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Abstract: Ensuring military and police personnel protection is vital for urban security. However, the
impact response mechanism of the UHMWPE laminate used in ballistic helmets and vests remains
unclear, making it hard to effectively protect the head, chest, and abdomen. This study utilized 3D-
DIC technology to analyze UHMWPE laminate’s response to 9 mm lead-core pistol bullets traveling
at 334.93 m/s. Damage mode and response characteristics were revealed, and an effective numerical
calculation method was established that could reveal the energy conversion process. The bullet
penetrated by 1.03 mm, causing noticeable fiber traction, resulting in cross-shaped failure due to fiber
compression and aggregation. Bulge transitioned from circular to square, initially increasing rapidly,
then slowing. Maximum in-plane shear strain occurred at ±45◦, with values of 0.0904 and −0.0928.
Model accuracy was confirmed by comparing strain distributions. The investigation focused on
bullet-laminate interaction and energy conversion. Bullet’s kinetic energy is converted into laminate’s
kinetic and internal energy, with the majority of erosion energy occurring in the first four equivalent
sublaminates and the primary energy change in the system occurring at 75 µs in the fourth equivalent
sublayer. The results show the damage mode and energy conversion of the laminate, providing
theoretical support for understanding the impact response mechanism and improving the efficiency
of protective energy absorption.

Keywords: UHMWPE laminate; ballistic damage; back-face features; SPH-FEM coupled model;
energy transformation

1. Introduction

In modern localized warfare, protecting the lives of military and police personnel is
of paramount importance. Personal protective equipment such as bulletproof vests plays
a crucial role in reducing soldier casualties. Researching how to provide more effective
protection when encountering light weapon attacks is of great significance. Bulletproof
vests with high ballistic ratings are already capable of effectively stopping small to medium-
caliber rifle bullets while ensuring that back deformation does not cause severe injuries to
the body. Therefore, studying the interaction between individual protection and projectiles,
as well as the features of back deformation, is key to understanding the protective response
to impacts.

High impact resistance, high abrasion resistance, high chemical resistance, flexibil-
ity, and excellent ballistic properties [1] make ultra-high molecular weight polyethylene
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(UHMWPE) fibers ideal for lightweight and high-performance body armor. Bulletproof
undershirts are one of the applications of their flexible properties, and typically around
50 sheets of weftless fabric consisting of four layers of prepreg [2] stacked together can be
used as soft body armor to meet the requirements of NIJ Level II ballistic standards [3].
Hundreds of layers of unidirectional prepregs are stacked together in a two-by-two or-
thogonal manner and hot-pressed to obtain UHMWPE laminates, which can be used as
rigid inserts in composite protection. The laminate could be used as the flexible insert close
to the human chest on composite bulletproof vests made of brittle ceramics and flexible
laminates. The laminate can also be used as a helmet or to independently withstand the
impact of handgun bullets.

For the study of the dynamic mechanical properties of UHMWPE orthotropic lay-up
laminates, Shi [4] investigated the dynamic mechanical properties of UHMWPE orthotropic
lay-up laminates with different lay-up angles under high strain rate compression and found
that the energy absorption capacity varied with the lay-up angle and that the main damage
modes were delamination and compaction in the thickness direction. Asija [5] utilized the
SHPB test to evaluate the performance of the STF-treated UHMWPE composites at high
strain rates and showed that STF-treated specimens outperformed untreated specimens in
terms of peak stress, strain, strain rate, and impact toughness.

For numerical simulation studies on protective impact response, Long [6] proposed an
improved Taylor approximation method. This new method utilizes the recursive relation-
ship of the inverse Langevin function as an auxiliary tool, enabling a more accurate descrip-
tion of the relationship between stress, strain, and displacement in materials. Compared to
the widely-used 5th-order Taylor approximation, this new method offers higher accuracy
and stability when dealing with simulations involving large deformations. Nguyen [7]
applied the equivalent laminate discrete method to accurately capture vertical failure. They
simulated the impact of different thickness laminates, ranging from 12.7 mm to 102 mm,
with calibers of 12.7 mm and 20 mm and velocities ranging from 400 m/s to 2000 m/s. They
predicted penetration mechanisms and bulge morphology. Bürger [8] proposed a strain rate
constitutive model to simulate the ballistic impact response of UHMWPE fiber-reinforced
composites and predict energy loss. However, the overall modeling failed to simulate
laminated damage and bulge height.

In terms of research on theoretical models for composite materials, Long [9] investi-
gated the influence of temperature on critical energy release rates using damage mechanics
material models and element deletion methods. By considering factors such as strain rate,
temperature, and stress state, they simulated a three-dimensional fracture specimen using
an advanced material model based on test data to find critical energy release rates at differ-
ent temperatures. The simulation results showed that critical energy release rates increased
with temperature. Numerically, the equivalence conditions in brittle and small-scale plastic
fracture were proven [10]. Vaziri [11] proposed a model to predict the transient response
of composite plates under non-penetrating impact. This model used two-dimensional
elements to simulate the composite material but could not predict internal phenomena.
However, it could predict the structural impact response. Analytical models for studying
impacts only provide very limited solutions. This leads to the need for a large number
of different analytical models for different scenarios. For example, Ben-dor [12] compiled
around 280 analytical models, with 20 categorized as the most cited models.

The 3D digital image correlation (DIC) measurement and analysis method was first
proposed by Luo [13]. Its basic principle combines the binocular stereo vision principle
with digital image correlation matching technology to reconstruct the three-dimensional
spatial coordinates of each point on the surface of the object before and after deformation.
This enables the determination of surface morphology and three-dimensional deformation
information. Compared to other optical measurement methods, 3D-DIC offers advantages
such as non-contact, full-field measurement, automation, simplicity of optics, universality,
and strong resistance to interference. As a result, it has been widely used in the mechanical
property testing of various materials across different fields [14]. Currently, 3D-DIC technol-
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ogy is relatively mature. Freitas [15] and Bigger [16] have used high-speed photography
with 3D-DIC to measure the penetration process of bullets of different calibers on various
protective materials. They also calculated and analyzed the corresponding deformation.
With the growing utilization of high-speed photography in the research of dynamic me-
chanical properties and impact response, 3D-DIC technology is gradually being applied in
the mechanical property and impact testing of UHMWPE laminates.

