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Abstract: Traditional wound dressings have not been able to satisfy the needs of the regenerative
medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound
dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowa-
days, nanofiber-based bioactive dressings are mainly developed with a combination of natural
and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI). Accordingly, herein,
PCL/CHI nanofibers have been developed with varying PCL:CHI weight ratios (9:1, 8:2 and 7:3) or
CHI viscosities (20, 100 and 600 mPa·s) using a novel alternating current ES (ACES) process. Such
nanofibers were thoroughly characterized by determining physicochemical and nanomechanical
properties, along with wettability, absorption capacity and hydrolytic plus enzymatic stability. Fur-
thermore, PCL/CHI nanofiber biological safety was validated in terms of cytocompatibility and
hemocompatibility (hemolysis < 2%), in addition to a notable antibacterial performance (bacterial
reductions of 99.90% for S. aureus and 99.91% for P. aeruginosa). Lastly, the enhanced wound healing
activity of PCL/CHI nanofibers was confirmed thanks to their ability to remarkably promote cell
proliferation, which make them ideal candidates for long-term applications such as wound dressings.

Keywords: electrospinning; polycaprolactone; chitosan; nanofibers; wound healing; tissue regeneration

1. Introduction

Electrospinning (ES) is a well-known technique used to fabricate tunable polymeric
fibers ranging from several nanometers to micrometers by applying high-voltage elec-
tric fields [1]. Electrospun fibers possess high flexibility, versatility, porosity and sur-
face/volume ratio with a controllable structure that makes them suitable for application in
the wound healing biomedical field [2,3]. These advanced fibrous dressings are suitable for
the treatment of acute and chronic wounds due to their capability of imitating native extra-
cellular matrix (ECM) and promoting biological processes (e.g., cell migration, adhesion,
proliferation and differentiation) [4,5].

Traditional dressings (gauzes or bandages) possess limited bioactive properties, the
inability to eliminate exudate or maintain moisture, and the difficulty of removal after
application [6,7]. Fortunately, nanofiber-based bioactive dressings do not need secondary
dressings and possess enhanced biocompatibility, biodegradability, adhesion, permeability,
exudate absorption, moisture retention and easy changing without damage [7]. Even more,
bioactive wound dressings could provide antibacterial and anti-inflammatory properties
for improved tissue regeneration [8].

Nowadays, nanofiber-based bioactive wound dressings are mainly fabricated with
a combination of natural and synthetic polymers [9]. While natural polymers provide
the benefits of easy biodegradation and excellent biocompatibility, synthetic polymers
contribute controllability and reliable mechanical strength [10]. Among synthetic polymers,
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FDA-approved biocompatible, biodegradable and bioresorbable polycaprolactone (PCL) is
one of the most widespread used co-spinner [11]. However, PCL lacks bioactive properties
and possesses moderate wound exudate absorption and water retention capabilities.

In this regard, PCL-based dressings’ drawbacks can be improved by combining
them with a wide range of natural biopolymers [12]. Among these, alginate, cellulose,
hyaluronic acid and chitosan polysaccharides are known to effectively combine with PCL
to produce multifunctional dressings [13]. Chitosan (CHI) is a partially deacetylated and
positively charged derivative of chitin with random mixtures of β-(1–4) and N-acetyl
D-glucosamine units, which has aroused biomedical experts’ attention due to its bio-
compatibility, biodegradability, hemostatic ability, angiogenesis, immunoregulation, and
antibacterial and anti-inflammatory properties, among others [14,15].

In this sense, PCL/CHI nanofibers combine the powerful advantages of both polymers
and avoid the complexity of ES pure CHI. In fact, the fabrication of pure CHI nanofibers is
considered a challenge due to their polycationic nature and hydrophilicity, which result in
insufficient chain entanglement and, consequently, a restricted spinning ability [16]. Such
fabrication of PCL/CHI nanofibers by ES can be carried out with solvent systems based
on diluted acid combinations such as acetic acid (AA), formic acid (FA) and acetone (Ac),
among others [17,18].

Regarding ES efficiency, a wide range of techniques have been investigated over the
last decades to increase the productivity of nanofiber fabrication [19]. Alternating current
ES (ACES) has emerged as a novel alternative approach to increase the productivity of
typical direct current ES (DCES) [20,21]. In fact, although most of the published articles
about ES only discuss DCES, its productivity is quite low for industrial applications [22].
Otherwise, the replacement of DCES with dynamic high-voltage ACES with the possibility
of varying frequency and waveform results in higher productivity, even with laboratory
setup [23]. That is why, in the last few years, PCL-based nanofibers have been fabricated by
ACES with quite promising productivity results [24–26].

Moreover, it is well known that the electro-spinnability of PCL/CHI nanofibers can be
greatly influenced by several factors, such as CHI quantity (or PCL:CHI weight ratio) [27,28]
and intrinsic viscosity (affected by the molecular weight) [29,30]. To date, although some
researchers have studied how CHI features have influenced the spinnability of PCL/CHI
nanofibers by DCES [31–33], contradictory productivity results make imperative the devel-
opment of PCL/CHI nanofibers by novel ACES and solvent systems. Even more, to the
best of our knowledge, none of the investigations published so far fabricated PCL/CHI
nanofibers by an ACES and FA:AA:Ac solvent system mixture or studied the influence of
CHI factors on spinnability efficiency.

