissue damage and drug reflux [192].
In neuro-oncology, microdialysis is a well-established technique that has been suggested
as a reliable way to deliver drugs directly to tumors. This method allows drugs to diffuse
passively across the BBB [193,194], which then distributes the drugs throughout the tumor
away from the catheter used for dialysis [163,195].

A non-invasive method to temporarily disrupt the BBB is a focused ultrasound and
microbubbles (1–10µm). These microbubbles, contained within gas-filled lipids, are intro-
duced into the bloodstream. It is possible to use these particles as a drug delivery system
on their own. For instance, drug molecules can be attached to the shell [196–198]. They
have also been utilized for delivering stem cells [199] and viral vectors [200]. If microbub-
bles are provided with a magnetic coating, it can enhance the drug delivery efficiency by
keeping them in the target area [201]. The focused ultrasound can then target specific brain
areas, causing the microbubbles to undergo oscillations in the acoustic field, generating
mechanical forces that exert pressure on the TJs of the endothelial cells, allowing drugs to
diffuse more easily into the central nervous system. This effect lasts for a temporary period
of 4–6 h [202]. Using microbubbles for drug administration reduces the damage to unaf-
fected brain tissue, but the optimal parameters are still being investigated due to certain
risks. There are various approaches for drug delivery, including intra-arterial, intrathecal,
intraventricular, intra-tumoral, receptor-mediated transport, the disruption of the BBB, the
inhibition of drug efflux, and intranasal administration [163]. Administering drugs directly
to a tumor through the bloodstream is known as intra-arterial administration. This method
involves injecting medications into the specific arterial vessel supplying blood to the tumor.
While it allows for targeted drug delivery, there are some drawbacks to using intra-arterial
administration. These include the risk of focal neurotoxicity, the potential for embolism
and hemorrhage, and limitations in administering medications to specific areas [161,203].
Studies on administering brain tumor drugs through intra-arterial delivery have shown
only slight improvements in patient survival rates [204–209]. However, success has been
demonstrated by neurosurgeons at New York Presbyterian Hospital/Weill Cornell Medical
Center using monoclonal antibodies like bevacizumab. By briefly disrupting the BBB, these
antibodies were delivered to the tumor region through intra-arterial delivery [210]. When
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drugs are administered through intrathecal methods, they have a limited ability to enter
the brain’s extracellular space from the CSF [211–214].

Pharmacokinetics is the study of how drugs affect the body. This includes absorption,
distribution, metabolism, and excretion. The method of drug delivery impacts a drug’s
bioavailability and duration of effectiveness in the brain. Before absorption, drugs must
first be released from their original form, which can vary in duration depending on the drug.
Some drugs have a fast-acting effect, while others have a prolonged release, which can
impact the onset of their effects and potential side effects. Drug distribution is determined
by a drug’s biochemical properties, such as the size, polarity, and binding properties, as
well as the patient’s physiology. Regarding the CNS, several drugs are moderately to highly
bound to serum plasma proteins. Since only a free drug can act on the target brain tissue,
an increased concentration of plasma proteins such as albumin and α-acid glycoprotein can
decrease the concentration of pharmacologically active drugs in the body [160]. A drug’s
half-life, which represents the time required for 50% of the initial concentration to decay,
also influences the final yield and drug concentration in the brain [215].

Active substances with a short half-life are eliminated more quickly than those with a
longer half-life. Pharmaceutical drugs can have direct or indirect effects by interacting with
receptors, enzymes, or proteins [216]. When drugs are administered, their effects can occur
immediately or be delayed depending on the type of mechanisms involved. However,
the prolonged use of certain drugs can cause changes in the receptor target, leading to a
reduced effectiveness over time. This is called pharmacodynamic tolerance, and has been
observed in treating epilepsy and brain cancer. Chronic exposure can cause receptors to be
up- or down-regulated, altering their sensitivity and decreasing efficacy. Cancer cells can
decrease chemotherapy effectiveness by reducing the target gene expression. Other drug
resistance mechanisms include drug pump alterations, detoxification processes, apoptosis,
proliferation, and DNA repair [217–219].

When a patient has multiple conditions, treating them with medication can be compli-
cated. This is because the ways in which drugs are processed and affect the body can be
affected by the presence of other conditions. This can result in drug interactions, which can
impact the effectiveness of the treatment. In such cases, it is important to carefully examine
the properties of each drug to determine if they can be safely used together [148,220–222].

Improving the survival rates for glioblastoma patients requires therapeutic agents
to reach active concentrations in non-contrast-enhancing tumor regions. Preclinical and
phase I investigators must rigorously evaluate drug delivery to determine new drugs’
therapeutic concentration and diffusion in the CNS. These studies, combined with a better
selection of therapeutic agents, can improve the survival rates for patients with hard-to-treat
malignancies [223].

10. The Albumin Structure and Properties

Albumins consist of a group of non-glycosylated globular proteins, with serum albu-
mins being of the utmost significance. These proteins are found in the blood plasma, are
soluble in water, have a moderate solubility in concentrated salt solutions, and withstand
temperatures of 60 ◦C for 10 h [27,224]. Human serum albumin (HSA) has 83 positively
charged residues and 98 negatively charged residues. Furthermore, it has a theoretical
isoelectric point (pI) of approximately 5.12. The precursor of serum albumin, known as
preproalbumin, contains an N-terminus peptide (an extension of amino acids at the N-
terminus), which is removed before the protein leaves the endoplasmic reticulum. HSA is a
protein produced by hepatocytes in the liver, and the daily amount produced is 9–12 g/day
(plasma albumin concentration ranges from 3.5 to 5 g/dL) [225]. Up to 60% of albumin is
stored in the interstitial space. Its half-life is 19 days, but it is only maintained for 16–18 h in
the bloodstream [226]. Various factors, including hormones such as insulin, thyroxine, and
cortisol, influence albumin production. In situations such as hypoalbuminemia, albumin
synthesis is stimulated. Conversely, the exposure of hepatocytes to excessive osmotic
pressure and high potassium levels can slow down albumin synthesis. The central role of
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this protein is to maintain the blood’s osmotic pressure and act as the main transporter of
hydrophobic molecules (such as fatty acids and hormones), making it a perfect candidate
for drug delivery [227].

The HSA molecule consists of 585 amino acids, forming a polypeptide chain. The
albumin length of the primary sequence may differ in other species, as bovine serum
albumin (BSA) has 584 amino acid residues, and rat serum albumin (RSA) has 583 residues.
The HSA molecular weight based on the amino acid composition is 66,439 Da; for BSA,
it is 66,267 Da, and for RSA, it is 65,871 Da. The secondary structure of albumin contains
about 67% helical structures; the remaining 33% are coiled structures and extended chain
configurations without any β-sheet configuration [228] (Figure 4). The three-dimensional
structure of HSA was discovered quite late, only in the 1990s [229]. A similar BSA structure
was obtained in 2012 [230], but the three-dimensional structure of RSA, a product of the
main animals used in pharmacological and toxicological experiments, has not yet been
obtained. Three homologous domains (I, II, III) [231,232], composed of two subdomains
(A, B), form a heart-shaped three-dimensional structure of the protein, which is relatively
labile (Figure 4).
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Albumin can be functionalized with endogenous and exogenous ligands, water and
metal cations, fatty acids, hormones, bilirubin, transferrin, nitric oxide, aspirin, warfarin,
ibuprofen, phenylbutazone, etc. [231,232]. The most important human serum albumin
binding sites for hydrophobic compounds (especially neutral and negatively charged
hydrophobic drugs) are named Sudlow site I and Sudlow site II [233], placed in domains
IIA and IIIA, containing hydrophobic domains and positively charged lysine, and arginine
residues, respectively [234]. In albumin, site I is also known as the warfarin site because
drugs such as azapropazone, phenylbutazone, and warfarin adhere to this domain, and
various protein–drug conjugates could be formed. Site II is also known as a benzodiazepine
site because compounds such as diazepam, ibuprofen, and tryptophan can interact with
this domain. This way, different drugs, such as PTX and docetaxel, can be conjugated and
delivered efficiently to the tumor site. Albumin can participate in redox reactions because
an albumin molecule contains 17 disulfide bonds and a free thiol group in Cys34 [232].
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11. Albumin’s Ability to Target Cancer Cells

Blood vessel hyperpermeability and impaired lymphatic drainage, the well-known
EPR effect in solid tumors, have been proposed as the mechanisms responsible for the
passive targeting of many nanocarriers in solid tumors [235,236]. An essential feature of the
EPR effect is the very permeable tumor vasculature, which increases the permeability of the
particles with a size of 20–200 nm [237,238]. Because tumors do not have lymphatic vessels,
HSA can be extravasated and accumulate in the interstitial space of the tumors [239–241].
The defining role of the EPR effect as the mechanism responsible for the passive targeting
of delivery nanosystems in solid tumors, even in animal models in preclinical studies, has
been questioned [242]. Many studies have focused on drug delivery systems’ accumu-
lation in tumor tissue as a tumor-targeting agent via the EPR effect [243,244]. Albumin
can specifically bind to glycoprotein 60 (gp60) and SPARC, thus actively increasing the
nanoparticle uptake. This unique absorption mechanism allows albumin-based nanoparti-
cles to overcome drug efflux mechanisms in tumor cells. Studies have demonstrated that
nab-PTX (albumin nanoparticles with PTX encapsulated) exhibits a 9.9-time increase in
binding capacity to the endothelium, and it was 4.2 times more efficient for PTX delivery
compared to Cremophor EL-PTX (a vehicle-based on polyoxyl-ethylated castor oil with
PTX incorporated) [27,245,246]. The first nanotechnology-based chemotherapeutic agent
and HSA-based product approved by the FDA was Abraxane® (nab-PTX) [247]. In another
example, nab-PTX was shown to have improved antitumor activity and tolerability in phase
III clinical trials compared to other drugs such as Taxol [248]. In 2005, the FDA approved
the use of an albumin-based nanoparticle in nanomedicines for the chemotherapy treatment
of breast cancer. In addition, it was authorized for the treatment of non-small-cell lung
cancer in 2012 and pancreatic cancer in 2013 [249–252]. The success of nab-PTX showed the
potential of albumin as a drug carrier for imaging and tumor therapies. The mechanism be-
hind albumin accumulation in tumors is not entirely clear. It is uncertain whether albumin
infiltrates into the tumors through the EPR effect or if it binds to overexpressed proteins
and receptors, leading to its accumulation [245]. Studies have demonstrated that albumin
can attach itself to the gp60 receptor with a molecular weight of 60 kDa, also known as
albondin, which is present on the surface of vascular endothelial cells and is transported
into the tumor interstitium via transcytosis [253,254]. This receptor is found on tumor
endothelial cell surfaces, and after the interaction with albumin, it binds to the caveolin-1
protein. Inside cells, the protein triggers the cell membrane to fold inward (invagination
of the cell membrane), creating tiny transport sacs called transcytosis vesicles (also called
caveolae). These vesicles are responsible for transporting albumin within the tumor [236].
Alternatively, a secreted protein acidic and rich in cysteine (SPARC) can sequester albumin
in the tumor stroma and is partially associated with the tumor-specific albumin uptake.
SPARC modulates cell–matrix interactions and essential cellular functions such as cell
proliferation, survival, and migration [255]. SPARC (also named antiadhesin, osteonectin,
BM-40, and 43K protein) is an albumin-binding protein that is overexpressed in various
cancer types [256,257]. Research has shown the role of SPARC in albumin uptake in tu-
mors [258,259]; however, this concept is still controversial [260]. SPARC is overexpressed in
many types of tumors and absent in normal tissues, interacts with albumin, and contributes
to its accumulation within tumors. These two main mechanisms allow the protein to be
actively internalized within the tumor cells. There are other albumin receptors, such as
gp18 and gp30, in addition to gp60. These are cell-surface glycoproteins with 18 and 30
kDa molecular weights, respectively [261]. They are expressed in the membranes of liver
endothelial cells and peritoneal macrophages, and function as scavenger receptors with a
strong affinity for damaged albumin [262].

Modified BSA shows a 1000-fold higher interaction tendency for the gp18 and gp30
receptors than native BSA [262]. These two receptors are involved in the endolysosomal
sequestration and catabolism of protein, probably as a safety mechanism for the damaged
protein (such as those generated via oxidation from inflammation or hyperglycation in
diabetes). On the other hand, native albumin does not have a high affinity for the gp18
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and gp30 receptors but binds mainly to the previously described gp60 receptor, which is
involved in the transcytosis mechanism of albumin through the endothelial cells. Both the
gp18 and gp30 receptors interact with modified albumin, which has an altered conforma-
tional structure (for example, gold- or formaldehyde-labeled albumin or albumin modified
with maleic anhydride) and less with native albumin [263,264]. The cellular uptake of
albumin conjugated with colloidal gold particles and maleylated bovine serum albumin
has been performed in a manner different from that of native albumin via endocytosis [264].
Modified albumin-based particles have shown a higher affinity for endothelial cells me-
diated by the gp30 and gp18 receptors, which explains the preferential degradation of
modified albumin [265].

Previous research has considered that the preferential binding property with modified
albumin could be beneficial for the development of drug delivery systems [266].

HSA is not immunogenic and is therefore not recognized as a foreign element, but if
it is altered or damaged, it is immediately targeted by the immune system and degraded.
However, the protein is well known for its prolonged half-life, making it a helpful carrier
in drug delivery. The long half-life of albumin is due to protection from intracellular degra-
dation by the FcRn receptor (known as the Brambell receptor), which recycles internalized
albumin back into the bloodstream via a pH-dependent mechanism (it has a strong affinity
for the low pH of the endosome).

The FcRn receptor is a transmembrane heterodimeric protein similar to the major his-
tocompatibility complex (MHC) class I, associated with β2-microglobulin (β2-m) [266,267].
The role of FcRn is to bind the proteins (immunoglobulin G-IgG and albumin) in the
acidic endosome, preventing them from being degraded in the lysosomal pathway. FcRn
and its bound ligand are exocytosed to the extracellular space, where it is released from
FcRn at a physiological pH. Albumin is transported from the extravascular space back
into circulation through the lymphatic system, making approximately 28 cycles during its
lifetime [236,245,268].

Studies using confocal microscopy have found that the FcRn receptor expression in
the BBB is present in both the choroid plexus and the endothelium [269] and may mediate
the efflux of immunoglobulin G (IgG) from the brain into the blood in the process of reverse
transcytosis [270,271]. In a murine model of Alzheimer’s disease, it was demonstrated that
the FcRn receptor expressed in the BBB was involved in the clearance of immune complexes
of IgG, specific for β amyloid peptides in the brains of older mice [272]. The study of the
FcRn receptor’s importance in albumin transport across the BBB has not been addressed
until now.