In the research of impact response in fiber-reinforced composite laminates, the focus is
primarily on investigating the influence of laminate thickness, impact velocity, and stacking
sequence on penetration characteristics, local damage, and stress wave transmission. While
3D-DIC technology assists in capturing impact features, there is a need for further research
on the response of thin laminates and analysis of strain distribution. Studying the strain
distribution in UHMWPE laminates contributes to understanding the impact mechanisms
and improving numerical models. Numerical simulations primarily aim to predict the
dynamic mechanical properties of fiber-reinforced laminates, particularly the consistency
of stress–strain curves with experimental data. However, global modeling fails to fully
represent delamination phenomena, and the dynamic compressive behavior of interlaminar
cohesive strength requires further investigation. Discrete modeling is suitable for laminates
of varying sizes and thicknesses. Despite progress made by numerical models in studying
back bulging, there is still a need to improve the simulation accuracy of strain distribution
and compression wave propagation to deepen the understanding of deformation and
damage mechanisms.

To address the limitations in current research, this study investigates the damage
mode of UHMWPE laminate under typical pistol bullet impact and quantitatively analyzes
the bulge morphology and strain distribution on the back surface using 3D-DIC technology.
An optimized numerical simulation model is proposed, employing interlayer contact based
on the same traction-separation criterion instead of cohesive units. This is because the
large size of the laminate would require a significant amount of time when using cohesive
elements. Although, since cohesive effects were not simulated with a mesh, it is difficult to
determine the exact moment when interlaminar separation occurs. It has little influence
on the focus of this study, which is more on the bulging and the morphological changes
of the sub-laminates during the impact process. Therefore, this model is applicable for
studying the impact response of laminates on a larger scale while appropriately reducing
computational complexity without compromising accuracy. The validity of the numerical
model is verified through comparison with experimental results, and further analysis is
conducted to explore the interaction characteristics between the bullet and laminate, as well
as the variations in energy. The experimental findings provide essential quantitative data
for investigating the impact behavior of UHMWPE laminates, while the SPH-FEM-coupled
numerical simulation method offers valuable insights into the interaction between pistol
bullets and laminates.

2. Experiment Procedure
2.1. Materials and Apparatus

The test specimen was a UHMWPE laminate produced by Ningbo Dacheng New
Materials Co., Ltd. (Ningbo City, China). The manufacturing process of the laminate
involves the use of UHMWPE fibers with specifications of 1000D × 300F. The technical
specifications of these fibers are a density of 0.97 g/m3, a tensile strength of 40 ± 2 g/D,
a modulus of 1300 g/D, and an elongation rate of 3.3%. The production starts with
the arrangement of unidirectional woven fabric in a bi-orthogonal pattern at 0◦and 90◦,
followed by pressing in a vulcanizing machine at 80 °C for one hour to create a bulletproof
fabric with a surface density of 160 g/m2. Subsequently, 55 layers of this fabric, each
0.2 mm thick, are stacked and hot-pressed for 1.5 h at 100 °C using a 1200-ton press to
achieve the final shape. The resulting laminate measures 300 × 300 × 11 mm, has a surface
density of 9.7 kg/m2, and the diameter of the fibers is approximately 25 µm. The matrix
material used is water-based polyurethane, with a density of about 1.1 × 10³ kg/m3 and a
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volume fraction of around 20%. And the basic mechanical properties of the laminate are
as follows: The average elastic modulus of the laminate is 25.7 MPa, the average tensile
strength is 406.3 MPa, the tensile failure strain is 1.78%, the in-plane shear strength is
25 MPa, the maximum shear stress is approximately 158 MPa, the shear strain reaches
44%, and the punch shear strength is 158 MPa. The transient impact testing system
for the laminates primarily consisted of DIC high-speed photography, color high-speed
photography, a trigger device, and a velocimeter. The DIC high-speed photography was
responsible for measuring the speckle displacement on the back of the UHMWPE laminate,
which served as the target plate. This measurement provided information on the bulge
height, width, and strain on the back. The color high-speed photography, positioned on the
side of the target plate, compared the measured bulge height with the results obtained from
DIC high-speed photography to validate the reliability of the DIC data. The velocimeter was
used to measure the initial velocity of the projectile. The trigger device synchronized the
DIC high-speed photography and the color high-speed photography. Schematic diagrams
and on-site layout are shown in Figures 1 and 2, respectively. The corners of the laminates
were securely fastened using G-shaped clamps on angle steel brackets. The laminates were
subjected to shots from NP22 9 mm lead-core bullets fired from a distance of 10 m, with an
average initial velocity of 334.93 m/s.
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2.2. Data Processing and Validation

Due to the variability of the clamping method and fixture, their influence on the bulge
height of the laminated board needs to be considered. Figure 3a shows the clamping
method, where G-shaped clamps are used to secure the four corners of the laminated
board. The central point P0 is selected as the location of the maximum bulge height, from
which displacement, velocity, and acceleration data for the maximum bulge height are
extracted. Points P1 to P4 at the corners are used to extract the overall displacement of the
laminated board in the z direction. The lines LAB and LCD, which pass through point P0
in the x and y directions, respectively, are used to describe the variations of bulge width
in the horizontal and vertical directions, thus depicting the changes in the bulge contour
along the x and y directions.
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Figure 3b illustrates the calibration of the side-view high-speed photography. A ruler
is fixed to the fixture to calibrate the dimensions within the image. Point Q0 is selected to
extract the overall displacement of the fixture in the z direction. Q1 represents the initial
position of the maximum bulge height point, while Q2 represents its position at a certain
moment. The difference between these two points is considered the displacement of the
maximum bulge height point in the z direction. The bulge height and width are shown
in Figure 3b.