Considering all of the above, PCL/CHI nanofibers were synthesized using an un-
common ACES and FA:AA:Ac solvent system to obtain long-term biocompatible wound
dressings with tunable physicochemical, mechanical and bioactive properties. For that
purpose, PCL/CHI nanofibers were optimized using 9:1, 8:2 and 7:3 PCL:CHI weight
ratios and 20, 100 and 600 mPa·s CHI viscosities. Such PCL/CHI nanofibers were thor-
oughly characterized by SEM, FTIR-ATR, XPS, contact angle, AFM, absorption capacity,
and hydrolytic and enzymatic degradation techniques. Moreover, PCL/CHI nanofiber bio-
compatibility was assessed in terms of cytotoxicity and hemocompatibility, in addition to
their antibacterial performance. Finally, wound healing properties of PCL/CHI nanofibers
were evaluated by assessing cell proliferation. All in all, PCL/CHI nanofiber dressings
could possess a promising future in the wound healing biomedical area.

2. Materials and Methods
2.1. Materials and Chemicals

Polycaprolactone (PCL, average Mn ≈ 80,000, 440,744, Sigma-Aldrich, St. Louis, MO,
USA) and mushroom-source chitosan (CHI, Chibio Biotech, Qingdao, China) with three
different viscosity values in 1% acetic acid (20 mPa·s, deacetylation degree of 98.23%;
100 mPa·s, deacetylation degree of 98.26%; 600 mPa·s, deacetylation degree of 98.22%)
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were used to synthesize PCL/CHI nanofibers. Formic acid (FA, 98%, 19,920–11,000), acetic
acid (AA, 99.8%, 19,990–11,000) and acetone (Ac, 99.5%, 10,050–11,000) were purchased
from Penta Chemicals Unlimited (Czech Republic) and used to prepare a solvent system.
Lysozyme (from chicken egg white, enzymatic activity ≥ 40,000 U/mg, Sigma-Aldrich,
L6876, MO, USA) and lipase (from Pseudomonas cepacia, enzymatic activity ≥ 30 U/mg,
Sigma-Aldrich, 62309, MO, USA) enzymes were used for degradation tests.

2.2. Synthesis of PCL/CHI Nanofibers

PCL/CHI nanofibers were prepared by AC needle-electrospinning (Table 1). Briefly,
PCL 10 wt% was dissolved in an FA:AA:Ac solvent system (1:1:1 weight ratio) for 3 h
to prepare a pure PCL solution. Regarding PCL/CHI solutions, PCL concentration was
maintained at 10 wt%, CHI content was adjusted to 2 wt%, and PCL:CHI weight ratios
were varied from 9:1 to 8:2 and 7:3, in addition to three different mushroom sources of
CHI (20, 100 and 600 mPa·s). Subsequently, each solution was placed into a 5 mL syringe
coupled to an 18 G needle. In addition, flow rate was adjusted to 2 mL/h, and an input
signal was created by an Instek GW MFG 2120 MA signal generator (30 Hz) applying a
rectangular shape using a TREK 10/40A-HS amplifier (10 kV). Fibers were stored on a
rotational collector with a fixed rotation speed of 40 rpm and fixed needle–collector distance
of 15 cm.

Table 1. Sample codification of the fabricated PCL and PCL/CHI nanofibers with ACES.

Sample PCL wt% CHI wt% Solvent System
(Weight Ratio)

PCL:CHI Weight
Ratio

CHI Viscosity in
1% Acetic Acid

(mPa·s)

PCL (•)

10 2 FA:AA:Ac (1:1:1)

- -

PCL/CHI_9/1_20 (•)

9:1 (red)

20 (dark)

PCL/CHI_9/1_100 (•) 100 (regular)

PCL/CHI_9/1_600 (•) 600 (light)

PCL/CHI_8/2_20 (•)

8:2 (blue)

20 (dark)

PCL/CHI_8/2_100 (•) 100 (regular)

PCL/CHI_8/2_600 (•) 600 (light)

PCL/CHI_7/3_20 (•)

7:3 (green)

20 (dark)

PCL/CHI_7/3_100 (•) 100 (regular)

PCL/CHI_7/3_600 (•) 600 (light)

2.3. Physicochemical and Mechanical Characterization
2.3.1. Scanning Electron Microscopy (SEM)

High-resolution images of PCL and PCL/CHI electrospun nanofibers were achieved
with a SEM FEI Quanta 250. The microscope worked under low-vacuum conditions at
5 kV, 120 Pa, 25 ◦C and 0% humidity, and images were acquired at 4000× magnification
using a Large Field GaseoUs Secondary Electron detector (LFD). Fiber diameters were
measured by employing an ImageJ (1.54f version, National Institutes of Health, Bethesda,
MD, USA) image analyzer via the measurement of 100 observed nanofibers selected over
different SEM images. Fiber normality data were verified primarily by the Shapiro–Wilk
test, and homoscedasticity was verified by the Levene test (0.05 significance level). Since
the assumptions of normality and homoscedasticity were violated, non-parametric analysis
was used to determine the statistical significance of differences between the nanofibrous
layers. Kruskal–Wallis’s test was performed followed by a Dunn’s post hoc test for mul-
tiple comparisons. Bonferroni correction was used for the adjustment of p-value when
comparing multiple materials to pure PCL control. Numerical data were expressed as the
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mean ± standard deviation (SD), and fiber diameters were also expressed as median and
interquartile range (IQR = Q3–Q1).

