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Abstract: Bacterial infections have a serious impact on public health. It is urgent to develop antibac-
terial hydrogels with good biocompatibility to reduce the use of antibiotics. In this study, poly(lipoic
acid-co-sodium lipoate)–phytic acid (P(LA-SL)-PA) hydrogels are prepared by a simple mixture
of the natural small molecules lipoic acid (LA) and phytic acid (PA) in a mild and green reaction
environment. The crosslinking network is constructed through the connection of covalent disulfide
bonds as well as the hydrogen bonds, which endow the injectable and self-healing properties. The
P(LA-SL)-PA hydrogels exhibit an adjustable compression modulus and adhesion. The in vitro agar
plates assay indicates that the antibacterial rate of hydrogels against Escherichia coli and Staphylococcus
aureus is close to 95%. In the rat-infected wound model, the P(LA-SL)-PA hydrogels adhere closely to
the tissue and promote epithelialization and collagen deposition with a significant effect on wound
healing. These results prove that the P(LA-SL)-PA hydrogels could act as effective wound dressings
for promoting the healing of infected wounds.

Keywords: infected wound; self-healing; adhesive; antibacterial; wound healing

1. Introduction

Skin tissue is the body’s first defense barrier, which can prevent the invasion of
pathogens such as bacteria, viruses and parasites [1–3]. The injury of skin tissue easily
leads to bacterial infection, resulting in wound bleeding, suppuration, necrosis and even
sepsis, which seriously endanger human health [4–6]. Recently, antimicrobial hydrogels
have played an important role in the management of infected wounds [7,8], maintaining a
physiologically moist environment attributed to their high hydration [9], absorbing wound
exudate and providing a reliable condition for wound healing with a great application
potential in the management of infected wounds [10–13].

At present, the abuse of antibiotics is resulting in the presence of drug-resistant bacte-
ria [14], which greatly weakens the antibacterial effect, increases cytotoxicity and aggravates
wound infection [15,16]. Using raw materials with inherent antibacterial properties has
become an effective way to prepare inherently antibacterial hydrogels, which can not only
effectively prevent bacteria from developing drug resistance but also have good cytocom-
patibility on account of their simple composition [17,18]. Inherently antibacterial materials
like metal ions or other cationic groups can achieve antibacterial effects with complex chem-
ical modification and potential toxicity inevitably [19–22]. Indeed, insufficient adhesion
and complex synthesis methods make it difficult to adapt to the complex environment of
wounds [19,23,24]. Therefore, an inherently antibacterial hydrogel developed using a green

Polymers 2024, 16, 1316. https://doi.org/10.3390/polym16101316 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16101316
https://doi.org/10.3390/polym16101316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://doi.org/10.3390/polym16101316
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16101316?type=check_update&version=2


Polymers 2024, 16, 1316 2 of 14

and simple synthesis method with excellent antibacterial properties, biocompatibility and
multifunctional properties has good potential applications [25–27].

Lipoic acid (LA), a natural small molecule, is easy to obtain and directly polymerizes
to form hydrogels without toxic crosslinking agents and is widely used in antibacterial,
antioxidant and anticancer applications [28–31]. The poly(lipoic acid-co-sodium lipoate)
(P(LA-SL)) hydrogel was obtained by ring-opening polymerization of LA monomers at
melting temperature, followed by hydrogen bond formation [28]. However, the P(LA-SL)
hydrogel undergoes a sol–gel transition, lacking considerable mechanical strength and
stability [32]. In addition, the deficiency of electrical conductivity and adhesion limits the
clinical application of these hydrogels in wound healing [23,33].

Phytic acid (PA) is a biomass-derived, environmentally friendly and non-toxic material,
which is widely found in beans and seeds [34–36]. In addition, a large number of free
hydrogen ions released from PA can give the hydrogel wound dressing good electrical
conductivity [37], promoting the transmission of electrical signals in the tissue around
the wound [38]. Ample hydrogen bond donors and acceptor sites are bonded with water
through hydrogen bonds [39]. Abundant phosphate groups of PA can interact with bacterial
proteins and chelate with metal ions such as Ca2+ and Mg2+ to alter the permeability of
bacterial cell walls [40]. Therefore, the combination of PA with the P(LA-SL) hydrogel can
improve its antibacterial properties and conductivity.