In addition to the intrinsic variation of the bulge height, the bulge height is also
influenced by the movement of the fixture, as shown in Figure 4. The fixture is not fixed
rigidly to the ground but is instead held in place by sandbags to prevent movement. It
can be observed that after the fixture is subjected to impact, there is a gradual backward
displacement. Furthermore, due to the limitations of the clamping device, the laminate
may also experience displacement relative to the fixture. The fixture starts to move from
2.8 ms onward, without significant oscillation. On the other hand, the average displacement
of points P1 to P4 indicates that the laminate undergoes overall displacement starting at
1.6 ms, with a relatively large amplitude of oscillation. The first peak occurs at 1.2 ms
with a value of 14.23 mm. Therefore, both the displacement of the fixture and the overall
displacement of the laminate have a minimal effect on the first peak. Regarding the second
peak, the displacement of the fixture has some influence, though not significant. Specifically,
when excluding the displacement of the fixture, the second peak occurs at 1.65 ms with a
value of 14.26 mm. The difference between the two peaks is only 0.03 mm. Furthermore,
the amplitude of the oscillation gradually decreases during the stable oscillation phase. In
summary, the movement of the fixture and the overall displacement of the laminate have
a minor impact on the values and trends of the two peaks. Therefore, in the subsequent
data analysis, the data, without excluding the displacement of the fixture and the overall
displacement of the laminate, are utilized.
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Figure 4. The influence of the bracket displacement and whole laminate displacement on the
bulge height.

As shown in Figure 5, the maximum bulge heights all increase rapidly at first, followed
by a second peak after a short fall, after which they fall rapidly and begin to oscillate.
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Figure 5. History of the maximum height of the bulge.

Based on the data in Table 1, the second peak value of the bulge height obtained
using the DIC method is 14.93 mm. In comparison, the peak value measured by side-view
high-speed photography is 14.54 mm, resulting in an error of only 2.18%. After repeating
the experiment twice, the test data showed similar errors to the data obtained in the first test.
This indicates that the accuracy of the DIC analysis results has been adequately ensured.

Table 1. The second peak value: 3D-DIC and side camera measured bulge height.

Experiment No.
Impact Velocity

The Maximum Bulge Height
Time

3D-DIC Side Camera Relative Error

(m/s) (mm) (mm) (%) t (µs)

1 338.40 15.30 15.00 2.01 1150
2 333.10 14.26 13.89 2.70 900
3 334.20 15.22 14.73 1.83 1000

Average 335.23 14.93 14.54 2.18 —
SD 2.20 0.43 0.45 0.31 —

3. Experimental Results and Discussions
3.1. The Morphology of Bullet-Impacted Surface

Figure 6 illustrates the morphology of the impacted surface. The laminated board
can be clearly divided into two parts: the penetrated section and the unpenetrated section.
The impacted laminate is initially subjected to compression and shearing by the bullet,
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specifically manifested as the fiber bundles in the x and y directions at the impact site
being stretched under the effect of the bullet impact and the adhesive force of the laminate.
Therefore, these fiber bundles are stretched before shear fracture and compressed to form
a bullet hole. These fiber bundles then undergo elastic recovery after the bullet passes
through the bullet hole. Moreover, since these fiber bundles have already partially detached
from the main body of the laminate during the compression process, they exhibit a distinct
cross-shape and detachment from the surrounding fibers after elastic recovery. There
is a distinct layering between the penetrated layers and the unpenetrated layers. This
could be attributed to the fact that the penetrated layers lose their effectiveness after
being penetrated by the projectile. These layers relax and recover under the remaining
tension of undamaged fibers, causing a separation from the unpenetrated layers that would
have otherwise continued to displace under the influence of the projectile. This layering
phenomenon between the penetrated and unpenetrated layers is similar to the transitional
layer mentioned in reference [17]. It can be observed that there are only a few penetrated
layers, and the layering in both sections occurs early in the failure process. Therefore, the
penetrated and unpenetrated sections evolve independently, with the latter absorbing more
energy [18].
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It is evident that the bullet has shattered and dispersed into the inter-layer gaps of
both the penetrated and unpenetrated sections, resulting in distinct cross-shaped patterns
of fibers in the x and y directions. The extent of shell fragmentation is approximately
112.62 × 138.82 mm, while the cross-shaped pattern covers an area of approximately
130.00 × 132.35 mm. Cheeseman [19] mentioned that at the impact point, the predominant
failure characteristic is the inter-layer shear between adjacent layers along the thickness
direction, which is responsible for the formation of bullet holes. In contrast, the main
failure feature observed here is the shear fracture between multiple fiber bundles due to
the impact of the projectile, leading to the compression of surrounding fiber bundles that
remain intact. Consequently, the originally regular arrangement of fiber bundles becomes
distorted, resulting in the formation of cross-shaped fibers.

The morphology of the bullet holes is shown in Figure 6b. Each bullet hole exhibits a
square-like shape with a very flat cross-section, indicating shear failure as the predominant
failure mode. There is no significant layering between the penetrated layers, suggesting
minimal relative movement between the layers, which reflects the good inter-layer integrity
and bonding of the laminated board. As shown in Table 2, the dimensions of the bullet holes
are 6.27 × 6.20 mm, smaller than the diameter of the projectile. This could be attributed
to the coupling of shear and tensile stresses experienced by the fibers in the penetrated
layers initially. After penetration, the tension in the fibers near the bullet hole is released,
resulting in a reduction in the size of the bullet hole. The front-side morphology of repeat
experiments is shown in Figure 6c,d. The side-view and back side of the impacted laminate
are shown in Figure 6e,f.

Table 2. The value of the morphology of the impacted surface.