The therapeutic efficacy of small proteins, peptides, and chemical drugs is performed
with difficulty due to the short plasma half-life in vivo, with the active principles being
rapidly eliminated by the kidneys or liver. Different approaches have been explored to
increase the half-life of drugs that have been approved for clinical use and are based on the
interactions of active principles with the neonatal Fc receptor (FcRn) or albumin. Albumin’s
properties have been explored, and various drug delivery technologies have been used, for
example, N- or C-terminal genetic fusion, the chemical coupling of low-molecular-weight
drugs, the association of drugs with the hydrophobic domains of albumin, the association
with albumin-binding domains that are genetically fused to drugs, and drug encapsulation
in albumin nanoparticles [246,273]. Due to the presence of large amounts of albumin at the
tumor site and in inflamed tissues, the protein has been first conjugated with drugs and
then administered to target the tumor or inflamed tissue [274].

An example is methotrexate conjugated to albumin for the treatment of renal carcino-
mas and autoimmune diseases such as rheumatoid arthritis [275–277]. Another approach is
the production of nab-PTX (Abraxane®), composed of the lipophilic drug PTX, conjugated
to albumin at a high pressure, being used to treat several types of cancer [246]. After
administration, the nanoparticles dissociate, and PTX becomes associated with the albu-
min within the blood. More research is required to demonstrate whether albumin-based
nanoparticles could interact with the FcRn receptor. FcRn regulates the HSA half-life in
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plasma by protecting the protein from lysosomal degradation. Binding is achieved due to
the high-affinity interaction of the FcRn receptor with HSA in acidic conditions from the
endosomal compartments. Then, HSA is released at a physiological pH after the protein is
transported through a recycling pathway to the extracellular surface [246]. Domain DIII of
albumin is the main site of interaction with FcRn, and a mutation in this region could result
in the formation of a hydrophobic interface and a diminished interaction with the receptor.
Thus, the transcytosis of albumin-based delivery systems is reduced, and the intracellular
catabolism increases, eliminating albumin fragments and the rapid vascular clearance.

It should be noted that, among the many albumin modifications that are performed at
the amino groups in the lysine (Lys) residues (Lys525, Lys195, and Lys233), only Lys525
in domain III decreases the binding affinity of HSA to the FcRn receptor. These results
show that the significant structural changes in the modified albumin, especially in the FcRn
binding domain, could be used to develop efficient drug delivery systems for cancer treat-
ment [25,269]. One method to specifically bind and stabilize the protein to various drugs is
to use the free thiol group from cysteine residue, Cys34, on domain I of albumin through
a technology known as the Drug Affinity Complex (DAC®) [278]. The pharmacokinetics
reflects the power of this technology in humans, where the half-lives of GLP-1 peptide
analogs (the peptide similar to glucagon-1) are of several hours, compared to 9–15 days
for the same drugs linked to the free thiol group from the cysteine residue (Cys34) in albu-
min [279]. Another example is an acid-sensitive prodrug of doxorubicin (Aldoxorubicin)
that rapidly binds to the SH group of Cys34 after intravenous administration [278].

The drug is conjugated through a linker that is cleaved after exposure to an acidic
environment, as it is found in the tumor tissues, and aldoxorubicin has been investigated
in clinical trials to treat sarcoma and glioblastoma. Whether the acid-sensitive linker is
protected or cleaved during FcRn-mediated transport remains to be investigated. A more
recent example is the design of ankyrin repeat protein (DARPin) with specificity for the
epithelial cell adhesion molecule modified at the N-terminus group by introducing the
unnatural amino acid of azidohomoalanine. The modification allows dibenzocyclooctyne
to bind specifically to the Cys34 of albumin in a wild mouse. The obtained conjugate could
interact with the FcRn receptor in the wild mouse, a strategy that extended the half-life
in the plasma of DARPin from 11 minutes to 17.4 h in mice [280]. As discussed above,
targeting Cys34 in albumin is unlikely to interfere with FcRn interaction and transport.

Both ligand IgG and albumin bind to the FcRn receptor in a similar pH-dependent
manner, which is fundamental to its versatile functions that cover both immunological
and non-immunological processes. The FcRn receptor can be found in both hematopoietic
and non-hematopoietic cells, including certain types in important organs such as the
liver, kidney, and placenta. This highlights the receptor’s importance in regulating the
distribution of IgG and albumin ligands throughout the body. It has been discovered
that three histidine residues in albumin (His-464, His-510, and His-535) may play an
essential role in FcRn binding at acidic pH levels [269,271]. However, additional research
is necessary to fully comprehend the functions of FcRn in maintaining brain homeostasis
and the potential influence of other albumin receptors [267]. Previous research studies
have indicated the potential mechanisms behind the therapeutic benefits resulting from
the interaction between HSA and SPARC, a protein that is overexpressed in cancer cells.
However, there has been no conclusive evidence to establish a direct link between the
accumulation of HSA in tumors and the expression of this protein [281]. Another study
showed the binding affinity of BSA to SPARC and the internalization of BSA using a
non-cancerous and a cancerous cell line, suggesting that HSA may have an affinity for
binding to the SPARC protein that is overexpressed in tumors [282]. Researchers have
conducted a study to investigate the accumulation of HSA in U87MG glioma cells through
active SPARC-mediated targeting. They also examined the HSA uptake in various cancer
cell lines, particularly in SPARC-expressing glioma cells. According to the findings, HSA
was uptaken into the tumors, and SPARC contributed to its enhanced accumulation and
improved its micro-distribution in gliomas.
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Nonetheless, additional clinical research is necessary to validate this theory. An
accumulation of HSA in tumors was also observed to decrease 4 h after injection. One
possible reason for the decrease in protein accumulation may be a consequence of the
tumor cells that use albumin as a source of nutrients (such as amino acids) to support their
growth [283].

12. Techniques for the Preparation of Albumin-Based Release Nanosystems

Among the many advantages of using albumin as a drug delivery system, we can list
the following: a high abundance in blood plasma, immunogenicity, biocompatibility, and
biodegradability. Two approaches can be observed for the production of albumin-based
drug delivery systems: (1) the chemical binding of drug molecules to albumin molecules
to form albumin–drug conjugates and (2) drug encapsulation in nanoparticles based on
albumin [284].

Several methods of drug encapsulation in nanoparticles are possible, including self-
assembly [285], emulsification [286,287], thermal gelation, nano-spray drying, and desol-
vation [288]. Among the chemical techniques, desolvation (coacervation), emulsification,
and self-assembly are the most commonly used methods. Nano spray drying, thermal
gelation, and NAB technology belong to the group of physical obtaining techniques. Repro-
ducibility is a crucial feature to be achieved, and every method used should aim to produce
nanoparticles that are characterized by predictable and reproducible properties [236].

Desolvation (coacervation) is the most common technique to prepare albumin nanopar-
ticles. Adding a desolvating agent (ethanol or acetone) to an aqueous albumin solution
causes albumin dehydration, leading to the formation of nanoparticles. Cross-linking
agents like glutaraldehyde (GA) are used to stabilize them, and the reaction occurs over
24 h, leading to the formation of Schiff bases. The average nanoparticle size is 100 nm,
but it can vary based on factors like the albumin amount and the cross-linking agent
concentration [289,289,290]. Doxorubicin-loaded HSA nanoparticles for tumor treatment
have prepared by using the desolvation technique. HSA-based nanoparticles facilitate
passive drug-targeting tumors through the EPR effect, overcoming problems associated
with drug resistance [291,292]. However, using GA as a cross-linking agent has limitations
like toxicity and drug interactions, and the residual aldehyde limits the in vivo applica-
tions [284]. Scientists use glutathione to create intermolecular disulfide bonds [284,293]
and modify their surface, introducing SH groups using Traut’s reagent. This stabilizes
the nanoparticles and functionalized nanoparticles, allowing them to be internalized into
cells [294,295]. Figure S1 in the Supplementary Materials schematically shows the synthesis
of albumin nanoparticles via the desolvation (coacervation) method, and Figure S2 in the
Supplementary Materials shows the process of obtaining nanoparticles based on HSA via a
reduction and desolvation method.

Undergoing thermal gelification (thermally induced aggregation) causes proteins to
unfold and change their conformation due to heat and protein–protein interactions such
as hydrogen bond formation, electrostatic and hydrophobic interactions, and disulfide–
sulfhydryl exchange reactions [236,296]. The resulting formulation depends on the pH
level, the protein concentration, and the ionic strength. This method does not require toxic
chemical cross-linking agents [297]. Aggregation is orderly when the pH is higher than the
protein’s isoelectric point, and as the pH approaches the isoelectric point, larger aggregates
are formed, and spectral deregulation occurs [298]. Albumin-based nanoparticles that
co-encapsulated cyclopamine and doxorubicin hydrochloride were prepared using the
thermally induced aggregation method. Doxorubicin hydrochloride was mixed with a
BSA solution before forming nanoparticles, and then, using the desolvation method, the
cyclopamine dissolved in ethanol was added. The nanoparticles were prepared at 65 ◦C
under magnetic stirring (750 rpm) and then ultrafiltered for purification [27,299]. Figure S3
schematically shows the method of obtaining nanoparticles via thermal gelation.

The emulsification process is commonly used to prepare polymer micro/nanoparticles.
Stirring an albumin solution (aqueous phase) with a non-aqueous solution (oily phase)
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and a water-soluble surfactant determines the obtaining of a crude emulsion. Homoge-
nization can be achieved with a high-pressure homogenizer. Stabilization can be carried
out through thermal gelation or chemical cross-linking [300,301]. BSA nanoparticles were
prepared using the emulsion technique with temperature stabilization, and their average
diameter was between 400 and 600 nm [302,303]. Also, HSA nanoparticles were prepared
using the solvent emulsification–evaporation method, with a size of 130 nm. They were
tested in a clinical trial to release the PTX (Abraxane®). The solvent can be eliminated
through diffusion or low-pressure evaporation, and the albumin nanoparticles can be
lyophilized [304,305]. Figure S4 shows the method of obtaining nanoparticles using the
emulsification method.

Albumin nanoparticles can be obtained via the self-assembly technique using β-
mercaptoethanol to increase the hydrophobicity of the protein by cleaving the disulfide
bonds or by reducing the amino groups on the surface of the protein through conjugation
with a hydrophobic (lipophilic) compound [27,306].

A new self-assembly technique has been developed for encapsulating hydrophobic
dye IR780 and docetaxel in HSA-based multifunctional drug-encapsulated nanoparticles.
The disulfide bonds in HSA were initially reduced using 2-mercaptoethanol, and then the
drug and dye were added to the HSA solution. The nanoparticles obtained were between
140 and 170 nm in size. These new nanoparticles offer significant medical imaging and
chemotherapy advantages by combining photothermal and photodynamic therapy with
chemotherapy [307]. Figure S5 schematically shows the method of obtaining nanoparticles
via self-assembly.

Spray drying is a fast and effective method for producing albumin-based micro/nan-
oparticles in a dry form. It is also a continuous process. The process begins by atomizing
the feed liquid and drying the fine droplets formed with hot air or gas in a drying chamber
(temperature between 36 and 55 ◦C). The dry particles are collected using an electrostatic
collector. Nano spray drying parameters can be optimized to improve particle properties
for specific applications [308]. Figure S6 shows a schematic of the albumin nanoparticle
preparation process using the spray-drying technique.

The production of albumin nanoparticles can be effectively achieved through mi-
crofluidic technology. This method ensures a controlled preparation process resulting in
particles with an adjustable size and low polydispersity, making it a reliable alternative
for nanoparticle preparation. This technique shows promising potential for large-scale
automated pharmaceutical manufacturing. A study conducted in 2020 successfully pro-
duced drug-loaded albumin-based core–shell nanoparticles using this technique [301]. The
flow system used for the preparation of albumin nanoparticles is illustrated in Figure S7.
Intermolecular disulfide bonds that cross-linked the HSA-based nanoparticles loaded with
PTX (a biocompatible alternative to GA cross-linking) were produced in a microfluidic
platform using glutathione (GSH) to reduce the 17 intramolecular disulfide bonds to free
sulfhydryl groups [236,309].

Albumin-bound (NAB) technology was introduced as an improved technique for
safe and effective systemic drug formulation [310,311]. The FDA approved albumin
nanoparticles with encapsulated PTX for cancer chemotherapy. These nanoparticles are
obtained through NAB technology via homogenization under high pressure without using
surfactants. The nanoparticles that were obtained have a stable structure and a negative
charge, and vary in size from 100 to 200 nm. PTX is encapsulated in albumin-based nanopar-
ticles, accumulated in tumors through receptor-mediated transcytosis, and bound to the
overexpressed SPARC protein on the tumor surface. According to clinical data, Abraxane
(NAB-PTX) presents various advantages over conventional paclitaxel and Cremophor
(Taxol). These advantages include lower toxicity, a shorter administration time, and better
therapeutic effectiveness [247,310]. It has been reported that Cremophor-EL (Taxol), which
was used for systemic PTX administration, caused anaphylactic side reactions in some
patients [312]. The preparation of nab-PTX is based on the emulsification and evaporation
method [310,313]. The preparation scheme is shown in Figure S8.
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Similarly, gemcitabine-loaded albumin was prepared to treat drug-resistant pancreatic
cancer using the same technique. In order to increase its hydrophobicity, gemcitabine
was coupled with the myristoyl moiety to produce gemcitabine -C14. The gemcitabine
-C14 was dissolved in a chloroform/water solution mixture, and the same technique was
used to prepare the nanoparticles as NAB-PTX (Abraxane) [27]. Other drugs such as
docetaxel, rapamycin, 17-allylamino geldanamycin, and dimeric thiocolchicine have been
encapsulated via the same method, slightly modified [310].