In this study, we adopted a simple green method to prepare antibacterial P(LA-SL)-
PA hydrogels that can be locally injected, self-healing and tissue-adhesive. Firstly, LA is
dissolved in sodium bicarbonate alkaline solution, and ring-opening polymerization occurs
at melting temperature. Then, PA is introduced through hydrogen bond interactions to
produce the P(LA-SL)-PA hydrogels (Figure 1). The abundant phosphate groups in PA
promote the dangling carboxyl groups and -COO- to form more hydrogen bonds [41],
providing a more stable three-dimensional porous network structure of hydrogels. The
addition of PA not only improves the compression modulus and adhesion properties of
the hydrogels but also provides conductivity. The P(LA-SL)-PA hydrogels can be injected
locally on the skin surface and firmly adhere to the tissue. Furthermore, the physical and
chemical properties and biocompatibility of the P(LA-SL)-PA hydrogels were systematically
investigated. Finally, the effects of the P(LA-SL)-PA hydrogels on the wound healing of a
full-layer skin defect model infected with Staphylococcus aureus in mice were evaluated.
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Figure 1. Schematic diagram of preparation process of the P(LA-SL)-PA hydrogel and its application
for promoting wound healing of a full-layer skin defect model infected with Staphylococcus aureus.

2. Materials and Methods
2.1. Materials

Lipoic acid (LA), phytic acid (PA) and sodium bicarbonate (NaHCO3) were purchased
from Macklin. RPMI 1640 medium, fetal bovine serum (FBS), penicillin–streptomycin (PS),
Calcein AM staining, Cell counting Kit-8 (CCK-8) and phosphate buffer saline (PBS) were
provided by Beyotime Biotechnology (Shanghai, China).
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2.2. Preparation of P(LA-SL) Hydrogel

A total of 0.928 g of LA was dissolved in sodium bicarbonate solution (4.5 mL) with
a concentration of 0.5 M. Then, the P(LA-SL) hydrogel was obtained in 3 h by vigorous
stirring at 70 ◦C.

2.3. Preparation of P(LA-SL)-PA Hydrogels

A total of 0.928 g of LA was dissolved in sodium bicarbonate solution (4.5 mL) with
a concentration of 0.5 M, which was strongly stirred with a magnetic stirrer to obtain a
uniform monomer solution at the melting temperature of 70 ◦C for 30 min. Then, PA (5, 15,
25 mg) was mixed with LA and NaHCO3 (0.50 M) in 4.5 mL of water at 70 ◦C for 150 min
and cooled to room temperature to obtain the targeted P(LA-SL)-PA-1, P(LA-SL)-PA-2 and
P(LA-SL)-PA-3 hydrogels.

2.4. Characterization of Hydrogels

The spectra of LA, PA powder and P(LA-SL) and P(LA-SL)-PA-3 hydrogels were
recorded using Fourier transform infrared spectroscopy (FT-IR, Nexus, Thermo Fisher
Scientific, Shanghai, China) over the range of 400–4000 cm−1. The morphology of the
samples was characterized using a scanning electron microscope (SEM, JSM-IT200, Jeol,
Beijing, China).

2.5. Mechanical Characterization of Hydrogels

P(LA-SL), P(LA-SL)-PA-1, P(LA-SL)-PA-2 and P(LA-SL)-PA-3 hydrogels were placed
in a mold of the same shape (diameter = 16.0 mm, height = 12.0 mm). The compression
property was tested by a universal testing machine (Instron MTS, Norwood, MA, USA) at
a compression rate of 5 mm/s at room temperature. Every 3 parallel samples were divided
into a group, and the calculated results were averaged.