Experiment No.
Penetrated Thickness

Bullet Hole Shell Segment Diffusion Cross-Shaped Fibers

x y x y x y

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

1 0.95 6.15 6.11 113.21 145.21 136.42 127.62
2 1.06 6.34 6.33 110.32 124.46 133.22 139.35
3 1.07 6.32 6.14 113.67 139.41 131.57 141.11

Average 1.03 6.27 6.20 112.4 136.36 133.74 136.03
SD 0.05 0. 10 0. 12 1.82 10.71 2.47 7.33

3.2. The Morphology of the Back-Face Bulge

Regarding the morphological changes of the bulge bottom surface, as shown in
Figure 7. The simulation results are similar to the experimental results and are specifi-
cally analyzed in Section 4.2. When the laminate initially experiences impact, the fiber
structure in the x and y directions receives the impact force first and absorbs energy. This
leads to the fastest wave velocity in the x and y directions and results in a diamond-shaped
appearance on the bulge bottom surface. As shown in Figure 7d, the propagation velocity
along the 45◦ direction gradually exceeds that along the x and y directions, causing the
impact response to continue increasing. The shape of the bulge bottom surface gradually
transitions from a diamond to a circular shape. This may be attributed to the fact that
the deformation of fibers along the x and y directions at the impact location is primarily
caused by tension. Being in a high-modulus direction, deformation occurs rapidly. On
the other hand, the deformation along the 45◦ direction requires transmission through
friction between adjacent fiber bundles, which have a lower modulus, resulting in slower
deformation. Additionally, at the four corners of the diamond shape, the impact force along
the 45◦ direction causes the material to extend outward along the corners. Therefore, the
diamond-shaped bulge bottom surface gradually transitions to a circular shape, indicating
energy dispersion in the material.

After 300 µs, the rate of increase in the bulge height slows down, and the increment
in the bulge width also decreases accordingly. As a result, the deformation in the x and
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y directions exhibits a reduced magnitude. However, as the bulge continues to grow,
the accumulated energy needs to be released. The deformation in the x and y directions,
constrained by their higher strength and modulus, becomes difficult to further increase.
On the other hand, the matrix between adjacent fibers, with lower strength and modulus,
can continue to deform to a certain extent. Consequently, the deformation along the
45◦ direction gradually increases, ultimately resulting in a square-shaped bulge on the
bottom surface.
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Figure 7. The bulge shape in z-direction (W). (a) 100 µs; (b) 200 µs; (c) 300 µs; (d) 400 µs.

The variation of the bulge profile along the x and y axes is shown in Figure 8. From
0 to 400 µs, the bulge height rapidly increases to reach the first peak. During this period, U
and V also increase rapidly from 0 to 200 µs. As the bulge moves away from the impact
center, the values of U and V initially increase and then stabilize at a fixed value, indicating
that the fibers in the x and y directions rapidly converge towards the center of the bulge
under tension. Correspondingly, as shown in Figure 7, the bulge exhibits a diamond-
shaped morphology. After 200 µs, the rate of increase in the bulge height slows down,
while the rate of increase in the bulge width accelerates, and U and V start to decrease.
These characteristics indicate that the spreading speed of the bulge range exceeds the rate
of height growth, and the fibers in the x and y directions begin to relax. Consequently, as
shown in Figure 7, the bulge gradually transitions to a circular shape until it reaches 400 µs.

The variation of the highest point of the bulge height is shown in Figure 9. It initially
increases rapidly and reaches the first peak at 14.61 mm at 400 µs. After a slight decrease,
it starts to slowly increase again until reaching the second peak at 15.30 mm at 1150 µs,
corresponding to the overall movement shown in Figure 8. Subsequently, the bulge height
rapidly decreases. The maximum rate of increase in bulge height occurs at 100 µs, with
a value of 96.68 m/s, while the maximum acceleration occurs at 50 µs, with a value of
901,650.20 m/s2, as shown in Figure 9.
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Figure 8. The profile of the bulge and its width. (a) The bulge profile in the x-direction along LAB;
(b) The bulge profile in the y-direction along LCD.
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Figure 9. Displacement, velocity, and acceleration curves of the maximum point of the bulge height.

As shown in Figures 10 and 11, the morphology of U and V initially indicates that the
range of participation in deformation is similar for positions near and far from the impact
center. Numerically, as the distance from the x and y axes increases, the values of U and V
decrease. At 200 µs, the values of U and V increase as the positions get closer to the x and y
axes. After 250 µs, as U and V decrease, the fibers farther from the center position recover
faster, resulting in a larger recovery range compared to those closer to the center position
in the experiment. This leads to a convex shape of the deformation range. Eventually, at
400 µs, the range of final recovery closer to the center position is smaller than that farther
away from the center position. Thus, the range of participation in deformation is larger for
positions closer to the center than for those farther away.