2.3.2. Fourier Transform Infrared Spectroscopy by Attenuated Total Reflectance (FTIR-ATR)

An FTIR spectrometer (PerkinElmer Frontier, Shelton, WA, USA) in the ATR config-
uration was employed to determine the qualitative chemical composition of electrospun
PCL and PCL/CHI nanofibers. Infrared spectra were recorded using a diamond crystal in
the 800–4000 cm−1 range at a 4 cm−1 resolution and 32 scans/spectrum.

2.3.3. X-ray Photoelectron Spectroscopy (XPS)

The quantitative composition of PCL and PCL/CHI electrospun nanofibers was ob-
tained using an XPS—SPECS SAGE HR-100 equipped with a non-monochromatic radiation
source (2·10−7 hPa, X-ray gun at 300 W and 12,500 V), a Mg/Al Kα anode and a PHOIBOS
analyzer (100 mm radius).

2.3.4. Atomic Force Microscopy (AFM)

The nanomechanical properties of electrospun nanofibers were obtained using a
high-resolution AFM MultiMode 8-HR microscope (Bruker) and PeakForce Quantitative
Nanomechanical Mapping module. A Scanasyst-Air probe (f = 70 kHz; k = 0.4 N/m) was
employed for imaging 2 × 2 µm2 areas (0.5 Hz scan rate, 1 kHz peak force frequency, 300 nm
amplitude and 1 nN setpoint). Micrographs were treated using Nanoscope 2.0 software.

2.3.5. Contact Angle Measurements

Contact angle measurements to measure the wettability of nanofibers (n = 10) were
performed with Dataphysics OCA 15 EC Neurtek (Eibar, Spain) optical equipment by
dropping Milli-Q water (2 µL/drop).

2.3.6. Absorption Capacity

Absorption capacity of nanofibers was determined using the free expansion absorptive
capacity method according to the UNE-EN ISO 13726-1:2002 standard [34]. The 0.5 cm2

samples were weighed before testing (W0) and immersed into 40 times the mass equivalent
of each sample of Test Solution A (8.298 g sodium chloride and 0.368 g calcium chloride
dihydrate dissolved in 1 L of deionized water) at 37 ± 1 ◦C. Test Solution A has an ionic
composition comparable to human blood serum or wound exudate [35]. After 30 min,
nanofibers were removed, excessive solution was dripped off and samples were weighed
again (Wt). Absorption capacity (%) is expressed as the mean of the mass of solution
retained per gram of sample (Equation (1)).

Absorption capacity (%) =
Wt − W0

W0
·100 (1)

2.3.7. Hydrolytic and Enzymatic Degradation

PCL and PCL/CHI electrospun nanofiber degradation was monitored with respect
to the weight loss of initially weighed electrospun nanofibers (W0), immersing each sam-
ple (0.5 × 0.5 cm2) separately in 10 mL of PBS (pH 7.4, 37 ◦C, hydrolytic), lysozyme
(0.5 mg·mL−1 in PBS) and lipase (0.5 mg·mL−1 in PBS) solutions. Enzymatic solutions
were not changed during the course of the experiment. Then, electrospun nanofibers were
removed from each solution and weighed (Wt) at specific times. The remaining electrospun
nanofiber mass (%) was calculated according to Equation (2).

Remaining nano f ibers mass (%) =
Wt

W0
·100 (2)
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2.4. Biocompatibility Test
2.4.1. In Vitro Cytotoxicity

Cytotoxicity was evaluated by the extraction method based on the ISO 10993-5 guide-
line [36]. Extractor liquid, cell line, and positive and negative controls were DMEM culture
medium (supplemented with 10% FBS), L929 (ECACC), polyurethane film with 0.1% zinc
diethyldithiocarbamate (ZDEC), polyurethane film with 0.25% zinc dibuthyldithiocarba-
mate (ZDBC) and high-density polyethylene (HDPE), respectively. Some 100%, 50%, 25%
and 12.5% extracts were obtained by incubating the compounds in culture media for 24 h
at 37 ◦C. Some 1·105 L929 cell suspensions were seeded in 96-well plates and incubated at
37 ◦C and 5% CO2 for 24 h. Later, extracts were added and incubated at 37 ◦C and 5% CO2
for 24 h. Finally, 50 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) solution was added and incubated again for 2 h. Cell viability (%) calculated by
MTT assay was obtained using a spectrophotometer at 570 nm (Equation (3)).