2.6. Rheological Test

The rheological properties of P(LA-SL) and P(LA-SL)-PA hydrogels were evaluated
at 25 ◦C using a rotating rheometer (Kinexus Pro+, Malvern Panalytical, UK), and four
different tests were performed, including oscillatory frequency scanning, strain amplitude
scanning, temperature sweep and alternate step strain scanning [42].

2.7. Self-Healing Characterization of Hydrogels

The rheological recovery and macroscopic self-healing tests were selected to assess the
self-healing ability of the P(LA-SL)-PA-3 hydrogel. To investigate the self-healing ability
of the samples clearly, the hydrogels were stained in red using methyl orange, which has
no influence on self-healing. All the hydrogels were cut into half pieces, and then one red
half piece and another half piece without dye were joined together end to end to form
a whole one.

2.8. Injectable Performance of Hydrogels

To evaluate the injectable properties of hydrogels, qualitative analysis of syringe writ-
ing and quantitative analysis of rheological oscillatory frequency scanning were performed.
To observe the underwater injection of the hydrogel, we injected P(LA-SL)-PA-3 hydrogel
into a wet pig skin in a glass bottle filled with water.

2.9. Adhesiveness of Hydrogels

The adhesive ability of hydrogels was qualitatively judged by taking the heart, liver,
spleen, lung and kidney as the given materials. The adhesive strength of the hydro-
gels to the slide was quantitatively tested by the shear lap experiment. Moreover, the
P(LA-SL)-PA-3 hydrogel was injected into the pig skin to determine its adhesion and
underwater adhesion.
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2.10. Hemolysis Test

The blood of SD rats was extracted. First, the obtained fresh blood was added to the
PBS solution and centrifuged for 10 min at 1000 rpm rotational speed. The supernatant was
removed, and the process was repeated three times. Then, the red blood cell suspension
was diluted to a 5% concentration solution for use. Next, 0.2 g of hydrogel and 200 mL of
PBS or DIW were added to 1 mL of red blood cell suspension and incubated at 37 ◦C in a
shaker for 1 h. Finally, the absorbance of all sample supernatants was measured at 545 nm.
Here, PBS was used as a negative control and DIW as a positive control. The following
formula is used to calculate the hemolysis rate:

hemolysis ratio =
As − A0

A100 − A0

As, A0 and A100, respectively, indicate the absorbance of the hydrogel group, PBS and
DIW supernatants at 545 nm.

2.11. Cytotoxicity Assay

The cytocompatibility of hydrogels was analyzed by a cell viability assay and a live
cell assay. A 100 µL amount of medium containing L929 cells was added to the 96-well
plate with an initial cell density of 5.0 × 103 cells/well. After co-incubation at different
periods, the cytotoxicity of the hydrogel extract was tested using a CCK-8 kit for 1 d, 3 d
and 5 d. The OD value was read at 450 nm by the enzyme-labeling instrument.

To visualize cell proliferation in vitro, L929 cells cultured with hydrogel extract were
stained with the Cal-AM kit and further observed with the inverted fluorescent microscope.

2.12. Antibacterial Test

To study the antibacterial activity of hydrogels, we selected Gram-positive Staphylococ-
cus aureus and Gram-negative Escherichia coli. All experiments were repeated three times.

2.13. In Vivo Wound Healing

All animal procedures followed the National Research Council’s Guide for the Care
and Use of Laboratory Animals and were approved by the Animal Care and Use Committee
of Wuhan University of Technology. The purchased female Kunming rats (8 weeks) were
placed in the animal house for one week to adapt to the environment. The full-layer skin
injury model of mice was established by making round full-layer skin wounds with a hole
punch and then injecting 20 µL of S. aureus. After the S. aureus-infected wound model was
successfully constructed, different treatments were given to the blank group, Tegaderm
biomedical dressing group, P(LA-SL) hydrogel group and P(LA-SL)-PA-3 hydrogel group,
respectively. The sample size of each group was 12 mice. The wounds of each group were
photographed and measured on the 4th, 8th and 12th day after operation. The wound area
was measured using ImageJ software (Windows).

