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Abstract: The thermal decomposition product of magnesium hydroxide (MH) is magnesium oxide
(MgO), which serves as the foundational material for fireproof layer construction in the condensed
phase. However, the weak interaction force between particles of MgO generated by thermal decompo-
sition leads to the insufficient strength and poor adhesion ability of the fireproof layer. The fireproof
layer was easily damaged and detached in this study, resulting in the low flame-retardant efficiency
of MH. In this work, polycarbosilane (PCS) and divinyl benzene (DVB) were used to modify MH, and
EVA/MH/PCS/DVB composites were made via melt blending. The flame-retardant properties of
EVA/MH/PCS/DVB were evaluated using the limiting oxygen index (LOI), vertical combustion (UL-
94), and a cone calorimeter (CONE). The thermal stability of the composites and flame retardants was
analyzed using a thermogravimetric analyzer. The char layer structure was observed and analyzed
using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively.
The results indicate that the LOI of the EVA/MH/PCS/DVB with 50 wt.% flame retardants in total
was as high as 65.1, which increased by 160% in comparison with EVA/MH. Furthermore, the total
smoke production (TSP) of the EVA/MH/PCS/DVB composite decreased by 22.7% compared to
EVA/MH/PCS; the thermal stability of the MH/PCS/DVB and EVA/MH/PCS/DVB improved to
some extent; and the compact residual char after the combustion of EVA/MH/PCS/DVB had fewer
cracks due to the adhesive effect induced by PCS/DVB.

Keywords: ethylene–vinyl acetate copolymer; magnesium hydroxide; polycarbosilane; divinylben-
zene; cone calorimeter; total smoke production

1. Introduction

Ethylene–vinyl acetate copolymer (EVA) is a thermoplastic resin made from ethylene
and vinyl acetate [1] that has lower crystallinity due to the vinyl acetate monomer (VA) in
its molecular chains. EVA is widely used in the wire and cable industry for its excellent
weather resistance, elasticity, and electrical insulation [2–4]. However, it is essential to note
that EVA has a lower limiting oxygen index (LOI) of only 17.9, making it highly flammable.
Moreover, the combustion process of EVA produces toxic gases such as CO [5]. Therefore,
it is necessary to improve the flame retardancy of EVA; adding flame retardants can
effectively reduce the flammability of EVA [6]. In terms of green, environmentally friendly,
and sustainable development, halogen-free, non-toxic, and low-smoke flame retardants
have become a research hotspot in the field of flame retardancy in recent years [7].

The preparation and application of the inorganic flame retardants represented by MH
and alumina trihydrate (ATH) [8] have no impact on the environment compared with
halogen-based and phosphorous-based flame retardants, which aligns with the current
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research direction of flame retardants [9]. The thermal decomposition of MH mainly
occurs at 350 ◦C~400 ◦C, which can suppress the surface temperature increases in the
composites. The generated water vapor can dilute the concentration of combustible gas,
and the generated magnesium oxide covering the surfaces of the composites could hinder
the heat and mass transfer between the gas phase and the condensed phase [10]. In
consideration of the flame-retardant mechanism of MH, it is necessary to add certain
amounts of flame retardants to achieve the desired flame-retardant effect. However, an
excessive addition will deteriorate the mechanical properties of the composites. The
problem of attaining high-efficiency, halogen-free, and low-smoke EVA composites still
urgently needs to be solved [11].

To improve the flame-retardant effect of MH, researchers have conducted extensive
research, including the preparation of nanoscale MH [12,13]; the modification of MH,
such as using melamine cyanurate [14], cyano trimethylene triphosphate [15], triethoxysi-
lane, and polymethyl vinyl silicone rubber [16]; and the use of multi-element synergistic
flame-retardants such as hexa (4-boric acid phenoxy) cyclophosphamide [17], cellulose
nanofiber [18], expandable graphite [19], carbon black [20], silicone rubber [21], zinc bo-
rate [22], montmorillonite [23], silicon dioxide [24], graphene [25], carbon nanotubes [26],
and hollow glass microspheres [27]. Based on the flame-retardant mechanism of MH and
the self-sustaining combustion cycle theory, the carbon layer formed by the accumula-
tion of magnesium oxide particles has a crucial impact on the combustion behavior of
materials; therefore, the strength and density of the carbon layer are critical factors in the
flame-retardant mechanism of the condensed phase [28,29].