3.3. The Distribution of Strain

The strain distribution on the back surface is shown in Figures 12 and 13. Initially,
along the x and y directions, the fibers at the bulge boundary experience an inward
compressive force due to the impact, resulting in compression strain at the boundary
fibers with a minimum value of −0.01 along the x and y axes. Over time, the stress
propagates from the bulge boundary towards deeper regions, leading to tension in the
middle fibers of the bulge. This causes an increase in the exx and eyy values, with a
maximum value of approximately 0.0021. The magnitude of the minimum value is one
order of magnitude larger than that of the maximum value, indicating stronger compression
than tension. This reflects the instantaneous impact response of the projectile. As shown in
Figure 12c,d and Figure 13c,d, from 300 µs to 400 µs, the strains in the x and y directions
start to propagate outward from the impact location. With the dissipation of energy, the
strain values near the impact location gradually decrease.
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Figure 10. The displacement in x-direction (U) of the back face. (a) 100 µs; (b) 200 µs; (c) 300 µs;
(d) 400 µs.
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For the shear strain as shown in Figure 14, the minimum and maximum values of
exy are around 0.0904 and −0.0928, respectively, and they occur at the boundary of the
bulge in the ±45◦ direction. The shear strain is significantly larger than the strains in the
x and y directions, indicating that the von Mises strain is mainly composed of exy. This
suggests that the deformation of the laminated plate is much greater in the xy transverse
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direction than in the x and y directions. It can be observed that the x and y directions
primarily bear the load from the fibers, while the xy transverse direction is supported by
the matrix. This could be due to the significantly lower modulus of the matrix compared to
the fibers, resulting in larger deformations and thus larger shear strains than strains in the
x and y directions.
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The von Mises strain field of the back surface is shown in Figure 15. The simulation
results are similar to the experimental results and are specifically analyzed in Section 4.2.
Taking the impact point as the origin and the x and y directions as the axes, the back of
the laminate is divided into four regions, and the strain field distribution in each region
shows an L-shape. This is due to the orthogonal layout of the laminate. The maximum
value occurs at 200 µs and is 0.18. The maximum equivalent strain occurs at the boundary
of the bulge, transitioning from the undeformed region to the deformed region.
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As shown in Figure 16, similar to exy, the distribution of the shear strain rate also
exhibits an L-shape, with higher strain rates closer to the center. The maximum strain
rate occurs at 100 µs, with a value of 808.65 s−1, and the minimum value is −840.09 s−1.
Starting from 150 µs, there is a four-quadrant circular distribution of strain rates with
reverse signs at the impact center, indicating a recovery state of shear strain in that region.
With increasing time, the central recovery region expands, and the growth of shear strain at
the boundary of the bulge gradually slows down, as shown in Figure 16d.
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4. Numerical Model and Results
4.1. Finite Element Models

To investigate the main features observed in the experiments, numerical simulation
models were tested for the impact response before 400 µs. The simulation employed a
full-model numerical simulation with symmetric constraints. Figure 17a shows that the
laminate has a denser grid in the impact region, and the overall laminate is simulated
using equivalent sublaminates. Along the thickness direction (z-direction), the laminate is
divided into 25 equivalent sublaminates, with 2 layers of grid points in each sublaminate.
In the x and y-axis directions, there are 51 points on each face, resulting in 2500 elements
per face and 5000 elements per equivalent sublaminate. To maintain accuracy and reduce
computational cost, the contact relationship between adjacent equivalent sublaminate was
handled using an automatic node-to-face contact based on traction-separation criteria, with
contact being disconnected when contact option 9 was selected. An interface spacing of
0.001 mm was also set between adjacent equivalent sublaminates to avoid penetration.
The bullet was simulated using the Smoothed Particle Hydrodynamics (SPH) method [20],
as it is suitable for large deformations and does not require grid removal, allowing for
simulating the bullet dispersion. Figure 17b shows the full model of the bullet. Contact
between the bullet and the laminate was implemented using erosion node-to-face contact,
with the soft 1 option opened with a coefficient of 0.2. Additionally, for boundary conditions,
displacement in the x, y, and z directions was restrained for a 4 × 4 element grid on each
corner of every equivalent sublaminates.
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Figure 17. Numerical models. (a) Full model of the laminate; (b) 25 equivalent sublaminates; (c) full
model of the bullet.

For the material model of the sublaminate, the MAT COMPOSITE FAILURE SOLID
MODEL was used. Due to the correlation between the bulge shape and the shear modulus,
as well as the correlation between the number of penetrated layers and the shear strength,
the shear modulus Gab and shear strength were adjusted based on the height, width, and
number of penetrated layers of the bulge observed in the experiments. Please refer to
Table 3 for the specific material parameter values. Due to the laminated structure of the
laminate, it can be considered orthotropic [5]. Therefore, the material properties in the
0◦and 90◦directions can be assumed to be the same. The commonly used Johnson–Cook
material model was used to simulate the metallic materials [21]. Copper and lead were
used for the bullet jacket and bullet core materials, respectively, and the Johnson–Cook
material model was applied. Please refer to Table 4 for the specific material parameters.

Table 3. Laminate material parameters [21].

Parameters: Values Parameters: Values

Density, ρ (kg/m3): 0.97 AOPT, MACF: 3.0, 1.0
Style modulus, Ea, Eb, Ec (GPa): 70, 70, 8 Tensile strength, XT, YT, ZT (GPa): 3, 3, 3

Poisson’s ratio, νba, νca, νcb: 0.006, 0.06, 0.06 Compressive strength, XC, YC, ZC (GPa): 2, 2, 2
Shear modulus, Gab, Gbc, Gca (GPa): 0.05, 5, 5 Shear strength, Sba, Sca, Scb (MPa): 700, 900, 900

Table 4. Warhead material parameters [22].

ρ G A B N C M Tm Troom Cp D1 D2-5

kg/m3 GPa MPa MPa K K J/(kg·K)

Lead core 11.34 7 14 18 0.685 0.035 1.68 600.0 294.0 126 1.0 0
Headshell 8.45 46 90 292 0.01 0.025 1.09 1356.0 300.15 383 0.8 0

To simulate the debonding process of the adhesive layer [23], the CONTACT_AUTOMATIC_
SURFACE_TO_SURFACE_TIEBREAK contact algorithm was used between the equivalent sub-
laminate. In this contact algorithm, Option 9 was selected as a failure criterion. In this criterion,
EN and ET represent the initial slope before normal and tangential separation, respectively, with
units of stress/length. T and S represent the ultimate stresses in the normal and tangential
directions, respectively. ∆N and ∆S represent the complete separation distances in the normal
and tangential directions. Additionally, GIC and GIIC represent the energy release rates in the
tangential and normal directions, respectively, with units of stress·length. To ensure that the
separation distance is greater than the unloading distance [17], the values of EN and ET should
be sufficiently large. Please refer to Table 5 for the specific numerical values [24–26].
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Table 5. Tiebreak face contact parameters [27,28].