Cell viability (%) =
OD570 tested nano f ibers

OD570 negative control
·100 (3)

2.4.2. In Vitro Hemocompatibility

Hemocompatibility of the nanofibers was assessed according to ISO 10993-4 stan-
dard [37]. Hemolysis was quantitatively evaluated measuring the release of hemoglobin
from red blood cells either by destruction or through a partially damaged but intact cell
membrane. This test was performed using a Biomaterial Haemolytic Assay Kit (K003,
Batch No. 231016, HaemoScan, Groningen, The Netherlands) with human erythrocyte
suspensions. Erythrocyte suspension was prepared using buffer solutions and 400× g
centrifugation. Unexposed human blood was employed as a negative control, and silicon
elastomer (SE), medical steel (MS) and nitrile rubber (Buna-N) were positive controls.
Briefly, samples were immersed into 0.5 mL of erythrocyte suspension and incubated for
24 h at 37 ◦C. Then, the tubes were centrifuged at >4000× g for 1 min. After that, 20 µL
was added to a 96-well plate and mixed with 180 µL of buffer. Hemoglobin concentration
and hemolysis rate (or % hemolysis) were measured by spectrophotometry at 380, 415 and
450 nm using the Harboe method [38].

2.5. In Vitro Antibacterial Activity

The in vitro antibacterial activity of nanofibers was tested against Staphylococcus aureus
(ATCC 6538) and Pseudomonas aeruginosa (ATCC 15442). Some 1 mL of 1·105–1·106 CFU/mL
suspensions were put in contact with 1 × 1 cm2 samples and incubated at 37 ◦C for
24 h. Viable S. aureus or P. aeruginosa as Colony Forming Units (CFUs), bacterial death
as reduction %, and antimicrobial activity as log10 reduction or R were calculated by
Equations (4) and (5).We

Bacterial reduction (% death) =
B − A

B
·100 (4)

log10 reduction (R) = log10 (B)− log10 (A) (5)

where A is the average of viable cells (CFU) after contact time with PCL/CHI nanofibers,
and B is the number of average viable cells (CFU) in control samples after 24 h of contact
time. The control corresponds to S. aureus or P. aeruginosa suspensions in the absence of
tested product.

2.6. In Vitro Wound Healing Cell Proliferation Assay

Wound healing properties were evaluated in vitro by assessing cell proliferation ac-
tivity induced by nanofibers. PCL and PCL/CHI nanofibers were deposited on cellulose
cardboard for this test. Cellulose cardboard without nanofibers was used as a control.
Human dermal fibroblasts (HDFs, Innoprot, P60108, Derio, Spain) isolated from human
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skin were used as an experimental system. HDF cells were cultured for 48 h (37 ◦C, 5%
CO2 and 95% humidity) in a 12-well chamber containing nanofibers for confocal laser
scanning microscopy (CLSM, Zeiss LSM700, Jena, Germany) applications. Then, cells were
stained using an SYTO9 fluorescent marker to intercalate into cell DNA and, subsequently,
green-stained cells were visualized by CLSM. Images were taken using 2.5× magnification,
and florescence was quantified using ImageJ computer software (1.54f version).

2.7. Statistical Analysis

Quantitative variables of assays are represented as means ± standard deviations for
a minimum of n = 3 replicates per group. Multiple comparisons between groups were
performed using one-way ANOVA, followed by a post hoc Tukey’s test with a p < 0.05
significance level threshold.

3. Results and Discussion
3.1. Physicochemical Characterization

First of all, the morphology and structure of fabricated PCL and PCL/CHI fibrous
biomaterials were studied by scanning electron microscopy (SEM) images (Figure 1). SEM is
capable of producing detailed images with a maximum resolution of 1 nm and is frequently
useful to determine nanofiber diameter or alignment, among other aspects.
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Figure 1. Representative SEM images of the fabricated PCL and PCL/CHI nanofibers obtained with
different PCL-to-CHI ratios (9:1, 8:2 and 7:3) and CHI inherent viscosities (20, 100 and 600 mPa·s).

In all PCL and PCL/CHI samples, SEM images revealed the formation of homoge-
neous fibrous meshes with little to no beads or defects (Figure 1). Moreover, the majority
of the diameters of the fibers of all the tested formulations were within the range of
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250–450 nm. Nonetheless, fiber diameter analyses displayed significant variations among
fabricated formulations by changing the PCL:CHI weight ratio (9:1 to 8:2 or 7:3) and inher-
ent viscosities of CHI (20 to 100 or 600 mPa·s). In the following figures (Figures 2 and 3),
detailed statistical evaluations of the fiber diameter sizes and distributions are exhibited.
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Figure 3. Results of multiple-comparison test of fabricated PCL and PCL/CHI biomaterials (A) in
general, (B) for different CHI inherent viscosities (20, 100 and 600 mPa·s) and (C) for different
PCL:CHI ratios (9:1, 8:2 and 7:3). (A) Asterisks denote statistically significant differences in the fiber
diameter distributions compared to the distribution of pure PCL. Other asterisks denote statistically
significant differences in the fiber diameter distribution within (B) viscosities or (C) PCL:CHI ratios
with p < 0.05 significance level.