Polycarbosilane is an ideal precursor for preparing silicon carbide ceramic materials.
The molecular structure of PCS is mainly composed of three primary substructures, namely,
the ideal Si-C linear (L) units, six-membered Si-C monocyclic (SR) units, and Si-C condensed
ring (CR) units [30]. Based on previous research by our group, we have reported the
significant flame-retardant effect of PCS in collaboration with MH in polyethylene [31,32]
and ethylene–vinyl acetate [11] copolymers. The physical barrier effect of the carbon layer
had an outstanding improvement. However, the smoke production increased due to the
small-molecule silane gas release generated by PCS degradation; for example, the smoke
production of EVA/MH composites with 2 wt.% PCS increased by 45%, and adding 3%
increased smoke production by 59%. To improve the ceramic yield of PCS, divinyl benzene
(DVB) is usually used as a cross-linking agent [33]. In view of this, the modification of
MH with PCS and DVB (MH/PCS/DVB) was prepared, and the flame retardancy and
combustion behaviors of the flame-retardant EVA composites were studied. It was expected
that PE/MH/PCS/DVB composites would enhance the flame-retardant properties while
effectively inhibiting smoke release, thus improving the fire safety of the composites and
providing an effective means of preparing high-performance composites, especially for
wires and cables.

2. Materials and Methods
2.1. Materials

Commercial ethylene–vinyl acetate copolymer (EVA, 7470m, 26 wt.% vinyl acetate,
melt flow index: 4.0 g/10 min) was supplied by Formosa Plastics Co., Ltd., Ningbo, China.
Magnesium hydroxide (MH, 5-C) was obtained from Dandong Songyuan Chemicals Co.,
Ltd., Dandong, China. Polycarbosilane (PCS) with a relative molecular mass of 1320 and
99% purity was sourced from Suzhou Sailifei Ceramic Fiber Co., Ltd., Suzhou, China.
Divinylbenzene (DVB) with a 55% mixture of isomers was purchased from Shanghai
Mcllean Biochemical Co., Ltd., Shanghai, China.

2.2. PCS Cross-Linking Degree Test

PCS and DVB were dissolved in a xylene solution in specific proportions, and the
resulting solution was placed in a drying oven at 120 ◦C for 4 h to obtain solid samples.
These solid samples were then wrapped with filter paper and metal mesh before being
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submerged in a boiling xylene reagent for reflux extraction for 30 min. During the reflux
extraction process, PCS and DVB without cross-linking were dissolved in a xylene solution.
The mass of the samples before and after extraction was accurately measured to determine
the gel content, which was expressed as the percentage of residual mass after extraction
compared to the initial sample mass. The cross-linking degree was characterized based on
the gel content.

2.3. Preparation of MH/PCS/DVB

PCS and DVB were weighed with a mass ratio of 2:1 and dissolved in a xylene solvent
to obtain a PCS/DVB solution. The prepared PCS/DVB solution was added drop by drop
to MH and mixed at a high speed of 25,000 rpm/min for 2 min using a multi-functional
grinder. After thorough mixing, the mixture was dried in an oven at 100 ◦C for 4 h. The
same method was used in the preparation of MH/PCS. The MH/PCS/DVB preparation
process is illustrated in Figure 1.
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Figure 1. Synthesis process of MH/PCS/DVB.

2.4. Preparation of Composites

The composites were prepared using a torque rheometer (Harbin Hapro Electric
Technology Co., Ltd., Herbin, China). The flame retardant and EVA were melt-mixed at
130 ◦C for 5 min using the compositions shown in Table 1. Subsequently, the mixtures
were pressed and molded using a flatbed vulcanizing machine (JB-25, Shanghai Jiubin
Instrument Co., Ltd., Shanghai, China) at 130 ◦C and 10 MPa for 3 min, with the samples
measuring 100 mm × 100 mm × 3 mm. It is important to note that EVA/MH/PCS/DVB
was compared with EVA/MH/PCS+DVB, where DVB was added during the melt blending
process.

Table 1. Compositions of the EVA composites.