Remaining wound area(%) =
wound areaN
wound area0

2.14. Histological Analysis of Wound

On the 4th, 8th and 12th day, wound tissues were collected for H&E and Masson
staining to observe the histomorphologic changes in the wound and the regeneration of
collagen during healing.

2.15. Statistical Analysis

All the experimental data derived from three or more independent experiments are
expressed as the mean ± standard deviation. One-way ANOVA analysis was used to
estimate all the data (*** p < 0.001, ** p < 0.01, * p < 0.05).
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3. Results
3.1. Preparation and Characterization of Hydrogels

In Figure 2, the synthesis route of the poly(lipoic acid-co-sodium lipoate)–phytic
acid (P(LA-SL)-PA) hydrogels can be seen by adding PA into the P(LA-SL) solution. In
this experiment, the abundant carboxyl groups and -COO- in the side chain of P(LA-SL)
effectively crosslinked with the phosphate groups of PA to form various hydrogen bonds to
maintain good mechanical properties and structural stability in the P(LA-SL)-PA hydrogels
(Figure 1).
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In order to investigate the effect of PA on the formation of the P(LA-SL)-PA hydrogels,
we prepared four kinds of hydrogels with different contents of PA, including P(LA-SL),
P(LA-SL)-PA-1, P(LA-SL)-PA-2 and P(LA-SL)-PA-3 hydrogels, in which the dosage of PA
relative to LA was set at 0%, 0.5%, 1.6% and 2.7% (w/w), respectively. Compared to the
P(LA-SL) and P(LA-SL)-PA-3 hydrogels, the C=O peaks of LA powder showed a slight blue
shift from 1695 to 1700 and 1702 cm−1, and the -OH peaks in the carboxyl group showed
a red shift from 1251 to 1247 and 1245 cm−1, which may be due to the formation of more
hydrogen bonds, as displayed in FTIR. The C=O peaks of the P(LA-SL) and P(LA-SL)-PA-3
hydrogels appeared at 1563 cm−1, as a result of the deprotonation of carboxyl groups
(Figure A1) [43]. With the introduction of PA, the pore size of the hydrogels decreased,
and the structure of the hydrogels became denser and denser, which was related to the
degree of crosslinking of the three-dimensional network (Figure 2b). In short, all hydrogels
showed a loose porous structure, which was conducive to cell adhesion and migration as
well as the transport of nutrients and wastes in the process of skin regeneration.

In addition, frequency sweep measurements and strain sweep tests were used to
test the dynamic rheological properties. As shown in Figure 3a,b, in the linear elastic
region (0.1–10 Hz), the storage modulus G′ and loss modulus G′′ of these hydrogels tended
to be stable. Moreover, G′ was always greater than G′′. These results indicated that
these hydrogels formed a stable network structure. The critical point of the P(LA-SL)
hydrogel (1000%) was higher than that of the P(LA-SL)-PA-1 hydrogel (317%), the P(LA-
SL)-PA-2 hydrogel (50%) and the P(LA-SL)-PA-3 hydrogel (65%) (Figure 3b). The increased
crosslinking density caused by the enhanced hydrogen bonding between the P(LA-SL)
side chain carboxyl group and PA improved the mechanical properties of the P(LA-SL)
hydrogels. The temperature sweep test demonstrated that the P(LA-SL)-PA-3 hydrogel
also had stable G′ and G′′ values in the temperature range of 25–50 ◦C (Figure 3c), forming
a stable hydrogel.
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Proper mechanical properties enable hydrogels to avoid unnecessary damage and
better adapt to clinical applications. As shown in Figure 3d, the compression modulus of
the P(LA-SL)-PA hydrogels augmented the enhancement of hydrogen bond interaction
with the increase in PA content. However, when the PA content was 2.7%, the compression
modulus of the hydrogels decreased. This may be because the acidity of PA destroyed
the alkaline environment of LA polymerization, and thus, the crosslinking density and
the strength of the hydrogels decreased. Hydrogels could withstand compression and
bending and recover a certain deformation after 65% compression strain. The P(LA-SL)-
PA-3 hydrogel exhibited good toughness and shape stability, exhibiting only slight plastic
deformation (87.00 ± 3.99%) (Figure 3e). Moreover, it can be restored to its original state
after stretching and twisting (Figure 4c).
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Figure 4. Functionalities of the P(LA-SL)-PA hydrogels. (a) Self-healing behavior of the P(LA-SL)-PA-
3 hydrogel; (b) alternate step strain sweep test of the P(LA-SL)-PA-3 hydrogel between small strain
(1%) and large strain (150%) with 90 s for each strain interval; (c,d) the toughness and wet adhesive
property of the P(LA-SL)-PA-3 hydrogel; (e) adhesion on the skin under dynamic humid conditions
of the P(LA-SL)-PA-3 hydrogel; (f) adhesion strength of the P(LA-SL)-PA hydrogels with glass slide;
(g) tissue adhesion. n = 6, * p < 0.05, *** p < 0.001.