13. Delivery Systems Based on Functionalized Nanoparticles Used in
Cancer Treatment

Albumin-based delivery systems have been developed for diagnostics and therapy
in various medical applications [314,315]. Albumin’s interaction with the FcRn receptor
has been studied, and its pH-dependent binding mechanism has been revealed [241,316].
Serum albumin-based delivery systems are considered appropriate for medical use due to
several reasons: (1) its molecular weight is above renal clearance, resulting in a prolonged
circulation time, which allows for its accumulation in inflamed and malignant tissues;
(2) the gp60 receptor, which is found on the surface of endothelial cells, promotes albumin
transcytosis and allows for the transportation of proteins to the tumor site; (3) a high
albumin abundance and multiple binding sites enhance the pharmacokinetic properties of
albumin functionalized with therapeutically active peptides or small antibody fragments.
Albumin, being a component of blood, can be utilized as a therapeutic agent in drug
delivery applications [317] or a diagnostic marker for various diseases like tuberculosis
and acquired immunodeficiency syndrome (AIDS) [318]. Also, albumin can be used as a
coating agent for functionalization [319,320].

Researchers are still studying the interactions between drugs and albumins. However,
most of the time, the results are inconclusive because, after administration, the plasma
proteins can interact with the delivery systems, which can have a negative impact on the
drug’s ability to reach its target sites [321]. Its role in drug delivery is determined by
the protein corona formation on the surface of the nanoparticles [322,323]. The extensive
research on albumin in cancer therapy is due to several factors that lead to its preferential
accumulation in tumor cells [324,325]. Cancer is the principal cause of mortality worldwide,
and the treatment options include radiation therapy, chemotherapy, and surgery. The
protein structure allows for the development of drug delivery systems that could be
injected into the bloodstream through intravenous administration. Despite its benefits,
albumin-based delivery nanosystems have a few drawbacks. Sometimes, albumin-based
nanosystems require, in the preparation stage, the use of toxic cross-linking agents to
enhance the stability and avoid swelling and dissolution in vivo, which may otherwise lead
to a premature release of the encapsulated drugs before reaching the target tissue [326].

13.1. Modification of the Albumin Nanoparticle Surface

Albumin-based nanoparticles can be easily modified through functional groups, such
as the carboxylic, amino, and thiol groups, present on their surface, thanks to the well-
defined primary structure of albumin. In order to modify the surface of albumin nanopar-
ticles, ligands are typically conjugated through the formation of covalent bonds with
functional groups on the albumin surface. The surface coating and electrostatic adsorption
techniques can also be used to modify the nanoparticles’ surface. These modifications
enable albumin to serve as a biodegradable carrier for drug release when it is functionalized
with ligands. The ligand is used to modify the pharmacokinetic parameters (e.g., surfac-
tants), enhancing the nanosystem stability (e.g., poly-l-lysine), leading to an improved
half-life and better bioavailability (e.g., PEG), and slowing drug release (e.g., cationic
polymers), or as a targeting agent (e.g., folate, thermosensitive polymers, transferrin,
apolipoproteins, and monoclonal antibodies). Table 1 and Figure 5 show some examples of
the surface modification of albumin nanoparticles [327].
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Table 1. Surface modification of albumin nanoparticles.

Classes of Substances
Used for Modification The Functionalized Serum Albumin-Based Nanoparticles’ Characteristics Active Principle Mechanism Refs.

Surfactants
Polysorbate 80

Encapsulating the drug in these delivery systems reduces its toxicity and
increases its AUC while decreasing the distribution volume, clearance,
and cardiotoxicity.

Doxorubicin Cover [328,329]

Cationic Polymers
Poly(ethylene imine)-PEI

These functionalized albumin-based nanoparticles with PEI have numerous
benefits, including protection against enzymatic degradation, the lack of a
need for toxic cross-linking agents, the modification of the surface charge,
reduced plasma protein adsorption, and facilitated in vivo applications.
However, PEI may exhibit slight toxicity in cells.

Bone morphogenetic protein-2
(BMP-2) Cover [330,331]

PEI/Poly(ethylene glycol)
or PEG

BSA-based nanoparticles, functionalized with PEI and PEG, show reduced
toxicity in cells of PEI and improved biocompatibility. Coated BSA
nanoparticles promote bone structure formation and exhibit improved
physicochemical properties.

Bone morphogenetic protein-2
(BMP-2) Cover [332]

Poly-L-lysine (PLL)
Functionalized albumin nanoparticles with PLL have improved stability in
water, which is directly proportional to the molecular weight and the
concentration of PLL.

Bone morphogenetic protein-2
(BMP-2) and siRNA Cover [333,334]

Thermosensitive polymers
Poly(N-isopropyl
acrylamide-block-

polyallylamine)(PNIPAM-
AAm-b-PAA)

BSA-based nanospheres functionalized with PNIPAM-AAm-b-PAA release
adriamycin less efficiently than unconjugated nanospheres at 37 ◦C. However,
drug release efficiency increases at higher temperatures, such as the cloud
temperature, due to the solubilization of the polymer, suggesting that the
nanospheres can be targeted to tumors with slightly higher temperatures than
the body’s physiological temperature.

Adriamycin

Conjugation of
PNIPAM-Aam-b-PAA to the
carboxyl groups of albumin

nanospheres using the
carbodiimide (EDC) reaction.

[335,336]

PEG
PEG/mPEG succimidyl

propionate

PEGylated albumin nanoparticles have numerous benefits, including
prolonged systemic circulation, and increase the half-life of 5FU by 50 times.
They also reduce immunogenicity and promote the nanoparticles’
accumulation in tumors through the EPR effect. Amino groups in albumin
nanoparticles were PEGylated using mPEG succinimidyl propionate.

5-Fluorouracil (5-FU)

Pegylation of BSA was performed
by succinimidyl

propionate-activated mPEG
through their free amino groups.

[337]

Reduces immunogenicity.
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Table 1. Cont.

Classes of Substances
Used for Modification The Functionalized Serum Albumin-Based Nanoparticles’ Characteristics Active Principle Mechanism Refs.

Polyethylene glycol)-poly
(thioether amido

acid)-polyethylene glycol);
methoxy

poly(ethylene glycol)

HSA-mPEG nanoparticles had a lower drug loading efficiency than HSA due
to limited binding sites. The surface modification resulted in a slower drug
release in the presence of enzymes due to a hydrophilic steric barrier on the
nanoparticle’s surface.

Rose Bengal (RB) Grafting [338]

FOLATE
Folic Acid

Folate receptors are often overexpressed in human cancer cells and can be used
to target the nanoparticles at the tumor sites. Folic acid, used to functionalize
albumin-based nanoparticles, is stable, inexpensive, and non-immunogenic
compared to other options. By binding to cell surface folate receptors, it can be
internalized through receptor-mediated endocytosis, making it an effective
marker for directing drugs to cancer cells. Folate-conjugated albumin
nanoparticles represent a drug delivery system that shows specificity for
cancer cells.

Doxorubicin, PTX, cisplatin,
vinblastine sulfate,
mitoxantrone, and

epigallocatechin-3-gallate.

The carboxylic group of folic acid
was covalently conjugated to the
amino groups on the surface of

albumin nanoparticles using the
1-ethyl-3-(3-dimethyl

aminopropyl) carbodiimide (EDC)
coupling technique.

[339–346]

adsorption on the surface of
albumin nanoparticles.

Peptides
arginine-glycine-aspartic

acid (RGD)

The cyclic peptide RGD is a ligand with a high binding affinity to integrin
αvβ3. The inhibition of integrin protein avb3 from binding to their specific
ligands causes apoptosis in endothelial cells in newly formed blood vessels.
Peptides that mimic the ligands of these integrins and anti-integrin antibodies
can inhibit their ligand binding.

5-fluorouracil

Conjugation [347]

Arginine–Alanine–
aspartic acid

(RAD)

BSA-based nanospheres that are sterically stabilized and functionalized with
RGD and RAD peptides have been developed to target tumor
vasculature specifically.

5-FluorouracilThe functionalized BSA-based delivery systems with these two peptides have
proven to be much more effective in preventing lung metastasis, angiogenesis,
and tumor regression than free 5FU, unfunctionalized BSA particles, or
RAD-functionalized ones.
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Table 1. Cont.

Classes of Substances
Used for Modification The Functionalized Serum Albumin-Based Nanoparticles’ Characteristics Active Principle Mechanism Refs.

RGD

The drug delivery system was developed based on PEGylated HSA-based
nanomicelles obtained via self-assembling and coated with cyclic RGD
peptides. The delivery system was tested by incubating it with human
melanoma cells (M21+) that expressed αvβ3 integrin and showed an increased
drug uptake and retention in these cells.

Doxorubicin Conjugation [306]

The HSA-based delivery system also facilitated the rapid release of the drug
through specific mechanisms in endosomes and lysosomes.

CREKA (cysteine–arginine–
glutamic acid–lysine

alanine)

Researchers have discovered a peptide called CREKA, which can attach to
clotted plasma proteins present in tumors. By utilizing this peptide to
functionalize Abraxane nanoparticles, the accumulation of PTX in tumors can
be enhanced, leading to better therapeutic outcomes. When antitumor
treatment was carried out with CREKA-functionalized micelles, it was
observed that there was no significant difference in comparison to the
treatment with untargeted Abraxane.

PTX

Coupling of the peptides to
Abraxane via their cysteine

sulfhydryl group using a
sulfo-SMCC (sulfosuccinimidyl-4-

[N-maleimidomethyl]
cyclohexane-1-carboxylate)

crosslinker.

[348]

LyP-1i
(Cys-Gly-Gln-Lys-Arg

Thr-Arg-Gly-Cys)

The accumulation of nanoparticles occurred in the tumor’s blood vessels,
resulting in the formation of aggregates that encompassed red blood cells and
fibrin.

Abraxane is the albumin-based nanoparticle with an average diameter of 130
nm, in which the drug PTX has been encapsulated.

Abraxane nanoparticles functionalized with LyP-1 peptide could be
transported to extravascular sites, resulting in a significant growth inhibition of
tumors when compared to untargeted and CREKA-conjugated Abraxane.

This technique allows for the precise targeting of nanoparticles to tumor tissue,
resulting in superior treatment.
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Table 1. Cont.

Classes of Substances
Used for Modification The Functionalized Serum Albumin-Based Nanoparticles’ Characteristics Active Principle Mechanism Refs.

Apolipoproteins
Apolipoprotein E (Apo E,

A-I, B-100),

HSA nanoparticles with functionalized Apo E (covalently linked) can be
uptaken into the brain endothelial cells through endocytosis after intravenous
(i.v.) injection into the bloodstream.

Loperamide

Covalent linkage formed and used
as a bifunctional Mal-PEGNHS
cross-linker that reacts with an
amino group on the surface of
HSA particles as well as a thiol
group introduced into Apo E

[349,350]

Some of these functionalized particles can penetrate the brain parenchyma, but
this can only be achieved through transcytosis to overcome the BBB. TJs in
brain endothelial cells are not opened or modulated, and the nanoparticles
have not been observed in association with TJ complexes or in the
paracellular space.

Polysorbate-coated nanoparticles seem to deliver drugs to the CNS in a similar
way as they uptake in blood circulation, as the nanoparticles functionalized
with Apo E or AI after intravenous injection.

Apolipoproteins that modified the nanoparticles in mice had significant
antinociceptive effects within 15 min of injection, lasting over an hour, unlike
the loperamide solution.

Transferrin
Transferrin -SPDP

The PEGylated albumin nanoparticles were functionalized with transferrin via
a coupling reaction with maleimide-poly(ethylene glycol)-N-hydroxy
succinimide. These nanoparticles were prepared using a nano-emulsification
technique and glutaraldehyde cross-linking. Azidothymidine,

FITC-dextran

The BSA particles were coupled
with thiolated transferrin at the

distal end of the PEG chain.
[351]

The obtained nanoparticles overcome the BBB through amino acid transporters
and can be used as drug delivery systems, although the drug immobilization
efficiency decreases for transferrin-functionalized nanoparticles. The
functionalized nanoparticle’s size is slightly larger than non-modified ones and
varies from 114 nm to 124 nm.
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Table 1. Cont.

Classes of Substances
Used for Modification The Functionalized Serum Albumin-Based Nanoparticles’ Characteristics Active Principle Mechanism Refs.

Transferrin receptor
monoclonal antibodies

(TfR-mAb)

In order to prepare the functionalized HSA nanoparticles with transferrin, a
heterobifunctional cross-linker NHS-PEG-MAL-5000 was used for SH group
activation, followed by adding a thiolated transferrin solution to react with the
activated sulfhydryl group. The nanoparticles’ size ranged from 155 to 188 nm.

Loperamide
TfR-mAb was covalently linked to

HSA nanoparticles for
functionalization.

[352]When HSA-based nanoparticles containing loperamide were functionalized
with transferrin or TfR-mAb, the drug’s ability to cross the BBB was noticeably
improved, allowing it to enter the brain. These functionalized nanoparticles
loaded with loperamide demonstrated powerful antinociceptive effects.
However, the nanoparticles functionalized with immunoglobulin G2a (IgG2a)
could not transport this drug across the BBB.

Monoclonal antibodies
specific humanized
anti-HER2 antibody,

trastuzumab (Herceptin®)

The trastuzumab-conjugated HSA nanoparticles were utilized to target
HER2-overexpressing cells in patients with metastatic breast cancer. The
experiments demonstrated effective internalization via endocytosis, dependent
on time and dosage. Antisense oligonucleotides

(ASOs) against Plk1 (Polo-like
kinase 1).

The covalent binding of the
monoclonal antibody took place at

the sulfhydryl groups of HSA
using a bifunctional compound

poly(ethylene
glycol)-α-maleimide-4-NHS for

their activation.

[353,354]The trastuzumab-conjugated HSA nanoparticles were found to attach to the
surface of HER2-overexpressing cells, including BT474, MCF7, and SK BR-3.
Following incubation with trastuzumab-modified HSA nanoparticles, the
delivery systems significantly reduced both Plk1 mRNA and Plk1
protein expression.

cetuximab, DI17E6

A monoclonal antibody known as DI17E6 has shown promise in preventing
the proliferation of cancer cells with the epidermal growth factor receptor
(EGFR) overexpressed on their surface. It inhibits angiogenesis and can be
used for cancer therapy. Encapsulating doxorubicin in DI17E6-functionalized
albumin nanoparticles improves cytotoxicity.

Doxorubicin Covalent binding to HSA
nanoparticles. [355]
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13.2. Albumin Conjugates and Albumin-Coated Magnetic Nanoparticles Used as
Theranostic Platforms

Incorporating drugs or genes into HSA or HSA-based nanoparticles significantly im-
proves the therapeutic efficacy of active agents that treat numerous pathological conditions,
including neutropenia, hemostasis, and cancer. Albumin-based drug delivery systems can
be used for binding with the albondin receptors on the endothelium and SPARC in the
tumor interstitium to increase drug accumulation in tumors [246,258,356,357]. Albumin
can also aid in transporting molecular imaging agents, allowing for the early detection of
diseases and the real-time monitoring of therapeutic responses [273,358,359].