Samples EVA
(wt.%)

MH
(wt.%)

PCS
(wt.%)

DVB
(wt.%)

EVA/MH 50 50 0 0
EVA/MH/PCS 50 47 3 0

EVA/MH/PCS/DVB 50 47 2 1
EVA/MH/PCS+DVB 50 47 2 1

2.5. Characterization

The water contact angle test used the SZ-CAMA1 equipment from the Shanghai
Xuanzhun Instrument Company (Shanghai, China). Before the test, the tablet press was
used to maintain the pressure at 10 MPa for 5 min and press the sample into the shape of a
round cake. The sample was then gently placed on the equipment to test its contact angle
with 4 µL water droplets.
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X-ray diffraction (XRD) was conducted on a diffractometer (X’PeRT PRO, PANalytical,
Almelo, The Netherlands) with Cu Kα (1.5406 A), a test resolution of 4 cm−1, and a scanning
range of 5–80◦.

Fourier transform infrared spectroscopy (FTIR) was performed using the NICOLET
iS10 infrared spectrometer manufactured by Thermo Fisher Scientific, Waltham, MA, USA.
The spectral range was 4000~400 cm−1, and the highest resolution was 0.4 cm−1. The test
resolution was 4 cm−1 with 16 scans. The solution of the test was 4 cm−1.

The limiting oxygen index (LOI) test was performed using an oxygen index meter
(HC-2, Jiangning Analysis Instrument Company, Nanjing, China) with samples measuring
120 mm × 6.5 mm × 3 mm according to the ASTMD 2863-97 standard [34].

A UL-94 vertical burning test was carried out using a CZF-III vertical burning tester
(Jiangning Analysis and Instrument Company) with samples measuring 127 mm × 127 mm
× 3 mm according to the ASTMD 3801 standard [35].

The combustion behaviors were evaluated according to ISO 5660-1 [36] on a CONE
calorimeter (6810, Suzhou Yangyi Voucu Testing Technology Co., Ltd., Suzhou, China)
with 35 kW/m2 heat flux. Various parameters such as the heat release rate (HRR), total
heat release (THR), total smoke release (TSP), and mass loss (MASS) were obtained via the
CONE test.

A TGA 4000, produced by the PerkinElmer Company of the United States (Waltham,
MA, USA), was used for a thermogravimetric analysis. The test atmosphere was nitrogen,
the heating rate was 10 ◦C/min, and the test temperature range was 50–800 ◦C.

The surface elemental compositions of the char residues were analyzed via X-ray
photoelectron spectroscopy (XPS) on a PHI Quantera-II SXM (Ulvac-PHI, Chigasaki, Japan).

Scanning electron microscopy was carried out using the FEI200 scanning electron
microscope of the FEI Company, Eindhoven, the Netherlands and the EDAXGenesis2000
energy spectrometer component.

3. Results and Discussion
3.1. Cross-Linking Degree of PCS/DVB

The Si-H bond exhibits the weaker bond energy (303.8 KJ/mol) in the structure of PCS.
The cross-linking behavior of PCS can be conducted by vinyl groups in DVB by self-cross-
linking through dehydrogenation. DVB itself can also undergo self-polymerization [37].
The gel content of PCS/DVB is shown in Figure 2a. No gel was left after 4 h at 120 ◦C for
PCS and DVB, which indicates no cross-linking at the temperature of 120 ◦C after 4 h. It
is worth noting that DVB quickly evaporates and depletes at this temperature, while the
gel content of the homogeneous mixture of PCS and DVB was outstanding, suggesting a
cross-linking reaction between PCS and DVB. The gel content was as high as 81.2% at the
mass ratio of PCS to DVB of 1:0.5. In comparison, the gel contents of the other three were
much lower than 81.2%, indicating that when the DVB content is low, the cross-linking
between PCS molecular chains is linked by the DVB, while at the higher DVB content,
there is a greater chance of DVB molecules meeting, leading to self-cross-linking and
depletion, which result in inefficient cross-linking of PCS by DVB. Therefore, in this work,
the PCS-to-DVB mass ratio was 1:0.5 for the subsequent tests.

The FTIR spectra of DVB, PCS, and PCS/DVB are shown in Figure 2b, and detailed
information is given in Table 2. For DVB, the absorption bands at 3100~3000 cm−1 and
3000~2850 cm−1 are attributed to the stretching of C-H in benzene and the stretching of
C-H in methylene, respectively. The absorption bands at 910 cm−1 ~700 cm−1 are attributed
to the out-of-plane bending of C-H in benzene, while the absorption peak at 989 is the out-
of-plane bending of C-H in vinyl. For PCS, there are three absorption peaks at 2100 cm−1,
1250 cm−1, and 830 cm−1, which are attributed to the stretching of Si-H, the deformation of
Si-CH3, and the stretching of Si-C in PCS, respectively.
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Figure 2. (a) The gel content of PCS/DVB after 4 h at 140 ◦C. (b) The FTIR spectra of DVB, PCS, and
PCS/DVB.