Additionally, fibrous mesh density was found to differ among the different tested
parameters, which is related to the productivity of the ES process. Overall, it can be
seen in Figures 1–3 that the least dense fibrous meshes were obtained in samples fab-
ricated with 600 mPa·s CHI inherent viscosity (PCL/CHI_9/1_600, PCL/CHI_8/2_600,
PCL/CHI_7/3_600), whereas the densest fibrous layers were obtained in formulations
synthesized with pure PCL and 20 mPa·s CHI inherent viscosity (PCL/CHI_9/1_20,
PCL/CHI_8/2_20, PCL/CHI_7/3_20). The PCL/CHI_7/3_20 formulation showed the
narrowest fiber diameter distribution (257.77 ± 15.84 nm), with more than 35% of the fibers
in this range.
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In Figure 3A, it can be observed that only four of the fabricated biomaterials were found
to be statistically significantly different from the pure PCL formulation (p = 0.00051 for
PCL/CHI_8/2_20, p = 7.964·10−8 for PCL/CHI_8/2_600, p = 0.00003 for PCL/CHI_7/3_20
and p = 2.967·10−8 for PCL/CHI_7/3_600). Moreover, the CHI content effect is studied in
Figure 3B for each specific CHI inherent viscosity, again conducting multiple-comparison
tests within each group of fabricated nanofibrous biomaterials. In this case, fiber diameter
differences of between 9:1 and 7:3 ratios were found to be statistically significant for all
tested CHI inherent viscosities.

Meanwhile, multiple-comparison tests were conducted within each PCL:CHI weight
ratio of fabricated nanofibers in order to investigate the effect of CHI inherent viscosity
(Figure 3C). Results for a 9:1 PCL:CHI weight ratio showed that nanofiber diameters
were not statistically significant between 20, 100 and 300 mPa·s CHI inherent viscosities.
However, a significant difference was found between 100 mPa·s and 600 mPa·s CHI for
8:2 PCL:CHI weight ratio. Additionally, statistically significant differences between each
of the tested biomaterials were obtained for the 7:3 PCL:CHI weight ratio, resulting in the
thickest fibers being in PCL/CHI_7/3_600. Overall, as the CHI amount increases, a more
pronounced CHI viscosity effect is noticed.
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Moreover, FTIR was employed to analyze the structure and interactions of PCL/CHI
nanofibers (Figure 4A). The most typical vibration bands of PCL are C-H stretching
(2850–3000 cm−1), C=O carbonyl stretching (1725 cm−1) and C-O-C plus C-O stretching
(1050–1250 cm−1). Simultaneously, the CHI spectrum (Figure S1) possesses characteris-
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tic peaks at 3250–3500 cm−1 (O-H and N-H stretching), 2850–3000 cm−1 (C-H stretch-
ing), 1600–1750 cm−1 (amide I, C=O stretching), 1500–1580 cm−1 (amide II, NH bending),
1300–1400 cm−1 (amide III, C-N stretching) and 1050–1250 cm−1 (C-O-C and C-O stretch-
ing) [39,40].

After ACES, PCL and CHI combinations led to a significant increase in peak intensities
at 1500–1580 cm−1 (amide II, N-H bending), 1300–1400 cm−1 (amide III, C-N stretching)
and 1050–1250 cm−1 (C–O–C + C–O stretch). In addition, the appearance of a vibration
band at 3250–3500 cm−1 (O-H and N-H stretching) also validated PCL/CHI nanofiber com-
binations owing to hydroxyl, amine and amide groups of CHI along with the appearance of
intramolecular H-bonds within PCL and CHI chains. Such changes in PCL/CHI nanofiber
vibration bands are more visible in combinations using high CHI quantities and viscosities,
as observed in PCL/CHI_8/2_600, PCL/CHI_7/3_100 and PCL/CHI_7/3_600. Never-
theless, the C=O stretching (1600–1750 cm−1) vibration band did not suffer any notable
intensity increment between PCL and PCL/CHI spectra due to almost imperceptible amide
quantities in the CHI structure (deacetylation degrees > 98%). PCL, CHI and PCL/CHI
absorption peak assignments were endorsed by prior FTIR analyses [41–43].

Similarly, the chemical composition of PCL and PCL/CHI nanofibers was quantita-
tively measured by XPS (Figure 4B,D, Table S1). As expected, PCL nanofibers only exhibited
carbon and oxygen atomic compositions (74.90% C1s, 25.10% O1s). After combination of
PCL with CHI at a 9:1 weight ratio (Figure 4B), atomic carbon and oxygen compositions did
not vary significantly in PCL/CHI_9/1_20 (75.91% C1s, 24.09% O1s), PCL/CHI_9/1_100
(72.19% C1s, 27.81% O1s) and PCL/CHI_9/1_600 (77.42% C1s, 22.58% O1s) formulations.

Nonetheless, nitrogen atomic composition could be quantified in the remaining
PCL/CHI nanofibers synthesized with a higher CHI quantity (Figure 4C,D, 8:2 and
7:3 PCL:CHI weight ratios), which are 0.34% N1s for PCL/CHI_8/2_20, 0.58% N1s for
PCL/CHI_8/2_100, 0.61% N1s for PCL/CHI_8/2_600, 0.40% N1s for PCL/CHI_7/3_20,
0.60% N1s for PCL/CHI_7/3_100 and 0.76% N1s for PCL/CHI_7/3_600, respectively. So,
a significant increase in nitrogen atomic composition (↑ % N) could be noticed as CHI
quantity (7:3 > 8:2 > 9:1 PCL:CHI weight ratio) and inherent viscosity (600 > 100 > 20 mPa·s)
increased, corroborating the successful fabrication of PCL/CHI nanofibers.