Performing a complete surgical removal of brain tumors is a challenging task, and
there is a need for improved techniques to identify the borders of the tumor accurately.
These improved methods will help to increase treatment effectiveness while minimiz-
ing any collateral damage. One promising option is fluorescence-guided brain surgery,
which has recently been accepted as a viable therapeutic option for treating glioma pa-
tients. The implementation of this innovative approach can significantly improve patient
treatment results by increasing survival rates and reducing disease progression [360–362].
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Radionuclide-based imaging technologies like single-photon emission computed tomogra-
phy (SPECT) and positron emission tomography (PET) are commonly used for preoperative
imaging and surgical planning [363].

A class of imaging agents uses serum albumin as a carrier, specifically albumin-
bound gadolinium chelates designed for magnetic resonance imaging (MRI). An example
is gadofosveset, or Ablavar [357,364]. Gadolinium chelates, if they are not covalently
bound to albumin, can cause the active agent to be released from albumin complexes,
reducing the correlation between tumor microvascular parameters determined by the MRI
and histopathological data. However, gadolinium chelates that are covalently bound to
albumin, such as albumin-(Gd-DTPA), have a longer circulation time, increasing the risk of
toxic Gd+3 being released into the bloodstream. As a result, albumin-(Gd-DTPA) and its
analogs are limited in their use in preclinical studies [365,366].

Emulsions and nanosystems containing perfluorocarbon 19F (PFCs) are effective
MRI contrast agents, but their instability and prolonged retention in organs restrict their
use [367,368]. Fluorinated protein conjugates are promising markers for identifying tumor
labeling. Mehta et al. [369] produced fluorinated proteins by using fluorinated compounds
like S-ethyl trifluorothioacetate or trifluoroacetamidosuccinic anhydride to label amino
groups in BSA. These derivatives have proven helpful for NMR imaging and biocompat-
ibility in vivo, although their T2 relaxation times (70 ms) are shorter than those of small,
fluorinated molecules (760 ms). The amount of 19F labeling that accumulates in a tissue or
organ is the most essential factor.

Albumin accumulation in solid tumors is due to the EPR effect, allowing for passive
targeting [370]. Two proteins, the gp60 receptor on the tumor endothelium and SPARC
in the tumor interstitium, interact with albumin, contributing to its accumulation in tu-
mors [245]. Patients with cancer tend to have lower serum albumin levels because the
cancer cells can utilize the amino acids resulting from the digestion of albumin for their
nutrition proliferation [371]. Albumin forms a steric barrier in aqueous media that prevents
its removal by the reticuloendothelial system in vivo, leading to prolonged blood circu-
lation [327,372]. Albumin conjugates offer several advantages over active agents used in
imaging techniques. These advantages include better clearance, intravascular and tissue
retention, and the ability to accumulate in tumors. Additionally, albumin conjugates have
superior delivery mechanisms. In order to form albumin conjugated with the 19F radionu-
clide, an imaging agent is used. The fluorocarbon molecules must be covalently attached to
the protein. The primary amino groups in albumin can provide sufficient functional groups
for chemical modification, and its stability at various pH values and temperatures also
contributes to easy handling and chemical modification. One effective approach involves
introducing fluorine labels into the protein by conjugating them with the free thiol group of
albumin cysteine residue or conjugating the fluorinated anhydrides to the ε-amino group
of the lysine residue of the protein [369,373].

For a better selectivity of the amino groups in lysine to perform the conjugation with
fluorinated anhydrides, the N-homocysteinylation of HSA by the homocysteine thiolactone
(HTL) group is recommended as a first step, thus causing the modification demonstrated
in vivo to only three of the 59 lysine residues (Lys-525, Lys-137, and Lys-212) [374]. A
new conjugate of HTL with perfluorotoluene (PFT) has been synthesized via nucleophilic
substitution and characterized. Several fluoro-organic compounds are synthesized via
amine arylation. To label albumin with different N-substituted fluorinated HTL derivatives,
N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)homocysteine thiolactone (PFT-HTL) was
successfully conjugated to the amino groups of HSA. Based on their detection sensitivity,
combining the nuclear magnetic resonance (used for preoperative diagnosis and surgical
planning) and fluorescence (used intraoperatively) techniques with surgical image guid-
ance is one of the most advanced multimodal molecular imaging techniques. A fluorescent
dye (Cy5) maleimide derivative and a fluorinated thiolactone derivative were used to
functionalize the albumin, resulting in a dual-label molecular probe for fluorescence mi-
croscopy and 19F NMR. This synthesized product, PFT-Hcy-HSA-Cy5, was administered to
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SCID mice with advanced glioma at a dosage of 200 mg/kg, and no toxicity was observed.
PFT-Hcy-HSA was found to have a higher intratumor uptake for up to 12 h after injection
than in the surrounding healthy brain tissues. According to the 19F MRI experiments,
there was a higher concentration of PFT-Hcy-HSA-Cy5 in the inner section of the tumor
as compared to the outer part. Histology further confirmed this, which also displayed a
similar distribution of the fluorescent-labeled albumin solution [357]. PFT-Hcy-HSA-Cy5
accumulation in the outer region of mouse tumors was reduced due to the low vascular-
ization caused by cancer cell necrosis. Some tumor blood vessels have a defective cellular
lining composed of unorganized, loosely connected, branching, overlapping, or sprouting
endothelial cells [375]. The spaces present among these cells can result in the leakage of
tumor vessels, which can provide a pathway for the macromolecular therapeutic agents
to reach tumor cells, but may also contribute to disease progression. MRI imaging with
PFT-Hcy-HSA-Cy5 can aid in pre-operative diagnosis, surgical planning, and identifying
tumor margins through fluorescence. More research is needed to determine if PFT-Hcy-
HSA-Cy5 can be used as a probe for diagnosis and imaging, including investigating its
toxicity, metabolic fate, and immunological effects [357].

The current research reveals that N-homocysteinylation can cause slight changes in
conformation and minor alterations in proteins, resulting in the formation of aggregates
that eventually transform into structures such as amyloid plaque over time [376].

Overall, when albumin undergoes homocysteinylation, its conformational structure
undergoes changes, particularly in the form of a β-sheet conformation. However, a study
by Chubarov A. S. et al. in 2015 [357] found that fluorinated albumin maintained most of
its α-helix structure. Additionally, it was shown that the N-substitution of HTL can inhibit
the aggregation of N-homocysteinylated albumin [357].

A new type of theranostic conjugate was developed, which combines an anticancer
fluorinated nucleotide with doubly labeled albumin. The albumin was conjugated using
fluorine-labeled thiolactone homocysteine and then linked with the chemotherapeutic
drug 5-trifluoromethyl-20-deoxyuridine 50 monophosphate (pTFT). This drug is known
to strongly inhibit cell growth [377,378] by inhibiting the thymidylate synthetase enzyme,
which is essential for DNA biosynthesis [379]. By inhibiting this enzyme, cancer cells un-
dergo apoptosis. pTFT can also be transformed into its triphosphate form and incorporated
into DNA, leading to DNA damage and cell death [380–382].

pTFT has been noted for its potential as a chemotherapeutic agent and a promising
19F NMR agent. However, when administered as a single agent, its clinical effectiveness
is hindered due to its rapid degradation under physiological conditions, non-specific
distribution in the body, and quick elimination by the reticuloendothelial system. These
factors have led to a plasma half-life of less than 20 min. To enhance the drug’s therapeutic
index, researchers have conjugated pTFT with branched polyethyleneimine (PEI) [383].
The cytotoxic effect of PEI has been attributed to the mechanisms resulting from membrane
deterioration. Therefore, choosing a different polymer to develop a drug delivery system is
very important for successfully designing a polymer system in which the imaging agent
is incorporated and used for diagnosis. An optimal delivery system should allow for the
efficient release of imaging agents and the release of therapeutic biomolecules, ensuring
their optimal distribution to the tumor site [384].

A conjugate known as albumin–trifluorothymidine has been utilized to detect and
label cancerous tumors. This conjugate contains disulfide and phosphamide bonds that
activate the release of the chemotherapeutic agent pTFT when triggered by redox and
pH reactions. With this conjugate, cancer can be directly visualized using 19F optical
and magnetic resonance, and the drug is released in the presence of glutathione. When
glutathione is present in tumor cells, it causes the disulfide bond to cleave, releasing the
active pTFT drug. It is worth noting that the pTFT’s release from the albumin conjugate is
highly sensitive to pH and works best under slightly acidic conditions (pH = 5.4). The PFT-
Hcy-HSA-Cy7-pTFT product shows great potential as an optical and 19F NMR imaging
agent based on in vitro studies. In vitro and primary in vivo studies have shown that
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these conjugates have the potential for cancer treatment, but further research is needed
to fully understand the pharmacokinetics of this HSA-based drug carrier under in vivo
conditions [385].

A new theranostic conjugate uses biotin molecules as markers to target specific sites
in the body in antitumor drug delivery system applications, which is based on a flu-
orinated nucleotide anticancer compound, conjugated to biotinylated albumin that is
labeled fluorescently for bimodal use. In vitro and in vivo studies have found that the
unlabeled PFT-Hcy-HSA-Cy7-pTFT theranostic conjugate had a stronger antitumor effect
than the biotin-labeled PFT-Hcy-HSA-PEGBio-Cy7-pTFT conjugate, possibly due to its
limited interaction with cellular receptors. Research shows the importance of site-specific
modifications for developing albumin-based drugs with desired pharmaceutical proper-
ties. In vivo testing has also compared the antitumor effects of two compounds in mice
with lung adenocarcinoma and brain tumors. The PFT-Hcy-HSA-Cy7-pTFT compound
(without conjugated biotin) had stronger antitumor activity, reducing the tumor volume
by 28.2% and 42%, respectively. However, the biotin-labeled conjugate PFT-Hcy-HSA-
PEGBio-Cy7-pTFT had a low inhibitory effect on tumor growth. The study found that
lung adenocarcinoma tumors decreased by 9.1%, while brain tumors (glioma) treated
with the biotinylated conjugate increased by 342%. HSA conjugates that accumulated in
tumor tissues were observed through fluorescence-based molecular imaging techniques
in combination with computed tomography (CT). The study was conducted on animals
in a glioma model, and it demonstrated the accumulation of the fluorescent signal of the
compound PFT-Hcy-HSA-Cy7-pTFT in the tumor.

The compound containing biotin-labeled PFT-Hcy-HSA-PEGBio-Cy7-pTFT did not
accumulate in the target tissue. This could be because the reticuloendothelial system
quickly removed the modified albumin. By conducting additional research on the structure
of albumin conjugates, it could be possible to improve their preparation techniques, leading
to new and promising perspectives in the field of drug delivery [386]. Based on mass
spectrometry data, it has been observed that the covalent conjugation of HSA with PEGBio
molecules resulted in a heterogeneous conjugate mixture, with each having a PEGBio
residue attached to a different lysine residue (Lys-536/Lys-560) in domain III of HSA. This
may affect the pharmacokinetic properties of the conjugates.

Additionally, the DIII domain of HSA interacts with the FcRn receptor [269,271,387].
Synthesizing albumin conjugates with desired pharmaceutical properties requires the con-
sideration of albumin binding sites. Attaching active molecules to exposed lysine residues
can interfere with albumin’s specific receptors on tumor cells, reducing the effectiveness of
the therapeutical agent.

The cysteine residue, Cys-34, found in domain I (DI) of the albumin structure, as well
as the N-homocysteinylated lysine sites (Lys-525, Lys-205, and Lys-137), can be used to
control the conjugation and to develop high-purity drug conjugates with a constant drug
charge ratio. Future research should consider the limited studies on how the conjugation
to functional groups within albumin can interfere with the binding domain of receptors
that are overexpressed in various tumors. By elucidating the interaction between modified
albumin and tumor receptors, a more sophisticated design of albumin analogs can be
achieved, with a prolonged half-life that maintains its anticancer properties [269,271,387].

Bovine serum albumin and polycaprolactone (BSA-PCL)-based nanoparticles labeled
with radioactive iodine can interact with the anti-epidermal growth factor receptor (EGFR)
and have been successfully synthesized. In this type of nanoparticle was encapsulated
cetuximab, an EGFR inhibitor used for head and neck cancer chemotherapy [388]. The
EGFR receptor is located on the surface of tumor cells and is highly important in signaling
pathways that regulate cell proliferation, angiogenesis, and tumor metastasis [389,390].
According to a research study, higher levels of EGFR were correlated with resistance to
treatment and a poor prognosis for survival [391]. In order to determine cell viability, MTT
assays were performed. The results showed that both 131I-EGFR-BSA-PCL and 131I-BSA-
PCL effectively inhibited the proliferation of U251 and U87 glioma cells. However, cells
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treated with 131I-EGFR-BSA-PCL showed a stronger inhibitory effect than those treated with
131I-BSA-PCL when exposed to a radiation dose of 0.925 MBq. In vivo, radioiodine imaging
studies were conducted on nude mouse xenograft models. The findings revealed that the
interaction with the EGFR receptor substantially enhanced the uptake and accumulation of
BSA-PCL-based nanoparticles in the in vivo experimental model of nude mice xenografts,
and there was an increase in drug release. The potential application of 131I-EGFR-BSA-PCL
could offer a novel approach to treating glioblastoma [388].

Magnetic nanoparticles have many applications, such as magnetic resonance imaging
(MRI), drug delivery, tumor targeting, magnetic hyperthermia, and immune system manip-
ulation. Magnetic particle imaging (MPI) is considered to be a superior imaging technique
compared to MRI. Combining the MRI and MPI techniques improves brain signals for the
early detection and treatment of brain pathologies [392]. Iron oxide nanoparticles offer
great potential for various biomedical applications thanks to their enhanced magnetic
properties, large specific surface area, stability, and accessible functionalization possibilities.
It is essential to consider the colloidal stability, biocompatibility, and potential toxicity of
magnetic nanoparticles in physiological environments when using them in vivo [393,394].
Serum albumin has various applications, including coating drug delivery nanosystems and
in the theranostic field. It is biocompatible, circulates in the bloodstream for an extended
period, and may help overcome drug resistance in cancer patients.