Table 2. The FTIR absorption peaks and vibration modes of PCS, DVB, and PCS/DVB.

Bond Vibration Mode
Wave Number (cm−1)

PCS DVB PCS/DVB

C-H in benzene Stretching -- 3087, 3058, 3006 3015
C-H in -CH2- Stretching 2955, 2895 2966, 2930, 2873 2922

Si-H Stretching 2100 -- 2100
C=C in -CH=CH2 Stretching -- 1630 --
C=C in benzene Skeleton vibration -- 1595, 1577, 1510,1480 1595,1500, 1445

C-H Bending in plane 1410,1359 1400 1410, 1359
Si-CH3 Deformation 1250 -- 1250

Si-O Stretching 1020 -- 1020
C-H in -CH=CH2 Bending out of plane -- 989 1000
C-H in benzene Bending out of plane -- 906, 844, 800, 707 890, 709

Si-C in Si-CH2-Si Stretching 830 -- 830

In comparison with PCS and DVB, the FTIR curve of PCS/DVB contains both PCS
and DVB absorption behaviors, such as the absorption peaks at 3015 cm−1, 1595 cm−1,
1500 cm−1, 1445 cm−1, 1410 cm−1, and 1359 cm−1 resulting from DVB, while the absorption
peaks at 2100 cm−1, 2150 cm−1, and 830 cm−1 result from PCS. It is worth noting that
the C=C absorption peak at 1630 cm-1 disappears, the absorption peak intensity of Si-H
at 2100 cm−1 and Si-CH3 at 1250 cm−1 decreases, and the Si-H group is depleted, which
indicates cross-linking behavior between PCS and DVB.

3.2. Properties of MH/PCS/DVB

Tests of the microstructure, surface polarity, X-ray diffraction behavior, and thermod-
egradation of MH/PCS/DVB were conducted to reveal the properties of MH/PCS/DVB.
The microstructure of MH/PCS/DVB and the distribution of Mg and Si are shown in
Figure 3. MH/PCS/DVB maintains the hexagonal platelet-shaped and homogeneous
distribution of Mg and Si on the surface, which indicates good surface coating of MH by
PCS.
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Figure 3. The morphology of MH/PCS/DVB (a) and element distributions of Mg (b) and Si (c).

The X-ray diffraction pattern (a) and the FTIR absorption spectrum (b) of MH/PCS/DVB
are shown in Figure 4. In comparison with MH, no new diffraction peak emerged in the
diffraction pattern of MH/PCS/DVB (Figure 4a), but there was a noticeable change in the
diffraction peak intensity of the (101) lattice plane. The lattice plane (001) of MH exhibited
weak polarity, whereas the (101) lattice plane was composed of Mg2+ with solid polarity. Thus,
the polarity could be analyzed using the ratio of the diffraction peak intensities of the (001)
and (101) lattice planes [10]. The I001/I101 ratios of MH and MH/PCS/DVB were 0.65 and
0.94, suggesting that the surface polarity of MH/PCS/DVB decreased.
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Figure 4. (a) XRD patterns and (b) FTIR spectra of MH and MH/PCS/DVB.

Compared with MH and PCS, the Si-C bond of MH/CPS/DVB shifted from 795 cm−1

to 833 cm−1, while the Si-O bond shifted from 1011 cm−1 to 1108 cm−1. This indicates a
strong interaction between PCS and MH, which is probably due to the interaction of Si-O
with Mg2+ in the (101) lattice plane as well as the interaction of Si-H with the hydroxyl
group in MH, which results in a weakened diffraction pattern of the (101) lattice plane and
restricts the movement of the Si-C and Si-O bonds.

Digital images of the water contact angles of MH and MH/PCS/DVB are shown
in Figure 5. The water contact angle of MH is 17.5◦, while the water contact angle of
MH/PCS/DVB is 130.5◦. This implies a transformation of MH powder from hydrophilic to
hydrophobic and that the PCS/DVB effectively covered the MH.
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Figure 5. Digital images of the water contact angles of MH (a) and MH/PCS/DVB (b).