3.2. Nanomechanical Properties

Mechanical properties of wound dressings are of key importance for maintaining a
long-term high-quality treatment to patients. It has been reported that synthetic polymers
(PCL) exhibited excellent mechanical properties, whereas natural polymers (CHI) possess
more restrictive ones [44]. PCL/CHI electrospun dressings have displayed excellent me-
chanical properties in multiple previous scientific studies [45,46]. However, to the best of
our knowledge, the nano-scale mechanical behavior of PCL/CHI nanofibers has never
been reported previously. Consequently, the nanomechanical properties of nanofibers were
determined by AFM (Figures 5 and S2).

Nanofibers’ nanomechanical properties were highly dependent on the synthesis
parameters used (Figure 5). In fact, the PCL sample possessed a Young’s modulus of
2.81 ± 0.74 MPa, while PCL/CHI formulations with low CHI quantities and viscosities
exhibited a non-significant Young’s modulus increase (p > 0.05). Unexpectedly, PCL/CHI
nanofibers fabricated with high CHI content and viscosities resulted in a significantly
(p < 0.05) higher Young’s modulus, revealing an improvement in nanomechanical prop-
erties (6.02 ± 0.44 MPa for PCL/CHI_8/2_600, 9.75 ± 1.43 MPa for PCL/CHI_7/3_20,
16.63 ± 3.96 MPa for PCL/CHI_7/3_100 and 23.14 ± 2.15 MPa for PCL/CHI_7/3_600).
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3.3. Contact Angle, Absorption Capacity and Biodegradation

An optimal wettability for polymeric dressings is required for effective wound heal-
ing [47]. In this regard, superhydrophobic (contact angle > 150◦) wound dressings can
be an ideal approach to enhance biological response, improve hemostasis and decrease
bacterial adhesion [48]. However, pure PCL nanofibers are simply reported as hydrophobic
biomaterials with 120–130◦ contact angle values [49]. Besides this, CHI has been histori-
cally used to increase wettability, which should make the obtention of superhydrophobic
PCL/CHI nanofibers difficult [50].

Hence, the wettability of nanofibers was examined by contact angle measurements
(Figure 6A). As expected, PCL nanofibers exhibited a contact angle of 123.25 ± 5.95◦

but, surprisingly, PCL/CHI nanofibers displayed a significant (p < 0.05) contact angle
increase. In this way, PCL/CHI_7/3_100 and PCL/CHI_7/3_600 manifested the highest
contact angle values (144.66 ± 2.06◦ and 143.52 ± 2.27◦). Such superhydrophobicity could
be attributed to asymmetric alignment with random orientation of nanofibers [51]. So,
superhydrophobic PCL/CHI nanofibers could effectively prevent bacterial infections and
induce hemostasis to promote wound healing.

In addition, absorption capacity is another functional property that primary dressings
should fulfil to manage exudate excess. In fact, excessive exudate production can dam-
age wounds and the surrounding skin (especially in chronic wounds), delaying healing
by the prevention of cell migration [52,53]. In this regard, dressing absorbency can be
evaluated in accordance with the UNE-EN ISO 13726-1:2002 standard [54]. Thereby, the
exudate absorption capacity of fabricated PCL and PCL/CHI nanofibers was determined
(Figure 6B).

As seen in Figure 6B, all PCL and PCL/CHI nanofiber formulations displayed a
magnificent ability to absorb exudate. Actually, PCL nanofibers showed the lowest ab-
sorbency (179.58 ± 49.01%), whereas PCL/CHI nanofiber absorbency differed signifi-
cantly (p < 0.05) as CHI quantity and viscosity increased. Hence, PCL/CHI_9/1_600,
PCL/CHI_8/2_600, PCL/CHI_7/3_100 and PCL/CHI_7/3_600 samples can be categorized
as superabsorbent dressings due to their outstanding exudate absorption capacities, which
are 305.02 ± 48.93%, 314.58 ± 73.65%, 383.33 ± 47.14% and 400.89 ± 32.48%, respectively.
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Although the combination of superhydrophobic PCL/CHI nanofibers and their sub-
sequent great exudate absorption capacity may sound contradictory, it is a phenomenon
that frequently occurs in the biomedical community and is described in the scientific litera-
ture [55,56]. Specifically, it is well known that superhydrophobic surfaces in continuous
contact with an excess of water can provoke a significant decrease in contact angle val-
ues, resulting in the loss of nanofibers’ superhydrophobic nature. Fortunately, PCL/CHI
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nanofibers combine both beneficial properties for effective wound healing: initial super-
hydrophobicity, of which the durability is altered after a certain period of time to absorb
detrimental excessive quantities of exudate.

