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Abstract: In a solid-state dye-sensitized solar cell, a fast-ion conducting (σ25◦C > 10−4 S cm−1)
solid redox mediator (SRM; electrolyte) helps in fast dye regeneration and back-electron transfer
inhibition. In this work, we synthesized solid Co2+/3+ redox mediators using a [(1 − x)succinonitrile:
x poly(ethylene oxide)] matrix, LiX, Co(tris-2,2′-bipyridine)3(bis(trifluoromethyl) sulfonylimide)2,
and Co(tris-2,2′-bipyridine)3(bis(trifluoromethyl) sulfonylimide)3 via the solution-cast method, and
the results were compared with those of their acetonitrile-based liquid counterparts. The notation x is
a weight fraction (=0, 0.5, and 1), and X represents an anion. The anion was either bis(trifluoromethyl)
sulfonylimide [TFSI−; ionic size, 0.79 nm] or trifluoromethanesulfonate [Triflate−; ionic size, 0.44 nm].
The delocalized electrons and a low value of lattice energy for the anions made the lithium salts highly
dissociable in the matrix. The electrolytes exhibited σ25◦C ≈ 2.1 × 10−3 (1.5 × 10−3), 7.2 × 10−4

(3.1 × 10−4), and 9.7 × 10−7 (6.3 × 10−7) S cm−1 for x = 0, 0.5, and 1, respectively, with X = TFSI−

(Triflate−) ions. The log σ–T−1 plot portrayed a linear curve for x = 0 and 1, and a downward curve for
x = 0.5. The electrical transport study showed σ(TFSI−) > σ(Triflate−), with lower activation energy for
TFSI− ions. The anionic effect increased from x = 0 to 1. This effect was explained using conventional
techniques, such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), X-
ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–visible spectroscopy
(UV-vis), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA).

Keywords: dye-sensitized solar cells; solid electrolytes; PEO; electrical conductivity; anionic effect

1. Introduction

Solar cells convert sunlight energy into electrical energy without producing harmful
greenhouse gases, which is one of the crucial factors in climate change [1,2]. Amongst
various types of solar cells, only solid-state dye-sensitized solar cells (DSSCs) are beneficial
in high-temperature regions such as Gulf countries [3]. The conversion efficiency decreases
in the high-temperature region and when there is a low angle of sunlight incidence on
the solar cells, except for DSSCs [1,2]. The exception occurs due to redox mediators
(electrolytes). The solid nature of a redox mediator makes DSSCs scalable in manufacturing
and eliminates the odds of a liquid or gel counterpart. The electrolyte participates in
the following redox reactions: oxidation at the working electrode for dye regeneration,
and reduction of the oxidized ions at the counter electrode. The reaction speed at the
electrolyte/electrode interface largely controls DSSC efficiency. The speed depends on the
electrical conductivity (σ) of the redox mediator. Therefore, a solid redox mediator (SRM)
with σ25◦C greater than 10−4 S cm−1 is highly desirable for the fast movement of the redox
couple. For a review, see references [4,5].

Solvent-free solid electrolytes with a redox couple of I−/I−3 have been known about
since 2002 [6,7]. These electrolytes generally have the form of a matrix (-plasticizer)-MI-
I2, where M represents a cation [6–19]. The matrix is generally a solid polymer, e.g.,
poly(ethylene oxide), abbreviated as PEO [6,7,10], or a plastic crystal, e.g., succinonitrile
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(SN) [20,21]. Table S1 in the Supplementary Information lists all used abbreviations. Plas-
ticizers, such as low-molecular-weight polymers [22–25], synthetic resins [26,27], ionic
liquids [28–30], quantum dots [31], inorganic insulators [6,7], biopolymers [13], plastic crys-
tals [32–37], and nanoclays [38], have been applied with PEO to decrease its crystallinity.
Cations are either inorganic [28–30] or organic [20,39]. It was also observed that the σ-value
increases with increasing size of the cation, revealing its plasticizing property [39,40].