XPS was conducted to reveal the element bonding state of MH/PCS/DVB. The full
XPS spectra of MH and MH/PCS/DVB and the atomic contents of elements are shown
in Figure 6 and Table 3, respectively. The binding peak of the Si element is found in
the full XPS spectrum of MH/PCS/DVB (Figure 6a), and the binding state of Si2p is
revealed in Figure 6c. The binding energies of Si2p at 102.9 eV and 101.1 eV belong to
Si-O and S-C, which are dominant in PCS. In addition, the element content on the surface
of MH/PCS/DVB was different from MH. The Si content of MH/PCS/DVB increased to
11.27%; the Mg content decreased from 22.78% to 7.76%; and the C content increased from
18.2% to 39.99%. The former atomic content of the C element in MH (18.20%) was due to
the contamination of C during the XPS test, while the latter in MH/PCS/DVB (39.99%)
was due to PCS/DVB, which indicates that the MH was coated by PCS/DVB.
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Table 3. The contents of elements in MH and MH/PCS/DVB.

Element MH (Atomic %) MH/PCS/DVB (Atomic %)

Mg 22.78 7.76
O 59.03 40.98
C 18.20 39.99
Si 11.27

The TG and DTG curves of MH/PCS/DVB and their specific parameters are shown in
Figure 7 and Table 4, respectively. It can be seen that the thermal degradation curves of
MH/PCS and MH/PCS/DVB shifted to a higher temperature in comparison with MH. The
initial thermal degradation temperature (T5) of MH/PCS and MH/PCS/DVB increased by
20 ◦C from 369 ◦C to 389 ◦C, indicating a significant improvement in the thermal stability
of MH after modification. The T5 of MH/PCS/DVB was the same as that of MH/PCS,
while the T10 and Tmax were higher than those of MH/PCS. The gap increased gradually
with the increase in temperature (Table 4). The Rmax of MH/PCS/DVB was −0.73 ◦C/min
weaker than that of MH/PCS (−0.91 ◦C/min). In addition, the residue at 600 ◦C of
MH/PCS/DVB was 72.4% higher than that of MH/PCS by 0.5 points, which indicates
that the thermostability of modified MH can be improved by surface modification with
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PCS and PCS/DVB and that the mass loss of MH is further inhibited by PCS/DVB. Such a
discernible difference in MH modified by PCS and PCS/DVB is due to the cross-linking
degree of PCS. The latter is much higher than the former, as evidenced in Figure 2. The
results indicate that the cross-linking treatment of PCS with DVB is beneficial for improving
the thermal degradation behavior of MH.
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Table 4. TG and DTG parameters of flame retardants.

Samples MH MH/PCS MH/PCS/DVB

T5 (◦C) 369 389 389
T10 (◦C) 383 399 402

Tmax1 (◦C) 388 404 413
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3.3. The Microstructure, Flame-Retardant Properties, and Mechanical Properties of EVA
Composites

The microstructures of EVA/MH and EVA/MH/PCS/DVB composites are shown in
Figure 8. It can be seen that the MH particle is partially exposed and partially embedded
in the EVA matrix (Figure 8a). A noticeable gap exists between MH particles and the EVA
matrix, suggesting poor compatibility of MH within the EVA matrix. The MH particle is
well covered by EVA and no gap is observed between MH/PCS/DVB and the EVA matrix
(Figure 8b), indicating a substantial enhancement of the compatibility between MH and the
EVA resin following the PCS and DVB coating modification.

The flame retardancy of EVA/MH/PCS/DVB is given in Figure 9a. The limiting
oxygen index (LOI) of EVA/MH with 50 wt.% MH content was only 24.9, while the
LOI values of EVA/MH/PCS and EVA/MH/PCS/DVB were high at 62.0 and 65.1, with
increases of 149% and 161% in comparison with EVA/MH, respectively. It is interesting
that the vertical burning behavior of EVA/MH/PCS was not improved, while the UL-94
of EVA/MH/PCS/DVB could reach a V-2 rate and the LOI value further increased by
12 percentage points compared with EVA/MH/PCS. Significantly, the flame retardancy of
EVA/MH/PCS/DVB was further improved based on the high LOI of EVA/MH/PCS. In
contrast, the flame retardancy of EVA/MH/PCS+DVB was decreased, which means the
PCS cross-linked by DVB had a more significant synergistic effect with MH than with PCS
itself.
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The mechanical properties of the EVA composites were characterized via tensile tests.
The tensile strength and elongation at break data of the EVA composites are shown in
Figure 9b,c. The tensile strength and elongation at break of EVA/MH/PCS were decreased
compared to EVA/MH; on the other hand, the cross-linking of PDC/DVB improved both
mechanical properties of the EVA composites. The results show that the introduction of
PCS/DVB can improve the mechanical properties of EVA composites, and the resulting
EVA composites can meet the wire and cable sheathing requirements.