Manipulating magnetic nanoparticles with an external magnetic field makes it possible
to easily separate them from liquids and direct their targeting within the body. Combining
strategies such as local heating, targeted drug release, and MRI monitoring shows excel-
lent potential in chemotherapy and theranostics [395–398]. Magnetite offers promising
properties but is not stable at oxidation and possesses a high surface energy, causing the
formation of aggregates. An optimal functionalization of the surface of these nanoparticles
can remove these disadvantages.

Protein-coated magnetic nanoparticles are biocompatible, biodegradable, and less
toxic [399,400]. Albumin coating reduces unwanted blood component adsorption and
improves the targeted active principle release [27,325,326]. Peptides, antibodies, and small
molecules have been used as free ligands or attached to nanoparticles to facilitate the
delivery to the brain [65,401–403]. In receptor-mediated endocytosis, the ligand attaches to
receptors present on the surface of vascular endothelial cells, and then the functionalized
delivery system is internalized within the cells. The process is called transcytosis, when
the ligand/receptor complex is internalized and then released on the opposite side into
the parenchyma. As an active targeting reaction, transcytosis can increase the amount
of an imaging/therapeutic agent in the parenchyma and thus improve its effectiveness.
Transcytosis allows transport across the intact BBB and could be important for treating
early-stage disease [392].

Albumin-based delivery systems can be transported across the interior of a cell through
transcytosis, which is facilitated by their binding to the gp60, gp30, gp18, and FcRn re-
ceptors. This attachment helps to accumulate the delivery system in different tumors,
including through the SPARC receptor and its effect [245,358]. A technique used to improve
the effectiveness of drugs is the fusion, association, or conjugation of drugs with albumin.
When drugs are attached to albumin, it prolongs their circulation time, leading to improved
pharmacokinetics and pharmacodynamics of the therapeutics. Albumin has a prolonged
half-life because of its large size and interaction with the neonatal Fc receptor (FcRn). This
receptor mediates the recycling pathway, which protects the protein from degradation via
proteolysis and renal clearance [267,404,405].

Magnetic nanoparticles have various uses, including MRI technology, hyperthermia,
and drug delivery. However, they have limitations such as a low biostability, toxicity, and
tissue specificity, and they tend to agglomerate due to their high surface energy and strong
magnetic attraction. High salt concentrations can also affect their colloidal stability, and
Fe3O4 magnetite-based magnetic nanoparticles may lose their magnetism in the presence of
oxygen due to oxidation. Surface functionalization can overcome these issues [397,406,407].
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When injected intravenously, magnetic nanoparticles form a protein corona by bonding
with biological molecules. This results in their fast elimination from the bloodstream [325].
Before intravenous injection, a stable precoating with optimal characteristics is necessary to
prevent irregular coating. Organic polymers or low-molecular-weight surfactants are com-
monly used for coating magnetic nanoparticles [397,406,408,409]. One potential approach
is covering these nanosystems with albumin, followed by a subsequent surface function-
alization. Serum albumin is an excellent option for obtaining biosensors and butylated
nanoparticles that are used in medical imaging and as a theranostic platform [327,410].
The albumin surface can be modified to create intelligent nanosystems with various appli-
cations, including medical imaging probes and drug complexes. These nanosystems can
interact with albumin receptors to target cancerous tissue. Moreover, the tumor accumula-
tion of these nanosystems can occur passively through the EPR effect, providing additional
benefits [25].

Albumin surface modifications include vitamins, vitamin derivatives, carbohydrates,
and peptides like RGD and cell-penetrating peptides [411–413]. Specific receptors interact
with biotin-modified HSA-based nanoparticles, effectively targeting breast and cervical
cancer. Conversely, albumin-coated magnetic nanoparticles conjugated with folic acid are
used for MRI imaging and specifically target brain tumors [412,414]. Research studies have
investigated the use of albumin-coated magnetic nanoparticles conjugated with anti-EGFR
and anti-VEGF antibodies [415,416]. These delivery systems have proven to be effective in
targeting mammary tumors and brain glioma in mice, demonstrating their potential for
in vivo applications [417].

Albumin-coated magnetic nanoparticles are highly stable and ideal for use in an-
imal models. They prevent nucleation and aggregation, even at a high concentration
of sodium chloride (0.15 M) [409]. Unlike tannic-acid-coated magnetic nanoparticles,
albumin-coated ones maintain their size at different pH ranges and temperatures below
37 ◦C [311,331] [399,418]. The albumin coating of magnetic nanoparticles enhances their
longevity and protects them from non-specific binding with blood components as well
as immune system response [25,325,399,409]. Other approaches that use tannic acid, car-
boxylic acid, and hyaluronic acid can also be used for stabilization and optimal core
size formation. Finally, albumin coating is applied to ensure the biostability of magnetic
nanoparticles [25].

Before using magnetic nanoparticles in vivo, their toxicity must be studied. The
cytotoxic effects of magnetic nanoparticles are caused by several mechanisms, including
the release of ferrous ions, the modification of ion channel activity, the dysregulation of
gene expression, the disruption of the cytoskeleton, and the formation of reactive oxygen
species (ROS) [407]. The MTT test is useful in determining toxicity but does not show
non-specific interactions with other blood elements, tissue-specific toxicity, or chronic
toxicity. However, a few magnetic nanoparticles have demonstrated acute toxic effects such
as inflammation, ulceration, metabolic disorders, and immune response [419–421]. The
accumulation of magnetic nanoparticles in some organs after degradation can interfere
with the physiological iron metabolism, causing damage to mitochondria, cell membranes,
and nucleic acids (somatic or inherited mutation) [421]. In order to determine if magnetic
nanoparticles can be used in clinical investigations, simple combinations of assays such as
plasma stability, ROS formation, and multiple cell lines must be used for ex vivo analysis.
Albumin coating usually results in a moderate nanoparticle uptake and low cytotoxicity,
determined by ROS production, as many works on in vitro and ex vivo experiments have
shown [422–425]. Their zeta potential must be negative or neutral for optimal protection
after coating the magnetic nanoparticles with albumin [426]. Coating drug-loaded magnetic
nanoparticles with albumin has been found to improve their therapeutic results in vitro,
suggesting a promising possibility for in vivo experiments [25,424,427]. Additionally,
albumin coating could help to prevent specific cardiac side effects associated with magnetic
nanoparticles [428].
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Using MRI as a non-invasive diagnostic tool can greatly improve anatomical reso-
lution and detect diseased tissue regions. By utilizing different contrast agents, such as
coated magnetic nanoparticles, both the T1 and T2 relaxation processes can be influenced
by changes in the water molecule availability near the magnetic core [429]. Albumin-
coated magnetic nanoparticles have proven effective in producing multimodal imaging
and theranostic platforms. In order to evaluate the potential of this system as a multimodal
imaging technology, the surface of the albumin-coated magnetic nanoparticles was labeled
with a 64Cu-DOTA complex (for positron emission tomography, PET) and a fluorescent
dye (Cy5.5). Triple imaging techniques (PET, near-infrared fluorescence, and MRI) were
successfully tested on a glioma mouse model [430].

One important goal is to develop theranostic platforms by using magnetic nanoparti-
cles coated with albumin. These platforms possess considerable potential in the treatment
of drug-resistant cancer. Researchers have designed a delivery system for PTX based on
magnetic nanoparticles coated with albumin, which can potentially be used for diagnosis
through MRI techniques and in drug-controlled and targeted release applications [431].
Albumin-coated magnetic nanoparticles loaded with doxorubicin, methotrexate, curcumin,
or curcumin/5-fluorouracil have shown promising outcomes in various cell lines and
animal models [25]. An excellent therapeutic effect was also obtained on rat models with
gliosarcoma tumors [25,432]. The integration of hyperthermia and chemotherapy has been
demonstrated ex vivo in different cell lines using PTX [423] and etoposide (topoisomerase-II
inhibitor) [433]. Composite albumin nanoparticles containing magnetic nanoparticles with
encapsulated etoposide were developed. These nanoparticles are intended for use in ex
vivo testing, specifically to evaluate the effectiveness of the combined hyperthermia and
chemotherapy methods.

Magnetic hyperthermia uses magnetic nanoparticles to destroy cancer cells with heat
generated by converting energy from an externally applied magnetic field. Normal cells
can withstand the heat, while cancer cells cannot survive above 43 ◦C. The method shows
promise for destroying cancer cells in areas with magnetic nanoparticle accumulation [434].
Scientists have developed a delivery system based on magnetic nanoparticles covered with
HSA to deliver etoposide, a DNA-damaging cancer drug that promotes cancer cell death.
The nanoparticles were prepared using a modified co-precipitation method. Testing on
U87 glioma cells showed a significant decrease in cell viability when exposed to alternating
magnetic fields and heat. Using an etoposide-loaded HSA-based delivery system signifi-
cantly reduced the viability of U87-MG cells to 7.8% when combined with heat treatment.
According to the findings, the viability of the cells decreased to 59.4% with only heat treat-
ment and 53.8% for the combined treatment with free etoposide. This delivery system can
aid in treating brain tumors and MRI imaging. Magnetic hyperthermia is also a promising
treatment option [433,435].

Carmustine (BCNU) is commonly used in the treatment of brain cancer. However, its
short half-life and lack of selectivity often result in the need for systemic administration,
leading to severe adverse reactions such as hepatotoxicity, bone marrow suppression, and
pulmonary fibrosis [436–439]. Scientists have developed a nanoprobe based on albumin-
coated superparamagnetic iron oxide (SPIO), carmustine (BCNU), and indocyanine green
(ICG) that can diagnose and treat glioblastoma multiforme (GBM). It can be used for
bimodal imaging and controlled drug release, and the obtained nanoparticles were func-
tionalized on the surface with Angopep-2 polypeptide (TFFYGGSRGKRNNFKTEEY) to
target the low-density lipoprotein receptor-related protein (LRP) present in BBB and GBM
cells. The delivery nanosystem obtained was encoded with ANG-BSA/BCNU/ICG mag-
netic nanoparticles. These nanoparticles are stable, spherical, and have magnetic properties,
with an average diameter of 85 nm. The obtained delivery nanosystems are biocompatible,
have mild side effects, and selectively target tumors while having controllable drug release.
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The encapsulated magnetic nanoparticles also exhibit good biocompatibility, colloidal
stability, and the ability to overcome the BBB and selectively target GBM cells [440]. The
literature mentions that lactoferrin-modified polymeric nanoparticles containing BCNU
and tamoxifen can be directed to the brain to treat GBM and have antiproliferative ef-
fects on GBM [441–443]. ICG has also been evaluated for its ability to target GBM and to
overcome the BBB using in vitro and in vivo NMR/fluorescence bimodal imaging tech-
niques and tested in the ANG-BSA/BCNU/ICG magnetic nanoparticle delivery system
to inhibit tumors. During in vitro and in vivo experiments, it was observed that the ANG-
BSA/BCNU/ICG magnetic nanoparticle could inhibit tumors more efficiently compared
to the control group through in vivo experiments [444–446]. After performing a cyto-
toxicity analysis, it was found that the treatment with the magnetic nanoparticles-ANG-
BSA/BCNU/ICG had a higher inhibitory effect on the GBM cell line (U87MG) than the
control samples. This innovative delivery system with co-encapsulated BCNU and imaging
agents provides an effective strategy for targeted therapy and the intraoperative localiza-
tion of GBM. The ANG/BSA/BCNU/ICG magnetic nanoparticles inhibit the proliferation
of GBM cells more than BSA/BCNU/ICG magnetic nanoparticles or free BCNU and
can be used for both diagnosis and treatment, representing a highly valuable theranostic
nanoplatform [440].

Nanoparticles provide a promising solution for drug-resistant cancer by serving as a
theranostic platform for developing new drugs for bimodal applications such as therapy
and diagnosis. It represents a novel approach to developing next-generation medication by
manipulating its physical, chemical, and biological properties. This technique includes the
targeted release of active ingredients, controlling the size, and surface functionalization.
Magnetic nanoparticles show potential as a core for theranostic platforms. The obtained
nanoparticles can be used in MRI diagnostic imaging, manipulated with an external mag-
netic field, and have a hyperthermia effect. Coating magnetic nanoparticles with albumin
enhances their stability, allows for a targeted release in tumors, and improves their bio-
compatibility and biodegradability. This results in a significant accumulation in cancerous
tissue due to the EPR effect and receptor binding ability [25].

14. Albumin-Based Delivery Systems That Overcome the BBB and Treat Glioblastoma

GBM is a very aggressive form of brain cancer that accounts for 47% of all brain cancer
cases. It has high invasiveness, poor clinical prognosis, frequent recurrence, and high
mortality rates. Various delivery systems, including nanoparticles, have been developed
to deliver chemotherapeutic drugs such as docetaxel [447–449], PTX [450–452], doxoru-
bicin [453], or other small molecule chemotherapeutics [454–457]. These delivery systems
also have encapsulated antibodies [458,459], RNA [460–462], or peptides [463] in the hope
of improving GBM therapy. Despite extensive research, there has not been enough progress
in developing a delivery system to treat glioblastoma effectively. Nanocarriers used for
this purpose are typically made of synthetic materials, which tend to accumulate in the
liver and spleen, causing significant side effects. Additionally, these nanocarriers cannot
overcome the BBB. However, protein and viral nanoparticle-based delivery nanosystems
have shown promising results in targeting and transporting bioactive compounds across
the BBB, providing hope for future treatment options [464].