Furthermore, in vitro degradation of synthesized PCL and PCL/CHI nanofibers was
monitored in the absence (Figure 6C) and presence of lipase (Figure 6D) and lysozyme
(Figure 6E) enzymes, which are especially used to biodegrade PCL and CHI. While lipase
is known to hydrolyze ester bonds of PCL aliphatic polyester [57], lysozyme favors the
hydrolysis of β-(1,4) glycosidic linkages of CHI [58]. As observed in Figure 6C, all PCL
and PCL/CHI nanofiber formulations demonstrated great hydrolytic stability for 30 days
(remaining nanofiber mass > 82%) without significant differences between all degradation
profiles (p > 0.05).

However, PCL and PCL/CHI nanofiber biodegradability was magnified in lipase
and lysozyme enzymatic mediums, with significant (p < 0.05) differences in the remaining
nanofibers’ mass obtained practically from the third day until day 30. On the one hand,
lipase medium (Figure 6D) led to the highest degradation rates of nanofibers with in-
creased PCL content after 30 days: PCL (33.33 ± 2.55%), PCL/CHI_9/1_20 (58.27 ± 1.87%),
PCL/CHI_9/1_100 (68.03 ± 2.33%) and PCL/CHI_9/1_600 (70.57 ± 1.70%). On the
other hand, lysozyme (Figure 6E) caused the highest biodegradation in nanofibers with
increased CHI quantity and viscosity, PCL/CHI_7/3_600 (32.38 ± 3.01%), PCL/CHI_8/2_600
(43.75 ± 2.96%), PCL/CHI_7/3_100 (50.89 ± 3.65%) and PCL/CHI_8/2_100 (56.67 ± 4.20%)
being the least stable ones after 30 days.

Results so far reveal optimal physicochemical and nanomechanical properties along with
ideal wettability, absorption capacity and stability of all PCL and PCL/CHI nanofibers for long-
term applications as wound dressings. Therefore, the following biocompatibility, antibacterial
and wound healing tests were preferentially performed only on PCL and PCL/CHI_7/3_600
formulations in order to validate their biological safety and bioactive properties.

3.4. Biocompatibility Test

Biological evaluation of a biomaterial intended for human use must follow the require-
ments of the ISO 10993-1:2010 standard, in which medical devices are classified under three
main categories (surface, external communicating or implant device) and exposure dura-
tion (limited: t ≤ 24 h; prolonged: from 24 h to 30 days; and permanent: t > 30 days) [59].
Even so, regardless of the categorization assigned to the medical device, cytotoxicity and
hemocompatibility assessments are common tests performed on dressings.

Therefore, biological safety of nanofiber-based dressings was first assessed by a cy-
totoxicity test (Figure 7A) according to the ISO 10993-5:2009 norm [36]. In this standard,
it is stated that cell viability values below 70% are considered cytotoxic. In Figure 7A, it
can be observed that cell viabilities of cytotoxic ZDEC positive controls (+) are inversely
proportional to the extract concentration, whereas the non-cytotoxic HDPE negative control
(−) displays a cell viability of 79.01 ± 8.42% (p < 0.05, blank cell viability: 100.00 ± 8.34%).
What is more, both PCL and PCL/CHI nanofibers exhibited an adequate cytocompatibility
with cell viabilities of 109.25 ± 6.43% for PCL and 106.07 ± 9.05% for PCL/CHI_7/3_100 at
100% concentration.

Conversely, hemocompatibility of nanofiber dressings was evaluated by quantify-
ing hemolysis rate (Figure 7B,C), which is defined as the process in which hemoglobin
is released from erythrocytes, either by destruction or through a partially damaged cell
membrane. According to ISO 10993-4, blood-contacting biomaterials can be classified
as hemolytic (hemolysis > 5%), slightly hemolytic (hemolysis between 2 and 5%) and
nonhemolytic (hemolysis < 2%) [37]. So, both PCL and PCL/CHI samples could be cate-
gorized as nonhemolytic (0.00 ± 0.36% and 0.00 ± 0.14% hemolysis rates), demonstrating
remarkable hemocompatibility. Indeed, electrospun nanofibers improve hemolysis rates
of positive controls (0.78 ± 0.07 for Buna-N, 1.10 ± 0.25 for MS, 3.48 ± 0.53 for SE), even
reaching the hemolytic activity of unexposed blood negative control (0.00 ± 0.31%): that is,
an absence of hemolysis.
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trations obtained by incubating nanofibers in culture media for 24 h at 37 ◦C. (B) Hemolysis rate (%
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PCL/CHI nanofibers. ** Non-significant differences (p > 0.05); * significant differences (p < 0.05).

3.5. In Vitro Antibacterial Activity

Antibacterial activity against infections is an important feature that nanofiber-based
biomaterials should fulfil for successful wound healing [60]. It is well known that bacterial
infections could promote exudate formation and delay the wound healing process, S.
aureus and P. aeruginosa bacteria strains being the most common microorganisms isolated
from chronic wound infections [61]. Such infections can be avoided by reducing the
number of pathogens on wound sites through the employment of electrospun CHI-based
nanofibers with antibacterial properties [62]. For this reason, antibacterial activity of
PCL/CHI_7/3_100 was evaluated against S. aureus and P. aeruginosa after 24 h (Figure 8)
since it is considered most critical for bacteria adhesion and proliferation [63].