The combustion states of EVA composites at different combustion times during the
LOI test are shown in Figure 10. The combustion of the EVA/MH composite was slow
and showed a mitigatory flame during the test. The char on the top of the composite
was in the cycle of accumulation and shedding. While the combustion of the EVA/MH
composites with PCS was drastic and showed a roaring flame, the char was firmly fixed on
the top of the composites once formed, and the flame was effectively restricted and died
out. However, the combustion of EVA/MH/PCS+DVB was intensified compared with
EVA/MH/PCS/DVB and EVA/MH/PCS, which indicates an enhanced synergistic effect
between MH and PCS cross-linked by DVB.
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3.4. Combustion Behaviors of EVA Composites

The combustion behavior of EVA/MH/PCS/DVB is illustrated in Figure 11, and the
combustion parameters are presented in Table 5. The HRR curve of EVA/MH/PCS was
different from EVA/MH. The HRR of EVA/MH/PCS was effectively suppressed, especially
before 250 s compared with EVA/MH (Figure 11a), and the THR6min of EVA/MH/PCS
(84 MJ/m2) was higher than that of EVA/MH (90 MJ/m2) by 6 percentage points (Figure 11b
and Table 5), while the TSP of EVA/MH/PCS (7.3 m2) was increased by 40%, which was
closely related to the formation of the condensed residue. The tarry and bubbly surface of
the residue formed during the combustion of EVA/MH. The bubble cracked back and forth,
and thus no intumescent phenomenon was found for the low-strength surface char of the
residue (Figure 11e). For EVA/MH/PCS, the migration of PCS to the surface during the
combustion helped enhance the strength of the surface char [11], leading to a condensed
and cohesive surface char as well as obvious intumescent behavior, which were effective in
reducing the HRR, but the migration of PCS also releases more small molecular degradation
products to the gas phase, which can increase the TSP.

Table 5. The combustion parameters of EVA composites.

Sample EVA/MH
50/50

EVA/MH/PCS
50/47/3

EVA/MH/PCS/DVB
50/47/2/1

EVA/MH/PCS+DVB
50/47/2+1

TTI (s) 74 71 68 60
tpHRR1 (s) 280 201 219 195

pHRR1 (kW/m2) 438.8 291.1 396.7 450.6
tpHRR2 (s) - 296 - -

pHRR2 (kW/m2) - 426.6 - -
THR6min (MJ/m2) 90 84 90 89

TSP6min (m2) 5.2 7.3 5.4 6.9
Residue6min (%) 36.9 38.7 40.5 39.5
FPI (s·m2/kW) 0.17 0.17 0.17 0.13
FGI (kW/m2·s) 1.24 1.16 1.38 1.77

THRI6min
(MJ/m2) 1.94 1.89 1.93 1.92

TSPI6min (m2) 0.68 0.88 0.67 0.72
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For the EVA/MH/PCS/DVB composite, the HRR was similar to EVA/MH, which
means MH/PCS/DVB had little effect in improving the heat release behavior of the EVA
composites compared with MH/PCS, but it was more effective than MH/PCS+DVB
(Figure 11a). It is worth noting that the TSP was decreased by 26% compared with
EVA/MH/PCS and 21% compared with EVA/MH/PCS+DVB (Figure 11c). In addi-
tion, the residue was higher than EVA/MH/PCS by 1.8 percentage points and higher
than EVA/MH/PCS+DVB by 1 percentage point (Figure 11d). Such differences among
EVA/MH/PCS, EVA/MH/PCS/DVB, and EVA/MH/PCS+DVB are related to the PCS
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contents and states in the composites and the char residue formation. PCS migrates signifi-
cantly during combustion. For the EVA/MH/PCS/DVB composite, the continuity of the
surface char was inferior to EVA/MH/PCS but obviously superior to EVA/MH/PCS+DVB
(Figure 11e), indicating that the 2 wt.% PCS in the composite was not enough to form a con-
tinuous surface char, but the continuity could be improved when the PCS was cross-linked
by DVB, which led to the apparent differences in HRR and TSP.