3.2. Injectability, Self-Healing Ability, Adhesion and Conductivity

The injectable hydrogels facilitate practical biomedical applications, such as easier
and more convenient manipulation on wound surfaces [44]. The injectable performance of
the hydrogels was tested by qualitative extrusion tests and quantitative shear rheological
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tests. The results of the rheological tests showed that the viscosity of the P(LA-SL)-PA-3
hydrogel decreased from 1685 to 44.6 Pa·s when the shear frequency increased from 0.1
to 10 Hz. Moreover, it was found that the P(LA-SL)-PA-3 hydrogel with good injectability
could be continuously injected into six numbers through a 10 mL syringe with a 0.7 mm
needle without blocking, written as the number “123456” (Figure 3f). Notably, the P(LA-
SL)-PA-3 hydrogels could be injected into wet pig skin tissue, maintaining good adhesion
and remaining hard to peel off under water (Video S1). They were injected into a Petri
dish soaked in water and still adhered firmly to the Petri dish for 1 day (Figure A2). Under
the action of high shear force, the sol–gel transformation behavior of these hydrogels
makes it easier to inject them on wound surfaces and makes them a suitable candidate for
wound dressings.

Dynamic disulfide bonds and reversible hydrogen bonds in the network structure
endow hydrogels with good self-healing ability. First, the self-healing property of the
P(LA-SL)-PA-3 hydrogel was observed through macroscopic observation. As shown in
Figure 4a, freshly cut hydrogels were placed together, one of which was stained with
methyl orange, and healed by physical contact without external force. The P(LA-SL)-PA-3
hydrogel interface was not clear. The healed hydrogel was able to withstand its own gravity
without splitting and still does not separate under large strain. The rheological result is
shown in Figure 4b. Under the small strain of 1%, the energy storage modulus G′ of the
P(LA-SL)-PA-3 hydrogel (1277 Pa) was greater than the loss modulus G′′ (488 Pa). As the
strain increased to 150%, G′′ (247 Pa) was greater than G′ (143 Pa). These results proved
the structural collapse of the P(LA-SL)-PA-3 hydrogel. When the strain reduced again to
1%, G′ rapidly returned to its initial value. The modulus changed stably and alternately
in three cycles. These results demonstrated that the P(LA-SL)-PA-3 hydrogel had fast and
effective self-healing properties, which could adapt to the tissue during wound repair.