Figure 8 displays the remarkable antibacterial activity of PCL/CHI_7/3_100 nanofibers
against both S. aureus and P. aeruginosa due to a significant reduction in the number of viable
bacteria compared to the control group (1.84·103 ± 0.91·103 CFU vs. 1.91·106 ± 3.15·105 CFU
for S. aureus and 1.64·104 ± 3.19·103 CFU vs. 1.78·107 ± 1.93·106 CFU for P. aeruginosa).
Therefore, PCL/CHI_7/3_100 showed nearly 100% bacteria reduction (99.90% for S. aureus
and 99.91% for P. aeruginosa) with resultant log10 reductions (R) of 3.02 and 3.03, respectively.
This way, the antibacterial activity of fabricated PCL/CHI nanofibers against S. aureus and P.
aeruginosa is demonstrated for its potential application in chronically infected wound sites.
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Figure 8. (A) CFU, (B) bacterial reduction (% death) and (C) log10 reduction (R) antibacterial
activity of PCL/CHI nanofibers against S. aureus (no pattern) and P. aeruginosa (striped pattern) after
24 h. (D) Photographs of S. aureus and P. aeruginosa bacterial colony agar plates are also shown to
corroborate quantitative results. * Significant differences (p < 0.05).

3.6. In Vitro Wound Healing Cell Proliferation Assay

Wound healing is a complex biological process in which tissue integrity is restored.
Physiologically, tissue repair is composed of four main phases: hemostasis, inflammation,
proliferation and remodeling [64]. While the first two stages involved in tissue repair last
a maximum of 48 h, the proliferative stage begins in the microenvironment of the lesion
within the first 48 h and can unfold up to 14 days after the onset of the lesion [65].

For this reason, proliferation not only is undoubtedly the most important stage of
the healing process, but also is the most responsible for lesion closure itself including
angiogenesis (restoration of vascular network), fibroplasia (formation of granular/fibrous
tissue), re-epithelialization (covering of wound surface by the reconstruction of injured
epithelium) and retraction (decrease in tissue area needing to heal) [66]. Therefore, the
wound healing activity of fabricated nanofibers was evaluated by a cell proliferation
assay using CLSM measuring the fluorescence intensity of green-stained HDFs (Figure 9).
Cellulose cardboard in which nanofibers are deposited during the ACES process was used
as a control.
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Figure 9. (A) Quantitative total fluorescence intensity (a. u.) calculated by ImageJ software obtained 
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As seen in Figure 9, cellulose cardboard and PCL nanofibers stimulated discrete pro-
liferation ability in which HDFs proliferated equally comfortably (p > 0.05) in both samples 
(291.38 ± 59.52 and 276.11 ± 33.81 fluorescence intensities). Such proliferation results are 
in accordance with the scientific literature in which, although PCL nanofiber cell prolifer-
ative ability is considered adequate enough, the proliferation process can be promoted 
after combination with other bioactive polymers like CHI. Indeed, significantly (p < 0.05) 

Figure 9. (A) Quantitative total fluorescence intensity (a. u.) calculated by ImageJ software obtained
from (B) fluorescence images obtained by CLSM of cellulose cardboard, PCL nanofibers and PCL/CHI
nanofibers after 48 h (2.5× magnification, 20 µm scale bar). Areas 1 and 2 are two representative
randomly taken microphotographs of its well. ** Non-significant differences (p > 0.05); * significant
differences (p < 0.05).

As seen in Figure 9, cellulose cardboard and PCL nanofibers stimulated discrete prolif-
eration ability in which HDFs proliferated equally comfortably (p > 0.05) in both samples
(291.38 ± 59.52 and 276.11 ± 33.81 fluorescence intensities). Such proliferation results are in
accordance with the scientific literature in which, although PCL nanofiber cell proliferative
ability is considered adequate enough, the proliferation process can be promoted after
combination with other bioactive polymers like CHI. Indeed, significantly (p < 0.05) more
HDFs were found in PCL/CHI nanofibers (386.90 ± 21.17 fluorescence intensity) compared
to PCL-only nanofibers, proving their enhanced wound healing activity.

4. Conclusions

Physicochemical and nanomechanical results confirmed the hypothesized possibility
of combining PCL and CHI to synthesize nanofiber-based wound dressings. Furthermore,
cytocompatibility and hemocompatibility results proved the biological safety of nanofibers.
Moreover, PCL/CHI nanofibers exhibited antibacterial activity against S. aureus and P.
aeruginosa, which undoubtedly would be beneficial to regenerate damaged tissues. Finally,
the enhanced wound healing activity of PCL/CHI nanofibers was confirmed thanks to
their ability to promote cell proliferation. All in all, bioactive PCL/CHI nanofiber-based
dressings could be considered as potential candidates for long-term applications such as
wound healing medical devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16101333/s1, Figure S1: FTIR spectra of pure CHI used to
fabricate PCL/CHI nanofibers; Table S1: Atomic compositions (%) of electrospun PCL and PCL/CHI
nanofibers obtained by XPS; Figure S2: High-resolution AFM channels with obtained nanomechanical
properties of synthesized PCL and PCL/CHI nanofibers.
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