According to the combustion parameters of the composites, the fire performance index
(FPI), fire hazard growth index (FGI), heat release index (THRI), and smoke emission index
(TSPI) were calculated to further evaluate the fire safety of the composites [38]. The fire
safety index values of the composites are shown in Table 5. Compared with EVA/MH,
the FGI of EVA/MH/PCS decreased by 7.6% and the TSPI increased by 29%. The FGI of
EVA/MH/PCS/DVB increased by 11%, while the TSPI had little change. In an actual fire
scenario, especially in an unventilated environment, smoke usually causes more death than
fire.

3.5. Thermal Degradation of EVA/MH/PCS Composites

The thermal degradation behavior of the EVA composites is given in Figure 12. There
are two stages in the weight loss of EVA composites [39]. The first weight loss stage, at
300–380 ◦C, is primarily due to the removal of ester groups in the EVA matrix and the
release of partial crystalline water in MH. The second stage, at 380~500 ◦C, is due to the
degradation of polyolefins formed in the first stage and the further dehydration of MH.
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In comparison to EVA/MH, the initial degradation temperatures (T5) of EVA/MH/PCS,
EVA/MH/PCS/DVB, and EVA/MH/PCS+DVB were all increased. In addition, both Tmax1
and Tmax2 rose more than 10 ◦C, indicating the thermal stability of the EVA composites was
improved by PCS. Interestingly, there were few differences in the first weight loss stage
among the three EVA materials containing PCS, but great differences were generated for
EVA/MH/PCS/DVB in the second weight loss stage. Compared with EVA/MH/PCS, the
Tmax2 of EVA/MH/PCS/DVB was 6 ◦C higher and the Rmax2 decreased by 55.5%, which
illustrates the better effect of cross-linked PCS on the thermal stability of EVA composites.

Based on the thermal degradation parameters of the flame retardant (Table 4) and
the zero residues of the EVA resin, the theoretical residues of the EVA composites were
calculated. The theoretical residues of EVA/MH, EVA/MH/PCS, and EVA/MH/PCS/DVB
were 35.0%, 35.9%, and 36.2%, which were consistent with the experimental values in
Table 6, indicating that MH, MH/PCS, and MH/PCS/DVB have no catalytic charring effect
on the EVA resin. It is worth noting that the residue of EVA/MH/PCS/DVB was a little
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higher than that of EVA/MH/PCS, indicating that the cross-linked PCS helped to increase
the residual char of the EVA composites.

Table 6. TG and DTG parameters of the composites.

Sample EVA/MH
50/50

EVA/MH/PCS
50/47/3

EVA/MH/PCS/DVB
50/47/2/1

EVA/MH/PCS+DVB
50/47/2+1

T5 (◦C) 325 349 351 349
T10 (◦C) 335 360 362 360
T50 (◦C) 472 484 484 484

Tmax1 (◦C) 336 365 369 366
Tmax2 (◦C) 467 479 485 476

Rmax1 (◦C/min) −0.93 −0.74 −0.93 −0.95
Rmax2 (◦C/min) −1.96 −2.95 −1.31 −1.43
Residue600s (%) 35.1 35.9 36.4 35.8