Adhesive wound dressings can better fit the wound. Due to the abundant -COOH and
-OH groups, the P(LA-SL)-PA-3 hydrogel exhibited good adhesion. As shown in Figure 4g,
the P(LA-SL)-PA-3 hydrogel adhered firmly to the major organs of mice (heart, liver, spleen,
lung and kidney). This adhesion property may be attributed to the formation of Schiff base
bonds, electrostatic interaction and hydrogen bonding with skin tissue [41]. The results of
the shear lap experiment showed that the adhesion strength increased with the increase in
PA content and time (Figures 4f and A3). In addition, PA provides additional hydrogen
bond donors that could bind with the tissue and thus enhance the adhesion strength
to the skin.

As shown in Figure 4e, the P(LA-SL)-PA-3 hydrogel was injected into dry and wet
pig skin tissue. After rotating, folding and bending, the hydrogel injected into dried pig
skin tissue still adhered to the pig skin tissue and was hard to peel off. Furthermore, it
was injected into the wet pig skin tissue underwater and adhered to the pig skin well. It
adhered to the surface of the pig skin firmly even under the impulse of water (Figure 4d).
These results indicated the P(LA-SL)-PA-3 hydrogel possessed good underwater injection
and adhesion properties (Video S2).

In addition, PA can provide free hydrogen ions to the P(LA-SL)-PA hydrogels’ network
and improve their conductive properties. As shown in Figure A4, the lamps of the P(LA-SL)
and the P(LA-SL)-PA-1 hydrogels were dark, while the lamps of the P(LA-SL)-PA-2 and the
P(LA-SL)-PA-3 hydrogels were luminous (Video S3). These results indicated that the P(LA-
SL)-PA-2 and the P(LA-SL)-PA-3 hydrogels exhibited conductivity owing to the addition of
PA. Furthermore, the brightness of the lamp increased with the increase in PA content. The
electrical conductivity of the P(LA-SL)-PA-3 hydrogel promoted the transmission of signals
from the surrounding tissue and was conducive to wound healing [38]. Due to its good
injectable, self-healing, adhesive and conductive properties, the P(LA-SL)-PA-3 hydrogel
attached to the wound well and adapted to the dynamic of the wound as a wound dressing
for skin repair.
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3.3. Hemocompatibility and Cytocompatibility

Good biocompatibility is a prerequisite for the application of these hydrogels in wound
repair. In this study, blood compatibility and cytocompatibility were tested to evaluate
the biocompatibility of the P(LA-SL)-PA hydrogels. The morphology of L929 cells after
1 day, 3 days and 5 days was qualitatively evaluated by living cell staining (Figure 5a). The
number of L929 cells increased significantly. The cells spread out well in the extract and
showed a complete spindle structure. Moreover, the cytocompatibility of the hydrogels
was evaluated by observing the cell viability of L929 cells. The results showed that the
viability of cells cultured with extracts was higher than that of the control group after 1 day
of staining with a CCK-8 kit. Even after 3 d and 5 d, the cell viability of the hydrogel
groups still remained around 85% (Figure 5b). As shown in Figure 5a, the blood cell
morphology remained intact, and the hemolysis rate was less than 5% (Figure 5c). These
results suggested that the hydrogels had good blood compatibility. In conclusion, the
hydrogels had good biocompatibility and could be applied to wound healing.
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the inset picture shows the hemolysis assay. n = 4, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Antibacterial Property

Bacterial infection is a common problem in the process of wound healing and skin
regeneration. The inflammatory response caused by bacterial infection will further cause
infection-related complications, prolong the wound healing time and reduce the quality of
wound healing. Therefore, hydrogels with antibacterial properties are particularly impor-
tant. We perform colony counts on agar plates. From Figure 6a, the number of colonies
in the P(LA-SL) hydrogel group was much less compared with the PBS group, probably
because the slightly acidic environment inhibited bacterial growth [23]. As the PA dosage
increased, the number of bacterial colonies further decreased. It showed concentration-
dependent antibacterial activity. This was due to the abundant phosphate groups of PA,
which could not only combine with Ca2+ and Mg2+ on bacterial membranes to destroy
bacterial membrane structure but also chelate with proteins to destroy bacterial organelle
function. In addition, H+ released by PA has excellent membrane permeability and shows
good antibacterial ability by destroying the bacterial membrane. From Figure 6b,c, the
survival rate of bacteria in the phytic acid group decreased to 9.72%, 5.10% and 0.95%,
which proved that the P(LA-SL)-PA hydrogels had good antibacterial properties, inhibited
the growth of bacteria and promoted wound healing.
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3.5. In Vivo Wound Healing Evaluation and Histological Analysis