Scientists have created GBM-targeting synthetic protein nanoparticles by combin-
ing polymerized HSA and oligo(ethylene glycol) (OEG) functionalized with iRGD31, a
cell-penetrating peptide [465]. The siRNA-loaded nanoparticles have the ability to be inter-
nalized within the cells and block the function of STAT3 (a signal transducer and activator
of transcription 3). HSA was chosen for the obtaining of nanoparticles due to its quick
elimination mechanisms, proven clinical relevance, and compatibility with therapeutic
agents and original peptides. Albumin-based delivery systems have also been shown to
interact with cell surface receptors such as SPARC and gp60, which are overexpressed on
glioma cells and tumor endothelia [465–468].
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The preparation process of albumin nanoparticles involves electrohydrodynamic
jetting, which uses the atomization of dilute polymer solutions to produce well-defined
nanoparticles [469]. By using this method, the size of the delivery systems is considerably
reduced, allowing for the quick evaporation of solvents and the solidification of non-
volatile nanoparticle components. The procedure involves dissolving HSA in a mixture of
ethylene glycol and ultrapure water, where bifunctional-OEG (NHS-OEG-NHS) is added
to the HSA solution. The iRGD peptide is then incorporated into the nanoparticles and
added directly to the jet solution. For siRNA nanoparticles, siRNA was complexed with
branched polyethyleneimine, and the mixture was added to the jet solution. The control
nanoparticles did not have siRNA encapsulated. The solutions were pumped through a
syringe with a 26 G needle at a flow rate of 0.1 mL/h for the final jet, while a constant
voltage (7.5–9.0 kV) was applied. The particles were placed in aluminum dishes and then
incubated for seven days at 37 ◦C to ensure complete polymerization. After purification
and harvesting, the particles were kept at 4 ◦C in the dark. Figure 6 schematically shows
the obtaining process of these nanoparticles. Their average size was 115 ± 23 nm in the dry
state and approximately 220 nm in the swollen state [470].
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Nanoparticles with iRGD peptide helped to treat aggressive intracranial GBM tu-
mors in mice. The nanoparticles were then distributed throughout the tumor mass, and
the nanoparticles with siRNA encapsulated were administered to inhibit STAT3 without
surgery. The nanoparticles were combined with focused radiation therapy for longer-term
survival in mice, even with a second induced tumor (87.5% of the mice showed improve-
ment in the treatment against GBM, achieving longer-term survival). Based on these
findings, the delivery system used is a successful nanosystem for the specific delivery of
encapsulated biological substances. When used together with the current standard-of-care
methods, the nanoparticles that deliver the biological compound for STAT3 inhibition
provide a favorable immunomodulatory response, particularly in the highly aggressive
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and recurrent GBM disease model. Additionally, there were only minimal indications of
liver toxicity and no notable variations in blood cellular components, which are linked to
the function of the liver and kidneys, implying that no noticeable off-target side effects
occurred as a result of the treatment [470].

The iRGD peptide interacts with integrins, binds to neuropilin-1 (NRP-1), and activates
an endocytotic/exocytotic transport pathway [471]. In order to enhance iRGD-mediated
tumor localization, it can be administered co-encapsulated in nanoparticles [472] or attached
to the surface of nanoparticles through covalent binding [473]. In vitro tests have shown
a reduction in STAT3 protein expression with free siRNA, but not in an animal model.
Nanoparticles have proven to be highly effective in treating tumors by combining the
benefits of proteins and synthetic nanoparticles. They can efficiently deliver therapeutic
agents into tumors through systemic administration.

Moreover, they have the potential to eliminate resistant cancer cells long-term by
utilizing immunomodulatory proteins immobilized in delivery nanosystems. In a highly
aggressive intracranial tumor model, 87.5% of mice survived long-term [470].

The nutrient transporters on the BBB are important for maintaining normal brain
functions by transporting essential nutrients such as amino acids/peptides, sugars, and
proteins. These transporters can also be used as entryways for drug delivery into the
brain. Researchers have explored various transporters such as LAT-1, GLUT-1, LDL, and
transferrin receptors for this purpose in recent decades [474].

Albumin is an essential source of nutrients for the body. However, albumin is typically
prevented from entering the brain. When tumors grow rapidly and require more nutrients,
they use albumin as a source of amino acids and energy. This significantly increases the
albumin supply in tumor tissues [283,475]. The process of internalizing albumin in tumors
is facilitated by albumin-binding proteins like SPARC and glycoprotein 60 (gp60). These
proteins are responsible for endothelial transcytosis and endocytosis in tumor cells [245].

A study proposed the use of albumin-binding proteins that were overexpressed in
glioma as drug carriers. To achieve this, researchers developed a delivery system using
functionalized albumin nanoparticles with increased permeability in the cell matrix. These
nanoparticles contained co-encapsulated PTX and fenretinide (4 HPR). In order to func-
tionalize the nanoparticles, low-molecular-weight protamine (LMWP) was used to form
covalent bonds with the sulfhydryl group in albumin. The LMWP-modified albumin-based
nanoparticle system was designed to co-administrate PTX and 4 HPR, both used in brain
cancer therapy. One benefit of co-encapsulating PTX and 4-HPR is that their hydrophobic
and synergistic properties trigger the self-assembly of albumin into nanoparticles. Al-
though PTX and 4-HPR are poorly soluble in aqueous solutions, they can be successfully
encapsulated in albumin-based delivery systems.

This study presents a new delivery system for brain tumor treatment that improves
drug release through active targeting and the co-encapsulation of two drugs with synergic
effects within BSA-based nanoparticles functionalized with LMWP (a peptide that increases
cellular permeability). The functionalized nanoparticles overcame the BBB, were internal-
ized into the cells, and infiltrated into the brain tumor, where the drugs were released.

A green self-assembly method for producing nanoparticles using denatured BSA (in
the presence of urea/NaBH4) with two encapsulated drugs, PTX and 4-HRP, has been
developed. This method involves using a highly concentrated urea solution and reducing
conditions (NaBH4) to diminish non-covalent interactions like hydrogen bonds, as well as
the hydrophobic effect. The protein unfolds and forms a linear structure when the albumin
disulfide bonds are cleaved. Lipophilic drugs interact with the protein’s hydrophobic
domains, which induces BSA’s self-assembly into nanoparticles. The formation of disulfide
bridges further stabilizes the nanoparticles. This process eliminates the need for toxic
cross-linking agents and energy consumption. LMWP is derived from protamine sulfate
and is obtained via enzymatic digestion with thermolysin. Drug release strategies from
LMWP-functionalized delivery systems have been used to overcome various bio-barriers
such as the skin, intestinal mucosa [476], intra-tumoral heterogeneity, and transporter-
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mediated drug efflux [477]. LMWP-functionalized drug-albumin conjugates overcame the
drug-resistant efflux and exhibited an enhanced anticancer treatment efficacy [478]. The
size of the obtained albumin nanoparticles was less than 150 nm. Figure 7 shows the effect
of albumin nanoparticles on U87 cells [479].
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LMWP enhanced the intra-tumoral infiltration of drug-loaded nanoparticles, which
was also in accordance with other studies [477]. The study was conducted to assess the
efficacy of LMWP-functionalized and non-functionalized BSA nanoparticles in inhibiting
the growth of U87 cells, and it was found that the effectiveness of the treatment was
dependent on the dosage used (as shown in Figure 7A). Both types of nanoparticles
with co-encapsulated drugs exhibited better cytotoxicity than the mixture of free drugs.
The LMWP-functionalized BSA-based nanoparticles demonstrated superior antitumor
activity compared to the non-functionalized BSA-based nanoparticles. The percentage
of apoptotic cells was 15.1% for the non-functionalized BSA nanoparticles and 24.6%
for the LMWP-functionalized BSA nanoparticles, compared to 10.8% for the free drugs
(Figure 7B). The tumor epithelium and glioma cells overexpressed albumin-binding proteins
such as SPARC and gp60. These overexpressed proteins are primarily responsible for
delivering nanoparticles in brain tumors that mimic biomolecules. LMWP enhanced the cell
permeability, and the LMWP-functionalized BSA-based nanoparticles overcame the BBB.
The functionalized nanoparticles could infiltrate within the tumor, and the cellular uptake
was improved. The albumin nanoparticles modified with LMWP and containing two
drugs, PTX/4-HPR, have proven to be effective in stopping tumor growth in subcutaneous
and orthotopic glioma models. Their effectiveness lies in their ability to target various
mechanisms, including anti-angiogenesis, apoptosis, and the regulation of the tumoral
immune microenvironment [479].

While cytotoxic medications like nitrosoureas and platinum-based drugs may decrease
the proliferation of glioma cells, they can also result in severe side effects, such as nephro-
toxicity with the use of cisplatin and pulmonary toxicity using nitrosoureas [480,481],
which causes poor tolerance and limited efficacy [482]. Effective treatments for glioma are
essential because the tumor cells proliferate rapidly and use a lot of energy to maintain
abnormal growth. An abnormal energy metabolism is a critical feature of glioma [483–486].
Adenosine triphosphate (ATP) is the cells’ primary energy source. Interestingly, glioma
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cells are more sensitive to ATP levels than normal cells [487]. Research has shown that
restricting energy, specifically ATP, can effectively inhibit glioma cells’ growth [488,489],
suggesting that inhibiting ATP formation in tumor cells may be a helpful strategy for
glioma therapy.

Glioma cells generate ATP mainly through a glycolytic pathway, known as the War-
burg effect, rather than through oxidative phosphorylation. Inhibiting glycolytic enzyme
activities can significantly reduce ATP production and tumor cell proliferation [490]. How-
ever, when glycolysis is inhibited, tumor cells increase ATP synthesis through the mitochon-
drial pathway to maintain normal functions [491]. Therefore, monotherapy with glycolysis
inhibitors alone may not be sufficient for effective treatment [492].

A drug called Albendazole (Abz) can inhibit the functions of glycolytic enzymes, sup-
press the expression of hypoxia-inducible factor I, and ultimately inhibit glycolysis [493,494].
Additionally, silver nanoparticles can reduce mitochondrial function and inhibit ATP gen-
eration through the mitochondrial pathway [495–497]. Therefore, the most effective way to
inhibit ATP synthesis would be to block both the glycolytic and mitochondrial pathways si-
multaneously.

In the practice of traditional Chinese medicine, aromatic substances like borneol,
musk, and corn mint are known as messenger drugs. They are used to direct other drugs to
specific organs, particularly the brain. These substances act as targeting ligands for brain
drug delivery systems. They can also increase permeability through the BBB by reducing
the expression of TJ proteins, which is essential for specific drug delivery [498–502]. Since
menthol does not have any reactive functional group to conjugate with BSA, its analog,
namely para-mentha-8-thiol-3-one, having the skeleton structure of menthol, was used
for protein functionalization. For albumin functionalization, 2-iminothiolane was allowed
to react with the amino groups in BSA to introduce sulfhydryl groups. Then, BSA thio-
late and para-mentha-8-thiol-3-one were cross-linked with 1,4-butanediol diglycidyl ether
to form thioether linkages. The functionalization degree of albumin with menthol was
62.30%. Functionalized and non-functionalized proteins were first denatured with Tris
(2-carboxyethyl) phosphine (TCEP), and then ATP inhibitors, Abz, and silver nanoparticles
were added to this solution to be encapsulated. Nanoparticles were obtained via precipita-
tion by adding ethanol–ethyl acetate solution (1:1, v/v). TEM images showed that a protein
corona covered the encapsulated silver nanoparticles [503].

After modification with menthol, the zeta potential of the nanoparticles became more
negative than those that were not functionalized, while their amine groups were reduced.
Nanoparticles containing silver nanospheres have a significantly higher drug loading
degree (DL%) compared to those without silver nanoparticles. This is due to the larger
specific surface area of the silver nanospheres [504].

Albumin nanoparticles modified with para-mentha-8-thiol-3-one successfully deliv-
ered drugs to glioma tumors in the brain by overcoming the BBB. The tests conducted both
in vitro and in vivo showed that co-encapsulating albendazole and silver nanoparticles
in functionalized BSA-based nanoparticles inhibited ATP synthase by targeting both the
glycolytic and mitochondrial pathways. This led to cytotoxic effects such as inhibiting cell
proliferation, causing cell cycle arrest, and inducing apoptosis in tumor cells. Menthol-
modified albumin nanoparticles were also effective in inducing apoptosis in tumor cells
and were found to be safe for normal cells without causing organ toxicity in vivo. These
findings suggest that this delivery system could be used in clinical trials [503].

A significant issue with using an albumin-based drug delivery system is its weak
structural stability due to its natural characteristics and the complex in vivo environment
containing numerous proteins and enzymes [505]. However, under an oxidative atmo-
sphere, the intermolecular bonds can be regenerated, leading to the reassembly of the
albumin molecules into relatively stable nanoparticles and an improved ability to en-
capsulate drugs in the hydrophobic domain [506]. Research has shown that tumor cells
have a much higher level of glutathione (GSH)—which can cleave the disulfide bonds—at
10 mmol/L, compared to normal cells with only 0.2 mmol/L. These results suggest that
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the intermolecular disulfide bonds that are present in albumin molecules could effectively
self-crosslink and stabilize drugs, while allowing for redox-sensitive drug release in tumor
cells [293,507]. In order to effectively treat glioblastoma, nanoparticles need to be function-
alized to overcome the BBB and the BBTB. The selective overexpression of neurokinin-1
(NK-1) receptors has been observed in several malignant tumors, including glioma [508].
The SP peptide, which has the sequence Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met, is
a ligand that binds to NK-1 and can be effectively used as a targeting ligand in HSA-based
nanoparticles. HSA molecules were functionalized with the SP peptide using a standard
reaction between a maleimide and thiol groups from albumin. PTX-loaded HSA nanoparti-
cles were prepared using a desolvation method, which was stabilized by the intramolecular
disulfide bonds. In order to prevent rapid clearance by the immune system in vivo, it was
determined that excessive functionalization with the targeting peptide fragment could
cause issues. Thus, the optimization of the functionalization degree with the SP peptide
was achieved at approximately 50% [507].

The obtained SP-HSA-PTX nanoparticles, with a spherical structure and an average
diameter of 150 nm, have a 7% drug loading degree and a 90% encapsulation efficiency.
A minimal release of PTX molecules from the nanoparticles in PBS was observed due to
the intermolecular disulfide bonds. Exposure to glutathione (10 mmol/L) significantly
increased the release rate. The cross-linked SP-HSA-PTX nanoparticles, remained stable in
the extracellular environment, preventing drug loss and reducing toxicity in normal tissues.
The SP-HSA nanoparticles were found to have a better cellular uptake on BCEC and U87
cells than HSA nanoparticles, suggesting that both cells overexpressed the NK-1 receptors,
which recognize the SP peptide. As a result, the SP peptide has a dual-targeting ability to
bind to glioma cells and overcome the BBB [507].

In order to evaluate the targeting impact of nanoparticles on glioma, several albumin
nanoparticles loaded with BODIPY were injected intravenously into mice that had devel-
oped U87-Luci cancer cell-induced tumors. The nanoparticles were then monitored using
an in vivo imaging system. Figure 8 demonstrates that mice receiving SP-HSA-BODIPY
functionalized nanoparticles had a more noticeable fluorescent signal in the tumor region
within 24 h of after injection than those receiving non-functionalized HSA-BODIPY nanopar-
ticles. Figure 8C further indicates that the group treated with SP peptide-functionalized
nanoparticles displayed a weaker fluorescent signal in the liver than those who received
non-functionalized albumin nanoparticles, indicating a reduced liver toxicity. The distri-
bution of nanoparticles in the heart, spleen, lungs, and kidneys was comparable in both
groups [509].