Parameters: Values Parameters: Values

Normal strength, T, (MPa): 1.0 Tangential strength, S (MPa): 1.6
Normal stiffness, EN (MPa/mm): 400.0 Tangential stiffness, ET (MPa/mm): 689.0

Normal energy release rate, GIC, (MPa·mm): 0.5 Tangential energy release rate, GIIC, (MPa·mm): 1.016
Normal maximum limit distance, ∆N: 1.0 mm Tangential maximum limit distance, ∆S: 1.27 mm

4.2. Numerical Validation

The temporal evolution of the bulge bottom shape on the back surface, as obtained
from numerical simulations, is shown in Figure 18. By comparing Figures 7 and 18, it can
be observed that the numerical model results are consistent with the experimental findings.
Prior to 220 µs, the bottom shape of the bulge was diamond-shaped in both the simulations
and experiments. In the experiments, the bulge bottom gradually transitions into a square
shape, starting at 320 µs. The observed trend matches the experimental results.
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Figure 18. The evolution of the bulge morphology on the back surface: (a) 120 µs; (b) 220 µs; (c) 320 µs;
(d) 420 µs.

Figure 19 depicts the evolution of the equivalent stress on the back surface. The overall
trend is consistent with Figure 16. The stress wave is transmitted to the back surface at 40 µs
after the initial impact. It can be observed that initially, the maximum equivalent stress
is concentrated in the center and has a circular shape. At this stage, only a small region
in the center experiences stress. Then, the equivalent stress along the x and y directions
appears, gradually expanding towards the boundaries. During this process, the range of
the maximum equivalent stress in the center also increases, and its value becomes larger.
After 60 µs, the range of the equivalent stress in the center continues to expand, but the
numerical values decrease. Additionally, the range of equivalent stress along the x and y
directions gradually decreases. During this stage, both the bulge and the fiber direction
experience stress. By 120 µs, the equivalent stress along the x and y directions disappears,
while the range of equivalent stress in the center continues to expand and maintains a
circular shape, with decreasing values. During this stage, the fiber direction no longer
experiences stress, and the stress is mainly concentrated in the bulge. Subsequently, the
center region of the equivalent stress gradually forms a diamond shape. By 420 µs, the
equivalent stress magnitude on the four edges of the diamond shape surpasses that in the
center. During this stage, the boundary region of the bulge experiences stress.
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Due to the inability to measure stress in experiments, only the stress distribution in
the numerical model is analyzed. The analysis of stress results in the numerical model is
showed as Figure 20.
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Figure 20. The stress of the back face.

The maximum and minimum values of x-stress are 1.828× 103 MPa and−1.507 × 103 MPa,
respectively, while for y-stress, they are 1.729 × 103 MPa and −1.216 × 103 MPa, respectively.
It can be observed that the drumhead experiences tension in the middle, while regions near
the x and y axes undergo compression at the boundaries. The stress distribution resembles
the strain distribution depicted in Figures 12 and 13. The maximum and minimum values of
z-stress are 9.87 × 102 MPa and −9.08 × 102 MPa, respectively. At the center of the impact
site, the stress is zero, with the drumhead sides experiencing tension and the boundaries
experiencing compression. This indicates a certain expansion in the z-direction on the sides
of the drumhead and compression at the boundaries in the z-direction. The maximum and
minimum values of xy-stress are 6.50×102 MPa and −6.72 × 102 MPa, respectively. There is no
xy-stress at the center of impact and along the x and y axes. The drumhead sides exhibit negative
values, suggesting stretching along the 45◦ direction, while the boundaries show positive values,
indicating stretching along the −45◦ direction. The directions of stress in the second and fourth
quadrants are opposite to those in the first and third quadrants. The positive and negative values
of strain are depicted in Figure 21.

The temporal evolution of the bulge width in the x and y directions, as observed
in the numerical model and experiments, is shown in Figure 22. From 0 µs to 150 µs,
both the experimental and numerical model results demonstrate a rapid increase in width.
During the period from 150 µs to 300 µs, the rate of width increase slows down. However,
in the experiments, the width of the bulge increases significantly after 300 µs, gradually
transitioning into overall displacement. Correspondingly, in the numerical model, the rate
of width increase after 300 µs also becomes larger, although it may not be as pronounced,
still exhibiting a trend towards overall displacement.
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Figure 21. The shear strain exy represented by the deformation of the tiny unit.
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Figure 22. The evolution of the bulge width in the x and y directions.

The specific values are shown in Table 6. The numerical model and experimental
results show minimal differences in the bulge width. The maximum relative error in the
x direction is 24.12% and in the y direction is 21.29%. The minimum errors in the x and
y directions are 1.49% and 0.85%, respectively. Additionally, both the experimental and
numerical model results indicate that the width in the x direction is very close to the
width in the y direction, demonstrating the orthotropic consistency of the material in the
x and y directions.

Table 6. The bulge width in the x and y directions at various time in the experiments and
numerical model.

Time Exp. x Num. x Relative Error Exp. y Num. y Relative Error

(µs) (mm) (mm) (mm) (mm)

100 84.82 64.36 24.12% 82.81 65.18 21.29%
200 118.89 106.16 10.71% 117.00 106.50 8.97%
300 138.87 136.80 1.49% 139.28 138.10 0.85%
400 183.77 167.03 9.11% 189.97 168.74 11.18%