The proper mechanical properties, good adhesion, biocompatibility and antibacterial
properties of hydrogels are more conducive to wound healing. The P(LA-SL)-PA-3 hydrogel
was selected for in vivo infected wound evaluation. A full-layer skin defect model in mice
was developed to evaluate the therapeutic effect of the P(LA-SL)-PA hydrogels on wound
healing. As shown in Figure 7a, it can be clearly seen that the wound area of the P(LA-SL)
and the P(LA-SL)-PA-3 hydrogels had a greater degree of contraction than that of the
control group, and the P(LA-SL)-PA-3 hydrogel was better than the P(LA-SL) hydrogel.
On day 12, the degree of wound shrinkage in the PBS group was much less than that in
the P(LA-SL) and P(LA-SL)-PA-3 groups. The wounds of the P(LA-SL) group and the
P(LA-SL)-PA-3 group basically healed, and the healing rate of the P(LA-SL)-PA-3 group
was higher, reaching 98% (Figure 7b). These results showed that the wound area contraction
of hydrogels was faster than that of the PBS and Tegaderm groups, and the healing effect
of the hydrogels was significantly better than the other groups. This may be because the
hydrogels inhibited the growth of bacteria, accelerated inflammation of the wound and
provided electrical conductivity, promoting bacteria-infected wound healing.

The control group and the Tegaderm dressing group still had a large number of
inflammatory cells (blue), and there was a significant inflammatory response on day
8 [45,46]. On day 12, it was clearly observed that the P(LA-SL)-P-3 hydrogel-treated group
showed an almost complete epidermal structure and a small number of inflammatory cells,
as indicated by H&E staining results. The scar width in the Tegaderm dressing group and
the control group was larger, and the collagen deposition in the wound tissue was much
less than that in the material group. Among them, the collagen fibers in the P(LA-SL)-PA-3
treatment group were the maximum, showing a thin epidermis and new hair follicles on
the 12th day (Figure 7d).

In addition, the biocompatible, injectable and self-healing P(LA-SL)-PA-3 hydrogel
was more easily injected into the wound site, fit better on the wound surface and adapted to
changes in wound tissue. Furthermore, bacterial growth was inhibited, which sped up the
end of the inflammatory response and promoted the formation and growth of granulation
tissue. The P(LA-SL)-PA-3 hydrogel’s three-dimensional network structure also enabled
the transport of nutrients and the elimination of metabolic waste. Its electrical conductivity
promoted the transmission of electrical signals from the tissue around the wound [38]. All
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these factors indicated that the P(LA-SL)-PA-3 hydrogel had a good wound-healing effect,
so it had great potential as a dressing for infected wounds.
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of the full-thickness wound on days 0, 4, 8 and 12 for PBS, Tegaderm commercial dressing film, the
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4. Conclusions

In conclusion, we prepared injectable, self-healing P(LA-SL)-PA hydrogels with strong
adhesion, conductivity, good antibacterial properties and biocompatibility through a green
synthesis method. These properties enabled the P(LA-SL)-PA hydrogels to provide a good
repair environment for wounds and accelerate the rapid healing of infected wounds. In
addition, in the infected wound model, the P(LA-SL)-PA hydrogels achieved an excellent
healing effect, accelerated collagen deposition and epithelialization, inhibited the growth
of S. aureus and E. coli and promoted the healing of infected wounds. Therefore, the P(LA-
SL)-PA hydrogels have great potential in diabetic wound treatment and management.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym16101316/s1, Video S1: Injection under water; Video S2:
Adhesion under water; Video S3: Conductivity.
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