Tests conducted in vivo showed that the SP-HSA-PTX nanoparticles were the most
effective in treating tumors, compared to the HSA-PTX nanoparticles and Taxol nanoparti-
cles. This effect is likely due to the nanoparticles’ ability to accumulate PTX at the tumor
site while reducing the systemic adverse effects. The mice group treated with the HSA-PTX
nanoparticles also had a longer survival time. It is likely that the nanoparticles’ increased
accumulation through the EPR effect, combined with albumin’s initial targeting ability,
contributed to the observed outcome. Additionally, albumin serves as a source of nutrients
and energy for the rapid growth of tumors [245,283]. Apart from delivering effective
therapy, safety is an essential aspect of an ideal drug delivery system. After observing the
histological status of the heart, liver, spleen, lung, and kidneys, it was determined that the
group treated with the SP-HSA-PTX nanoparticles did not experience any significant toxic
or pathological changes [509].

A new controlled drug release system was developed by researchers using cationic BSA
(CBSA) that was attached (conjugated) to the surface of poly(ethylene glycol)-poly(lactide)
nanoparticles (PEG-PLA) [510]. This system is ideal for delivering drugs to the brain. In
order to obtain the conjugated nanoparticles, the CBSA was thiolated, and then it was
covalently conjugated to the functional groups of polyethylene glycol (PEG) located on the
PEG-PLA nanoparticles via a maleimide reaction. The size of the nanoparticles produced
was between 80 and 83.5 nm on average.



Polymers 2023, 15, 3969 44 of 76

Polymers 2023, 15, x FOR PEER REVIEW 41 of 72 
 

 

based nanoparticles. HSA molecules were functionalized with the SP peptide using a 
standard reaction between a maleimide and thiol groups from albumin. PTX-loaded HSA 
nanoparticles were prepared using a desolvation method, which was stabilized by the in-
tramolecular disulfide bonds. In order to prevent rapid clearance by the immune system 
in vivo, it was determined that excessive functionalization with the targeting peptide frag-
ment could cause issues. Thus, the optimization of the functionalization degree with the 
SP peptide was achieved at approximately 50% [507]. 

The obtained SP-HSA-PTX nanoparticles, with a spherical structure and an average 
diameter of 150 nm, have a 7% drug loading degree and a 90% encapsulation efficiency. 
A minimal release of PTX molecules from the nanoparticles in PBS was observed due to 
the intermolecular disulfide bonds. Exposure to glutathione (10 mmol/L) significantly in-
creased the release rate. The cross-linked SP-HSA-PTX nanoparticles, remained stable in 
the extracellular environment, preventing drug loss and reducing toxicity in normal tis-
sues. The SP-HSA nanoparticles were found to have a better cellular uptake on BCEC and 
U87 cells than HSA nanoparticles, suggesting that both cells overexpressed the NK-1 re-
ceptors, which recognize the SP peptide. As a result, the SP peptide has a dual-targeting 
ability to bind to glioma cells and overcome the BBB [507]. 

In order to evaluate the targeting impact of nanoparticles on glioma, several albumin 
nanoparticles loaded with BODIPY were injected intravenously into mice that had devel-
oped U87-Luci cancer cell-induced tumors. The nanoparticles were then monitored using 
an in vivo imaging system. Figure 8 demonstrates that mice receiving SP-HSA-BODIPY 
functionalized nanoparticles had a more noticeable fluorescent signal in the tumor region 
within 24 h of after injection than those receiving non-functionalized HSA-BODIPY nano-
particles. Figure 8C further indicates that the group treated with SP peptide-functional-
ized nanoparticles displayed a weaker fluorescent signal in the liver than those who re-
ceived non-functionalized albumin nanoparticles, indicating a reduced liver toxicity. The 
distribution of nanoparticles in the heart, spleen, lungs, and kidneys was comparable in 
both groups [509]. 

 
Figure 8. After intravenous administration, in vivo and ex vivo distribution of HSA-BODIPY nano-
particles and SP-HSA-BODIPY NPs. Images were taken 24 h after injection (A), and 3D images were 

Figure 8. After intravenous administration, in vivo and ex vivo distribution of HSA-BODIPY nanopar-
ticles and SP-HSA-BODIPY NPs. Images were taken 24 h after injection (A), and 3D images were
taken 24 h after intravenous injection of SP-HSA-BODIPY nanoparticles (B). Representative ex vivo
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In order to evaluate the transcytosis and any potential toxicity induced on the BBB,
assays were conducted using brain capillary endothelial cells (BCECs) and astrocytes in a co-
culture model. The permeability of the BBB was measured using 14C-labeled sucrose. The
results indicate that nanoparticles caused high paracellular resistance. The BBB permeability
using the CBSA-based conjugated nanoparticles in vitro was calculated and compared to
that when using BSA-based conjugated nanoparticles. The TEER in the co-culture model
was measured at 313 ± 23 Ω.cm2. At a concentration of 200 µg/mL, the permeability of
the 14C-labeled sucrose remained the same as that of the CBSA nanoparticles, indicating
that the integrity of the tight endothelial junctions within the BBB was not affected by the
CBSA nanoparticles used. Studies have demonstrated that excessive amounts of free CBSA
can inhibit transcytosis, and nanoparticles made from CBSA have exhibited lower toxicity
toward BCECs. The cationic albumin CBSA-based nanoparticles had a permeability rate of
approximately 7.8 times higher than that of the BSA-based nanoparticles [510].

Table 2 presents a list of albumin-based delivery systems that can be used to treat
brain tumors by overcoming the BBB. This table also highlights the key features of each
delivery system.
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Table 2. Functionalized albumin-based nanoparticles that overcome the BBB.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

Nanoparticles based on BSA (BSA
Nps) were cross-linked using

glutaraldehyde (GA), and then the
temozolomide (TMZ) was

encapsulated [511,512].

Desolvation 167–261

Using EDC and NHS,
carbodiimide chemistry was

employed to conjugate
hyaluronic acid (HA) or

chondroitin sulfate to
BSA-based nanoparticles.

Targeting through the CD44
receptor.

In vitro tests show that BSA-based
nanoparticles can overcome the BBB and
inhibit U87 MG cell growth. Moreover,
these nanoparticles also stimulate the
production of reactive oxygen species
inside the tumor cells.

Their uptake is facilitated through
endocytosis, specifically the caveolae
pathway. The CD44 receptor is
responsible for directing the
nanoparticles to the tumor site.

In vivo studies show improved
pharmacokinetics and brain
accumulation of TMZ-loaded
nanoparticles compared to the free drug.

The biodistribution studies on
TMZ-loaded BSA-based nanoparticles
revealed a greater concentration of TMZ
in the brain, while its levels in important
organs like the liver and lungs were
notably reduced.



Polymers 2023, 15, 3969 46 of 76

Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

Albumin nanoparticles having
encapsulated LY2157299 that inhibit
the TGF-β I receptor (TGFβRI) and

celastrol, an mTOR pathway
inhibitor

[513].

Emulsion 126.8 DCDX (cgreirtgraerwsekf)
mixed with albumin.

Nicotinic acetylcholine
receptors.

Biomimetic nanoparticles can repolarize
tumor-associated macrophages (TAMs)
from the M2 to M1 phenotype by
inhibiting the STAT6 pathway,
decreasing TGF β1 secretion, and
causing cell apoptosis.

It was found that the treatment
effectively blocked the TGF-β/SMAD2
signaling pathway. Moreover, the use of
nanoparticles significantly increased the
survival rate and reduced the proportion
of M2-type TAMs, TGF-β1, and lactic
acid levels in glioma tissues.

Nanoparticles based on HSA that are
cross-linked with GA and contain
encapsulated acidic temozolomide

(TMZA) [514].

Desolvation 111.7–177.5 - Uptake/accumulation in
cells.

The optimized nanoparticles contain
4 mg of TMZA with 0.05% sodium
cholate, resulting in a 111.7 nm size and
5.5% loading degree.
The nanoparticles did not cause a
decrease in cell viability, and the drug
release from them was quite rapid. The
optimized nanoparticles demonstrated a
remarkable cellular uptake after being
incubated with glioblastoma cell line
GL261 and BL6 brain cancer stem cells
for 24 h.
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Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

BSA-based nanoparticles
cross-linked with GA containing

co-encapsulated two drugs, PTX, and
chloroquine diphosphate salt (CQ)

(autophagy inhibitor)
[515].

Desolvation 51–53

Folic acid conjugation on
nanoparticle surfaces can be
achieved through a reaction

with carbodiimides DCC
(N,N′-

dicyclohexylcarbodiimide)
and NHS

(hydroxysuccinimide).

Mechanism of autophagy
inhibition.

In vitro, the combination of PTX and CQ
therapy resulted in a higher occurrence
of cell apoptosis than treatment with
PTX alone.

Encapsulated PTX caused the
overexpression of cancer stem genes
(SOX2, POU5F1, and NANOG) in glioma
cells. But using nanoparticles containing
chloroquine decreased their expression.
Autophagy is significant in this process.

Out of all the delivery systems, the one
containing two co-encapsulated drugs
was the most effective in inducing
cell apoptosis.

Drug delivery systems based on
cationic HSA and HSA modified

with mannose having doxorubicin
encapsulated [516].

High-pressure
homogenization

technique.
90.5 ± 3.1

In order to obtain cationic
HSA, ethylenediamine was
linked to HSA through an

EDC reaction. Additionally,
HSA was modified with

mannopyranoside using a
thiol-maleimide reaction.

The nanoparticle uptake
mechanism uses dual cationic

absorptive transcytosis
through the glucose
transporter pathway.

The doubly modified nanoparticles
exhibited the highest efficiency level in
terms of transportation through the
bEnd3 mouse endothelial cell monolayer
and in U87MG glioblastoma cells.

The c/m-HSA nanoparticles showed a
higher level of localization in cerebral
glioma than the native
HSA-based nanoparticles.

The enhanced effectiveness in treating
glioma appeared to result from a system
combining dual cationic absorptive
transcytosis and glucose transportation
using both c- and m-HSA.



Polymers 2023, 15, 3969 48 of 76

Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

Album lipid nanoparticles with
encapsulated docetaxel [517]. Desolvation 110.1± 40.2

Enhanced permeation and
retention effect (EPR).

The lethal dose of albumin lipid
nanoparticles containing docetaxel was
found to be 180.6 mg/kg, which is 75.3%
higher than that of Taxotere®.

The obtained nanoparticles have been
proven to be effective in preventing the
proliferation of several cell lines, such as
U87, A549, Raw 264.7, and bEnd.3, and
can even induce cell apoptosis.

In addition, when used in vivo, imaging
has shown that docetaxel, which is
encapsulated in albumin lipid
nanoparticles, can be located and
accumulated at the glioma site. This
delivery system can inhibit tumor
growth and prolong the median survival
time in mice.

Doxorubicin was encapsulated
within PLGA nanoparticles that were
coated with dendrimers that contain

cationized albumin [518].

Reaction with
carbodiimide (EDC). 156 ± 10.85

EDC reacts with BSA’s
carboxyl group to generate a

reactive O-acylisourea
intermediate that rapidly

reacts with the dendrimer’s
amino group to create an

amide bond.

The anticancer mechanism
through caspase-mediated

apoptosis.

The release of doxorubicin encapsulated
in nanoparticles depends on the pH,
reducing the hemolytic toxicity and
increasing the drug uptake into the cells.
The ex vivo test results show that the
nanoparticles lead to cytotoxicity in
U87MG glioblastoma cells and an
increase in the expression of the
caspase-3 gene (about 5.35 times),
resulting in an anticancer effect.
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Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

HSA-based nanoparticles in which
PTX was encapsulated [519].

NAB technology 140
The mechanism that inhibits

gene expression in
glioblastoma cancer cells.

Researchers conducted a study to
investigate the impact of combining
miR-34a with albumin-bound PTX
nanoparticles on anti-tumorigenesis in
glioblastoma cell line U251. The results
indicated a significant decrease in cell
viability when miR-34a was combined
with albumin-bound PTX nanoparticles.

Furthermore, the treatment of U251 cells
with miR-34a and PTX-containing
nanoparticles led to a considerable
inhibition in SURVIVIN gene expression
compared to those treated with miR-34a
alone or drug-free nanoparticles.

Encapsulation of aclarubicin in
cationic BSA-conjugated PEG

nanoparticles surface [520].
Emulsion (o/w) 50–58

Maleimide is used to react
with thiolated PEG

nanoparticles to graft cationic
BSA onto their surface.

The treatment mechanism
involves opening the TJs in
the BBB and accumulating

the nanoparticles at the
tumor site.

Cationic BSA-conjugated PEG
nanoparticles labeled with 6-coumarin
(fluorescent probe) accumulate more in
tumor mass than unconjugated ones 24 h
post-intravenous injection.

Functionalized nanoparticles released a
higher drug concentration in the tumor
than non-functionalized nanoparticles or
the free drug one hour and 24 h after
administration. The drug concentration
increased by 2.6–3.3 times after one hour
and 2.7–6.6 times, respectively, after 24 h.

After administering cationic
BSA-conjugated PEG nanoparticles
containing aclarubicin to rats, in vivo, tests
indicated an increase in their survival rates.

Encapsulating the drug in nanoparticles
helps to reduce its toxicity.
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Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

BSA-based nanoparticles
cross-linked with GA containing the

encapsulated drug imatinib [521].
Desolvation 80–90

Inhibition of receptors such
as c-Kit and PDGFR that are

overexpressed in
glioblastoma.

The study found that the HSA-based
nanoparticles had a high encapsulation
efficiency percentage of 98% and a drug
loading degree of 6.9%.

HSA nanoparticles with an encapsulated
drug concentration of 40 mg/mL had
90% cytotoxicity on U87MG
glioblastoma cells, while the free drug
had 55%.

BSA-based nanoparticles labeled
with a fluorescent dye [522].

Nanoprecipitation,
ultrasonication.

100–200

BSA was conjugated with
borneol using the

carbodiimide reaction
method with EDC and NHS.

Menthol-modified
nanoparticles were

internalized into cells via a
temperature-dependent
active mechanism and a

caveolae-mediated
endocytosis mechanism.

BSA-based nanoparticles modified with
menthol had better brain targeting and
were more efficient in overcoming the
BBB than other BSA-based nanoparticles
modified with different ligands, as
shown in in vivo imaging tests.

Ketone carbonyl muscone can
be linked to BSA through

reductive Borch amination.

The BSA functionalized with borneol
resulted in obtaining nanoparticles with
increased permeability through the BBB
due to improved lipophilicity, increased
endocytosis, and reduced expression of
proteins associated with TJs.