4.3. The Morphology of the Bullet Impact Process

The type of erosive damage to the bullet is stubbing. The type of erosive damage to
the laminate includes penetration of the first three layers, partial damage of the fourth layer,
and bulging expansion of the remaining parts. According to Figure 23, it can be seen that in
the numerical simulation, the front four layers of the equivalent sublaminate are penetrated
with a thickness of 1.35 mm, compared to the experimental result of 1.03 mm. The error is
25.18%, indicating that the numerical model is capable of replicating the observed bulge
phenomenon in the experiment with reasonable accuracy. In the numerical model, the
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average diameter of the bullet hole along the x-axis is 7.78 mm, while along the y-axis it
is 8.18 mm. Compared to the experimental data, there is an error of 19.23% in the x-axis
direction and an error of 24.53% in the y-axis direction for the bullet hole diameter. Detailed
data can be found in Table 7. A noticeable discrepancy between the numerical simulation
and the experimental results is that the penetrated equivalent sublaminate does not attach
together, as shown in the experiment, but exhibits separation. This separation may be
related to the damage characteristics of the interlayer bonding force model used. In the
experiment, the interlayer bonding force near the penetrated bullet hole is not completely
lost, while in the initial penetration stage of the numerical simulation, the layers have
already shown signs of separation, indicating an early failure of the interlayer bonding
force. To reduce this interlayer separation, it may be considered to increase the distance
parameter for complete separation between the layers, in order to better simulate the actual
interlayer bonding behavior.
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Figure 23. The morphology of the numerical model’s bullet hole at 400 µs. (a) 1/2 model sides;
(b) front-side view; (c) back-side view.

Table 7. The size of the bullet hole in the numerical model.

Penetrated Layers
The Size of the Bullet Hole in the Numerical Model

x (mm) y (mm)

1 8.75 7.53
2 7.86 8.31
3 7.67 8.81
4 6.82 8.05

Average 7.78 8.18
SD 0.45 0.32

Relative error 19.23% 24.53%

Figure 24 illustrates the morphological changes of the bullet during the penetration
process. Initially, the bullet head is stubbed at the beginning, and as the erosion process
progresses, its front end gradually forms a mushroom shape, while the material at the rear
end is compressed and concentrated forward. As the penetration continues, the front end
of the bullet shell begins to fracture and disperse outward, while the material at the rear
end diffuses around. Eventually, as shown in Figure 24c, the front-end fragments of the
bullet core are scattered, but the main body remains concentrated near the impact point.
The front end of the bullet shell fractures and disperses under impact, while the rear end
forms several larger chunks.

The simulated results are very similar to the observed deformation of the bullet core in
the experiment, both exhibiting a mushroom shape. Due to the softness of the lead material,
the main body of the bullet does not completely disperse. The bullet shell undergoes an
unfolding process in both the simulation and the experiment. However, in the experiment,
the bullet shell unfolds and splits into multiple small pieces, scattering and embedding into
the laminate. In contrast, in the numerical model, the unfolded bullet shell only forms a few
small pieces at the edges and does not completely fracture. This may be due to the bullet’s
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failure to fully penetrate the fifth layer, leading to partial penetration, and the fifth layer
providing support to the bullet shell, restricting further unfolding and dispersal. Since the
lateral splitting of the bullet was not restricted by the fifth layer, as shown in Figure 25, the
bullet shell completely fractures into multiple small pieces and disperses in all directions
after unfolding. Thus, it can be seen that further research on the interaction between the
bullet and the laminates is needed to obtain more accurate simulation results.
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Figure 25. The top-down view morphology of the bullet at 400 µs: (a) side view; (b) upward view.

Nguyen’s [17] study pointed out that under the condition of impact velocity less than
500 m/s or laminate thickness less than 10 mm (in this study, the laminate thickness is
11 mm), the damage pattern does not include the shearing and stamping stage but only
includes partial deformation penetration and the final bulging but not fully penetrated
expansion stage, with partial deformation penetration being considered a transition stage.
The specific details of the penetration process are shown in Figure 26, where the bullet
starts to make contact with the laminate at 30 µs when it is a certain distance away from the
laminate. During the time period from 40 µs to 100 µs, two significant phenomena were
observed: first, a large bulge was formed on the laminate; second, there were noticeable
traction marks on the edges of the laminate and along its x and y axes. As shown in
Figure 26a, initially, the bullet compresses the laminate. Once compressed to a certain
extent, under the action of compression along the thickness direction and around the edge,
three sub-layers of the laminate are penetrated, as shown in Figure 26c. After penetrating
three sub-layers, the bullet continues to move, causing local damage to the first sub-layer
but not penetrating it. Subsequently, the penetrated three sub-layers have elastic recovery
and separate from the unpenetrated parts. The unpenetrated parts continue to move with
the impact of the bullet until the highest point is reached. The final shapes of the impact
face and the back face are as shown in Figure 26d.
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At 100 µs, partial fiber layers were observed to undergo penetration, indicating the
occurrence of significant deformation penetration process. Subsequently, after 100 µs, the
penetrated fiber layers began to partially recover and separate from the non-penetrated
parts. Meanwhile, the non-penetrated parts continued to move under the propulsion of
the bullet until approximately 400 µs, when the bulge reached its maximum height. This
phenomenon corresponds to the characteristic of a protruding bulge that is formed but not
penetrated. The experimental results also exhibit two main features: firstly, penetration
occurred in approximately 1.35 mm of the fiber layers, with traction observed in both the x
and y directions; secondly, the formed bulge ultimately remained unpenetrated.

4.4. Energy Transformation

The energy distribution throughout the entire experimental process, as shown in
Figure 27, reveals an initial kinetic energy of 433.4 J. As shown in Figure 27b, Before 150 µs,
there is a rapid decline in the bullet’s kinetic energy, which is subsequently transferred to
the laminate. At this point, the bullet’s kinetic energy is converted into both kinetic energy
and internal energy within the laminate, leading to an increase in the laminate’s energy
due to energy deposition. After 150 µs, the energy within the laminate marginally exceeds
the changes in the bullet’s internal energy, likely attributed to sustained energy absorption
and dispersion within the laminate’s larger volume. The variation in the bullet’s energy
stabilizes around 200 µs, while the laminate’s energy remains at high levels, indicating a
steady state in the late stage of energy transfer and absorption.
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Figure 27. The evolution of energy: (a) The evolution of total energy; (b) The evolution of the laminate
and bullet energy.