3.6. The Formation Mechanism of the Condensed Phase

The microstructures of the residual chars formed after the combustion of EVA/MH,
EVA/MH/PCS, and EVA/MH/PCS/DVB are revealed in Figure 13. There are no differences
in the surface char layers of the three composites. The surface char layers are composed of close-
packed spherical particles (Figure 13(a1–c1)). The char structures in the cross-sections of the
residues show differences. There are many long intersecting cracks in the residues of EVA/MH
composites, while there are many vertical upward channels that are convenient for gas
release and short parallel cracks in the residues of EVA/MH/PCS and EVA/MH/PCS/DVB
(Figure 13(a2–c2)). Thanks to the existence of gas channels, the residual char can be free of
violent shocks by the degradation gas, and the continuous surface char layer can be maintained.
In addition, the particle shape in the cross-section of the residual char of EVA/MH/PCS/DVB
maintains the original platelet shape of MH, which is different from that of EVA/MH and
EVA/MH/PCS (Figure 13(a3–c3)), indicating that PCS/DVB covering the MH surface plays a
non-negligible role in impeding the solid reaction between the molten EVA and MH.
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(b) EVA/MH/PCS, and (c) EVA/MH/PCS/DVB. Image 1 is the surface, and images 2 and 3 are
cross-sections.
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Figure 14 shows the XRD diffraction patterns and the FTIR spectra of the residual
char of the composites after combustion. The residual char was composed of magnesium
oxide, as evidenced in Figure 14 a. However, except for the absorption peaks of the Mg-O
stretching vibration at 536 cm−1 in the FTIR curves, there was a stretching vibration of
carbonates at 1431 cm−1 in the EVA/MH residue, as well as Si-O stretching vibrations
at 1100 cm−1 in the residues of the rest of the EVA composites, which indicates that an
amorphous inorganic-phase substance existed in the residues.
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XPS was adopted to further reveal the binding states of the elements in the residues
of EVA/MH and EVA/MH/PCS/DVB. The XPS spectra are given in Figure 15, and the
contents of the elements are given in Table 7. For the residue of EVA/MH, the binding states
of C1s (Figure 15(b1)) at 286.3 eV and 289.8 eV were attributed to C-O [40] and C=O [41],
respectively. The binding states of O1s (Figure 15(b2)) at 531.3 eV and 532.6 eV were
attributed to C-O and C=O, respectively, and were probably due to carbonate formed by the
oxidation of generated coke and a reaction with magnesium oxide at a high temperature
after the decarboxylation of EVA resin [39]. In addition, the element ratio of O to Mg was
2.5:1 (Table 7), far more than the 1:1 ratio in magnesium oxide, indicating the existence and
oxidation of coke.
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resolution XPS spectra of C1s (b1) and O1s (b2) for residual char of EVA/MH; and C1s (a1), O1s, (a2),
and Si2p (a3) for residual char of EVA/MH/PCS/DVB.
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Table 7. Contents of elements in EVA/MH and EVA/MH/PCS/DVB in XPS testing.

Element EVA/MH (Atomic %) EVA/MH/PCS/DVB (Atomic %)

Mg 22.36 19.5
O 56.28 54.44
C 21.36 18.97
Si - 7.09

For the residue of EVA/MH/PCS/DVB, the binding states of C1s (Figure 15(a1)) at
281.7 eV and O1s (Figure 15(a2)) at 531.7 eV were attributed to C-Si and Si-O, respectively,
which could be further confirmed by the Si-O (102.4 eV) and Si-C (99.8 eV) of the Si2p
binding site (Figure 15(a3)). In addition, the area ratio of the Si-C (99.8 eV) to Si-O (102.4 eV)
binding state was 9:100, lower than the 1:2 ratio shown in Figure 6, which indicates that the
PCS was oxidized and improved the anti-oxidation of the residual char.

Based on the above analysis, the formation of the condensed phase of EVA/MH/PCS/DVB
composites during combustion can be summed into two aspects, as shown in Figure 16.
Firstly, coke formed after the oxidation of the removed ester group in the EVA resin,
and magnesium carbonate formed on the surface of the magnesium oxide after the solid
reaction between the oxidized coke and the magnesium oxide. The coke and magnesium
carbonate improved the adhesive strength between magnesium oxide particles. Secondly,
an amorphous complicated compound produced by the oxidation and degradation of PCS
in the EVA/MH/PCS/DVB composites during combustion, which acted as a binder and
anti-oxidant, further improved the strength and oxidation resistance of the condensed
phase.
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4. Conclusions

Based on this study of the flame-retardant properties and combustion behaviors of
EVA/MH/PCS/DVB composites, the results show that the flame-retardant MH/PCS/DVB
showed high flame-retardant efficiency in the LOI test and had a good effect on the control
of smoke release, which was due to the improved strength of the residual char due to cross-
linked PCS. In addition, the thermal stability and the residues of the MH and EVA/MH
composites changed little due to PCS/DVB in comparison with PCS, which indicates
that the improved flame retardancy of the EVA/MH/PCS/DVB composites lies in the
condensed phase. The PCS cross-linked by DVB can leave more products in the residue
during combustion and acts as a binder that can effectively join magnesium oxide particles
together; thus, an intensive residual char with a special structure forms.
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