Para-mentha-8-thiolone is
used as a menthol analog to
couple with BSA using the

reaction with 2-iminothiolane
hydrochloride.

Menthol-modified nanoparticles can be
uptaken from the bloodstream and could
enter into the pineal gland, a more
efficient drug delivery pathway to the
brain than the one mediated by the
transferrin receptor.

The T7 peptide was
conjugated to BSA using the
identical method utilized for

the menthol.
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Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

Nanoparticles based on BSA that
contain encapsulated doxorubicin

[523].
Desolvation 100–200

The surface of BSA-based
nanoparticles was modified

by grafting mPEG2000 to the
free amino groups within the

protein. Additionally,
lactoferrin was attached to

the surface of the
nanoparticles through

electrostatic bonds.

The accumulation of
BSA-based nanoparticles in
tumors occurs through the
EPR effect and transcytosis,
which is mediated by the
low-density lipoprotein
receptor. Lactoferrin can

interact with this receptor to
facilitate the transcytosis

process.

When the quantities of mPEG2000 and
lactoferrin were increased, it resulted in
an increase in the size of the
nanoparticles while causing a decrease
in the zeta potential.

The study conducted on healthy rats
revealed that nanoparticles based on
mPEG2000-modified BSA had a longer
circulation time in vivo.

Nanoparticles modified with a high
amount of lactoferrin and mPEG2000
showed the strongest cytotoxicity and
the highest internalization efficiency on
both BCEC and C6 cell lines, improving
the dual-targeting effects.

The biodistribution of doxorubicin
encapsulated in different formulations
showed that lactoferrin-modified
nanoparticles were able to cause a
notable accumulation of doxorubicin in
brain tissue, particularly 2 h after
injection (with a significance level of
p < 0.05).
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Table 2. Cont.

Type of Drug Delivery System Obtaining
Methods

Diameter
(nm) Functionalization

Mechanism of Action on the
Tumor and Overcoming

the BBB

Specific Features of the Drug
Delivery System

Albumin/poly(2-
methacryloyloxyethyl

phosphorylcholine)-based
nanoparticles loaded with TMZ [524].

In situ free radical
polymerization

method.
8.72–32.67

Albumin nanoparticles with
synaptic acid extracted from

mustard conjugated on
their surface.

Internalizing nanoparticles
conjugated with synaptic acid
in cells requires energy and

causes a temporary
disruption of TJ proteins,

P-gps, and claudin-5.

The functionalized nanoparticles
obtained are biocompatible and are able
to overcome the BBB.

The delivery systems that have been
modified with encapsulated drugs
effectively induce cell apoptosis at the
tumor site. They have also been shown
to increase the survival time of mice
with glioma.

Nanotheranostic probes based on
albumin and catalase (catalase

integrated into phototheranostic
nanoprobe with biomimetic albumin)

[525].

Desolvation
54.14 ± 5.17

×
14.36 ± 1.34

Protein-mediated transport.

The development of a
catalase-integrated biomimetic albumin
phototheranostic probe used to perform
multimodal imaging, amplify
phototherapy, and guide surgery for
glioma after overcoming the BBB,
accumulating in invasive glioma by
binding albumin to overexpressed
proteins, was reported.

The nanoprobe could effectively induce
local hyperthermia and increase the level
of singlet oxygen based on the
attenuated hypoxic glioma
microenvironment by decomposing
endogenous hydrogen peroxide into
oxygen to enhance phototherapy.

Glioma growth is significantly inhibited,
survival time is prolonged, tumor
hypoxia is attenuated, apoptosis is
enhanced, and anti-angiogenesis effects
have been demonstrated in several
animal models with a low toxicity for
normal tissue.
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15. Clinical Trials

Nanocarriers show promise in treating brain tumors, but no new nano-drug has been
approved yet for brain tumor therapy. New nanomedicines have a low approval rate (less
than 10%) due to safety and efficacy issues in preclinical and clinical trials. Regulatory
agencies require manufacturers to conduct thorough preauthorization studies to assess new
nanomedicines’ quality, safety, and efficacy. However, finding suitable preclinical models
that accurately represent human conditions is a major challenge that impedes the clinical
translation of nanomedicine [44].

There is ongoing and consistent research on the advancement of albumin-based
nanoparticles to treat brain cancer. Researchers are exploring alternative administration
methods aside from intravenous, and discovering new applications for diagnostic purposes.
Currently, clinicaltrials.gov only lists two clinical trials related to using albumin nanoparti-
cles in treating glioblastoma. Albumin-bound Abraxane, or PTX, is the first albumin-based
delivery system to have undergone clinical trials. Abraxane utilized albumin’s natural
affinity for hydrophobic drugs to encapsulate PTX at multiple sites within its structure [304].
Albumin–drug interactions are hydrophobic and do not involve covalent bond formation.
However, there may be some cross-linking degree between albumin molecules on the
nanoparticle surface [304]. The nanocomplexes are typically 130 nm in diameter, and hy-
drophobic interactions are generated through a synthetic process involving high-pressure
homogenization. This process involves mixing drug and albumin molecules in an aqueous
solution and then subjecting the mixture to high pressure as it passes through narrow
spaces in a homogenizer [526].

Abraxane is a medication that not only provides a safer formulation for PTX but also
offers significant benefits in terms of pharmacokinetic properties, rapid drug distribution,
and an increased volume of distribution. This is achieved by taking advantage of the EPR
effect. It is worth noting that the degradation of the complex in the bloodstream happens
quickly and can result in single albumin molecules bound to PTX. Endothelial receptors
like gp60 can regulate albumin transport, promoting the caveolae-mediated translocation
of albumin from the blood vessels’ lumen to the subendothelial space. The FDA and
EMA have approved Abraxane for various types of cancer, including metastatic breast
cancer [527], locally advanced or metastatic non-small-cell lung carcinoma (NSCLC) [304],
and the first-line treatment of metastatic pancreatic adenocarcinoma [252]. Clinical inves-
tigations on pancreatic cancer focused on the cysteine-rich secreted protein acid SPARC,
which confirmed a correlation between Abraxane and SPARC expression [528–531]. Clinical
trials (phases 3 and 4) have demonstrated that Abraxane is more effective when combined
with other drugs, such as atezolizumab, GEM (gemcitabine), and carboplatin against triple-
negative breast cancer; with GEM against pancreatic cancer [532] and melanoma [533]; and
with carboplatin against NSCLC [534]. However, when combined with bevacizumab, seri-
ous side effects were recorded [535–540]. Abraxane also enhances the effects of biological
therapy, such as the TLR-7 immune modulator activator imiquimod [541,542]. Additionally,
Abraxane was tested against non-Hodgkin’s lymphoma [543], with the delivery system
covalently coated with rituximab to induce toxicity to CD20-positive cancer cells [544].

Nab-Rapamycin, also known as Abi009, uses the technology from Abraxane to inhibit
mTOR, affecting cancer cell viability. Encapsulation in albumin complexes has proven
to be effective in delivering highly hydrophobic molecules in this case, and the same
approach can be used to deliver other drugs with similar physical and chemical properties
and mechanisms of action. The studies that have been conducted so far have only been
tested against advanced carcinomas with mTOR mutations. The aim was to evaluate non-
toxic doses of AB009 to treat bladder cancer in phase 1/2 trials. All conditions that were
tested displayed a good tolerability [545]. There are ongoing trials to test the effectiveness
of ABI009 alone or in combination with other drugs against sarcoma [546] and various
pediatric solid tumors, such as central nervous system cancer [547]. Researchers have
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also tested albumin nanoparticles loaded with sirolimus, an mTOR inhibitor, against
glioblastoma [548].

A new device with ultrasound emitters was implanted in patients with recurrent
glioblastoma during the surgical resection of the recurrent tumor. The device temporarily
and reversibly opened the BBB before chemotherapy perfusion with albumin-bound PTX.
The concentration of the drug was measured in different parts of the removed tumor.
Carboplatin was administered together with albumin-bound PTX to certain patients who
participated in this phase I clinical trial. This study aimed to determine a safe and efficient
dosage for albumin-bound PTX, examine the effect of BBB opening on PTX concentration in
tumors, and estimate the effectiveness of this treatment in reducing tumor size and extend-
ing life. The BBB can be opened using low-intensity pulsed ultrasound and intravenous
microbubbles (LIPU-MB). MRI was utilized to investigate the opening of the BBB before
and after sonication. The study was conducted for a total of 11.89 months. Some patients
experienced side effects such as encephalopathy and grade 2 peripheral neuropathy due to
dose-related toxicity at 260 mg/m2. BBB opening caused by LIPU-MB was often linked to
mild to moderate headaches that were temporary in nature, affecting 71% of patients. The
most frequent adverse events during ultrasound treatment were neutropenia, leukopenia,
and hypertension, affecting 47%, 29%, and 29% of patients, respectively. After conducting
pharmacokinetic analyses, it was found that LIPU-MB increased albumin-bound PTX or
carboplatin concentrations in the brain tissue. This was achieved using the implantable
ultrasound device in the skull that temporarily opened the BBB, allowing for the safe and
repeated delivery of cytotoxic drugs (such as PTX or carboplatin) into the brain. As a result,
the average concentrations of these drugs in the brain tissue increased. The success of this
study led to a phase 2 trial combining LIPU-MB with albumin-bound PTX and carboplatin,
which is currently ongoing [549].

16. Conclusions and Perspectives

The most prevalent type of brain cancer is GBM, which is known to be aggressive and
invasive. To treat GBM, patients typically undergo surgical resection, radiation therapy,
and chemotherapy. However, the main challenge in administering drugs for treating GBM
is the BBB. This review detailed the primary mechanisms that enable drugs to cross the
BBB: transporter-mediated transcytosis and receptor-mediated endocytosis. The BBTB
is formed only when clusters of tumor cells grow to a specific volume, and the BBB
deteriorates. This literature review focused on understanding the factors that influence the
passage of drug molecules through the BBB. It was established that the overexpression of
various proteins plays a crucial role in drug diffusion. A drug’s physicochemical properties,
such as lipophilicity, hydrogen bond formation, size, and surface charge, as well as the
protein binding capacity, cerebral blood flow, clearance, and barrier integrity, are essential.
Several research papers have shown that serum albumins can bind specifically to 60 kDa
glycoprotein (gp60), leading to its uptake into cancer cells through transcytosis.

Additionally, serum albumins can bind to SPARC (an acidic and cysteine-rich protein)
and prevent the efflux mechanisms of the drug, leading to a better absorption of nanopar-
ticles in the tumor. Also, the significance of the neonatal Fc receptor in prolonging the
half-life of drugs encapsulated in albumin-based delivery systems was highlighted, and the
specific domains within albumin where the neonatal Fc receptor interacts were discussed.
The main site of interaction in albumin with FcRn is domain DIII. If this region undergoes
a mutation, it could lead to the formation of a hydrophobic interface and a diminished
interaction with the receptor. This literature review briefly discusses some techniques for
preparing albumin nanoparticles. A major drawback of cross-linking albumin nanoparticles
is the utilization of GA. GA can lead to severe hematological side effects and bind to a
drug’s functional groups, which cannot be released at the therapeutic dose in the tumor site,
determining inadequate chemotherapy. Albumin nanoparticles have amine, carboxylic,
and thiol functional groups. They can be modified with various ligands to achieve specific
properties like improved stability and prolonged systemic circulation. These nanoparticles
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can also target specific receptors for transport through the BBB, or accumulate in the tumor.
Using albumin nanoparticles is a promising method for treating human glioblastoma.
These nanoparticles are up to 200 nm in size and can encapsulate drugs, genes, growth
factors, or inhibitors for the receptors present in various tumor signaling pathways. To
improve the stability of nanoparticles and the efficacy of the drugs involved, further in vitro
and in vivo studies are needed. Albumin is a promising candidate for the conjugation of ra-
diopharmaceuticals and for coating magnetic nanoparticles that are used in the theranostic
field. It can provide biocompatibility, prolonged blood circulation time, immunogenicity,
and low toxicity. A supplementary analysis of the cytotoxicity of magnetic particles is
required because most of the research has been conducted on cell lines using the MTT
assay. In order to ensure the stability of the plasma and avoid the formation of reactive
oxygen species, it is essential to assess the impact of magnetic nanoparticles. It is also rec-
ommended to use multiple cell lines for the MTT assay. Developing theranostic platforms
using albumin-coated magnetic nanoparticles or albumin-conjugated radiopharmaceuticals
is a challenging goal. These platforms should contain various therapeutic agents that can
be used for both magnetic resonance and fluorescence imaging for diagnosing and treating
drug-resistant brain tumors.

In order to improve the targeting of brain tumors, drug delivery systems should
be optimized with ligands that are specific to the receptors that are overexpressed in
these tumors. This approach will prevent non-specific toxicity and ensure the safety of
nanomedicine. While the FDA has approved albumin nanoparticles with PTX (Abraxane)
for treating other types of cancer, this treatment option has not yet received approval
for brain cancer. Research has demonstrated that albumin-based nanoparticles have the
potential to overcome the BBB and effectively target brain tumors. However, clinical
trials are necessary to translate these findings into improved chemotherapy treatments for
glioblastoma multiforme (GBM), ultimately enhancing patient survival.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym15193969/s1: Figure S1. Schematic illustration of albumin
nanoparticle synthesis using the desolvation/coacervation method. Figure S2. The schematization of
the method used for obtaining nanoparticles based on HSA through the reduction and desolvation
method [284]. Figure S3. Obtaining nanoparticles via thermally induced aggregation. Figure S4. The
schematization of the emulsion technique used for obtaining nanoparticles. Figure S5. Schematic of
the method of obtaining nanoparticles via self-assembly. Figure S6. The schematization of the method
used for obtaining albumin nanoparticles via spray-drying. Figure S7. Schematic representation of the
flow system, including the pumps and the µ-mixer cell used to obtain the albumin nanoparticles [301].
Figure S8. Schematization of NAB technology. Preparation of nanoparticles [310].
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331. Zhang, S.; Doschak, M.R.; Uludağ, H. Pharmacokinetics and bone formation by BMP-2 entrapped in polyethylenimine-coated
albumin nanoparticles. Biomaterials 2009, 30, 5143–5155. [CrossRef]

332. Zhang, S.; Kucharski, C.; Doschak, M.R.; Sebald, W.; Uludağ, H. Polyethylenimine–PEG coated albumin nanoparticles for BMP-2
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