At the initial moment, the laminate begins to accumulate energy, possibly due to the
formation and propagation of stress waves. By 71 µs, kinetic energy absorption within the
laminate peaks at 152.18 J, subsequently trending towards stability, while internal energy
absorption within the laminate continues to rise. This suggests potential structural changes
or damage within the laminate. At this juncture, the bullet’s kinetic energy stands at 84.4 J,
reflecting an 80.64% reduction, with the laminate absorbing 152.18 J of kinetic energy and
133.84 J of internal energy, while the deposited energy within the laminate amounts to
45.9 J. This further confirms substantial energy absorption by the laminate during the early
stages of impact, in accordance with the principle of energy conservation.

At approximately 150 µs, the energy within the laminate begins to stabilize, and the
energy curves of the system become parallel. This indicates a reduction in the rate of
energy transfer, with the laminate likely dispersing energy throughout its entire structure.
Subsequently, until 200 µs, the bullet’s kinetic energy remains nearly constant, indicating a
stable state of energy transfer and absorption during the late stages of impact, while the
energy within the laminate continues to sustain relatively high levels.

The first four equivalent sublaminates absorb a significant amount of energy and
exhibit pronounced material erosion under the impact of the bullet. Additionally, compared
to other layers, the mesh deformation in these first four equivalent sublaminate layers is
more pronounced, possibly due to the propagation of stress waves and energy concentration
during the bullet impact.

As shown in Figure 28a, eroded internal energy is only present in the first four equivalent
sublaminates, with no observed erosion in subsequent equivalent sublaminates. This indicates
significant mesh deformation in the first four equivalent sublaminates due to erosion. This is
because the first four sublaminates have been eroded and damaged enough to become bullet
holes. The meshes in these areas become distorted and are deleted. Therefore, the erosion
energy is present in these four sublaminates. The energy in the fourth equivalent sublaminate
differs from the preceding layers, steadily increasing. At 75 µs, eroded energy stabilizes in the
first three layers while indicating more significant variations in the fourth layer, consistent
with the trend of the bullet’s kinetic energy dropping below the laminate’s internal energy
observed in Figure 27.

According to Figure 28b, the internal energy of the first four equivalent sublaminates
increases over time, peaking at approximately 200 µs before stabilizing. This suggests
significant energy absorption in the initial stages by the first four equivalent sublaminates,
consistent with the observation of the bullet’s energy depletion around 200 µs in Figure 27,
indicating the completion of major energy conversion.

In terms of overall energy distribution, the hourglass energy constitutes only a small
fraction, indicating that mesh distortion energy in the numerical model is not the pri-
mary source of energy dissipation, thereby confirming the accuracy and reliability of the
numerical model.
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nificant energy absorption in the initial stages by the first four equivalent sublaminates, 
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In terms of overall energy distribution, the hourglass energy constitutes only a small 

fraction, indicating that mesh distortion energy in the numerical model is not the primary 

source of energy dissipation, thereby confirming the accuracy and reliability of the nu-

merical model. 
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Figure 28. Energy of the equivalent sublaminate: (a) Eroded energy of the first 4 equivalent sublami-
nates; (b) Energy of the first 4 equivalent sublaminates.

5. Conclusions

This research applied the 3D-DIC technique to study the impact response of a
300 × 300 × 11 mm UHMWPE orthogonal laminate subjected to a 9 mm lead-core pistol
bullet with a velocity of 334.93 m/s. An effective numerical calculation method was de-
veloped, which involved creating multiple equivalent sublaminate finite element models
to simulate the impact characteristics of the laminate and reveal the energy conversion
process. The experimental results demonstrated the bulging morphology and strain distri-
bution on the back face of the laminate under impact. The numerical simulation results
successfully corresponded to the experimental results and further investigated the process
of bulging formation, the interaction between the bullet and the laminate, as well as the
energy variation. The specific conclusions are as follows.

(1) Morphological characteristics of the back face: The penetration of a small number
of fiber layers by the bullet is approximately 1.03 mm, accompanied by noticeable
traction of the fibers near the x and y axes at the edges of the laminate, forming a
cross-shaped failure feature. This is due to the compression and accumulation of
fiber bundles.

(2) Bulge height and width: The bulge height initially increases rapidly, then the rate
of increase slows down. The bulge width also initially increases rapidly, and then
the rate of increase slows down. After 300 µs, the rate of increase in bulge height
decreases, and the increase in bulge width also slows down accordingly.

(3) Strain distribution: In terms of trends, the location where the maximum shear strain
(exy) occurs is approximately ±45◦ at the boundaries of the bulge. The location where
the maximum tensile strains (exx and eyy) occur along the fiber direction is at the
boundaries of the bulge along the x and y-axes, representing compressive strains.
Numerically, the shear strain is larger than the compressive strain, indicating that
the shear deformation of the fibers is greater than the compressive deformation. The
maximum and minimum values of shear strain are approximately 0.0904 and −0.0928,
respectively, while the maximum and minimum values of tensile strain along the x
and y directions are approximately 0.0018 and −0.01, respectively.

(4) Validation of the numerical model: The corresponding numerical model can success-
fully simulate the numerical values and trends of the bulge height and width. By
comparing the strain values at the same locations in the experiment and the numerical
model, it can be seen that the numerical model results closely match the exx, eyy, and
exy values at that location, both numerically and in terms of trends.

(5) Energy variation in the numerical simulation: The numerical simulation shows that
the bullet impact rapidly reduces its kinetic energy, which is then converted into
internal energy and the kinetic energy of the laminate. By 71 µs, the kinetic energy
absorption of the laminate reaches a peak of 152.18 J, after which it stabilizes, while the
internal energy absorption of the laminate continues to increase. The bullet’s kinetic
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energy decreases by 80.64% and is nearly converted into the kinetic and internal
energy of the laminate. Significant erosion is observed in the first four layers of the
equivalent sublaminates, and the energy is concentrated in these layers, indicating
significant mesh deformation but overall reliability of the model.
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