Recently, Gupta et al. [3] synthesized the first solid Co2+/3+ redox mediator. They
utilized [(1 − x)SN: xPEO] as a matrix with x = 0, 0.5, and 1 in a weight fraction. Li-
bis(trifluoromethyl) sulfonylimide was used as a source of Li+ ions. As a Co2+/Co3+ source,
a mix of Co(tris-2,2′-bipyridine)3(bis(trifluoromethyl) sulfonylimide)2 and Co(tris-2,2′-
bipyridine)3 (bis(trifluoromethyl) sulfonylimide)3 was employed. The bis(trifluoromethyl)
sulfonylimide ion or (CF3SO2)2N− is commonly abbreviated to TFSI−. The ligand, tris-(2,2′-
bipyridine), shortened generally to bpy, binds the central cobalt ion. Figure S1 shows the
chemical structure of ionic salts and matrices for comparison. As mentioned earlier, both
SN and PEO are very good solid matrices, offering nitrile and ether, respectively, for ion
transport in addition to the dissolution and complexation of ionic salt [32–35]. Specifically,
SN is highly attractive because it acts as a solid solvent or plasticizer due to its low melting
temperature (Tm~58 ◦C), high dielectric constant (55 at 25 ◦C and 62.6 at 58 ◦C), high
molar enthalpy (139.7 kJ mol−1), and high donor number (14 kcal mol−1 at 25 ◦C) [41].
LiTFSI provides Li+ ions, boosting dye regeneration and, thereby, the photocurrent. The
TFSI− ion has delocalized electrons with a low value of lattice energy, which increases the
dissociability of ionic salt in a solvent or polymer [42]. This anion also has a large ionic
size of 0.79 nm [43] and low ionic mobility [42], making it less contributory to the total
electrical conductivity. The cobalt salts Co(bpy)3(TFSI)2 and Co(bpy)3(TFSI)3 provide Co2+

and Co3+ redox species, respectively [44]. Owing to the large size of Co2+ (0.13 nm) and
Co3+ (0.11 nm) ions [41], accompanied by the excellent plasticizing properties of TFSI− ions
and succinonitrile, SRMs achieved σ25◦C of 2.1 × 10−3 S cm−1 for x = 0, 7.2 × 10−4 S cm−1

for x = 0.5, and 9.7 × 10−7 S cm−1 for x = 1, compared with σ25◦C of 1.7 × 10−2 S cm−1 for
acetonitrile (ACN)-based liquid redox mediators (LRMs).

LiCF3SO3 is one of the lithium salts that is highly used for preparing solid polymer
electrolytes for lithium-ion batteries [45]. The anion CF3SO3

− is generally written as
Triflate− for trifluoromethanesulfonic acid. Similar to the TFSI− ion, this anion coordinates
weakly with a cation and therefore does not allow ion pairing [46]. This anion has an ionic
size of 0.44 nm, which is smaller to that of the TFSI− ion. LiTriflate possesses higher values
of donor number and ionic mobility, and lower values of molecular weight and dissociation
constant, than LiTFSI. LiTriflate, therefore, possesses a lower value of σ25◦C in a mixture of
solvents [42]. In this study, we replaced the LiTFSI of [(1 − x)SN: xPEO]-LiTFSI-Co salts
with LiTriflate to show the anionic effect on the electrical transport properties of SRMs. As
previously mentioned, x = 0, 0.5, and 1 in the weight fraction. Hereafter, lithium salt is
represented by LiX, where X = TFSI− or Triflate−. The molar composition and preparatory
methods for the SRM [(1 − x)SN: xPEO]-LiX-Co salts are identical. We also prepared
ACN-based liquid counterparts (LRMs) identically, as reported by Mathew et al. [44], for
comparison. The preparation of the SRMs with x = 0 was identical to that of the LRMs.
We used the conventional method (solution-cast) of preparation for the PEO-based SRMs
(x = 0.5 and 1). The anionic effect on the electrical transport properties was explained
using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), X-
ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–visible
spectroscopy (UV-vis), differential scanning calorimetry (DSC), and thermogravimetric
analysis (TGA).

2. Materials and Methods

The highly pure chemicals (cf. Table S2) were purchased and used without purification.
The ACN-based LRMs and SN-based SRMs were synthesized using 0.1 M LiX, 0.25 M
Co(bpy)3(TFSI)2, and 0.06 M Co(bpy)3(TFSI)3 in ACN and SN, respectively, under stirring
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at 65 ◦C for 24 h [3,44]. The PEO-based SRMs with x = 0.5 and 1 were synthesized using
the solution-cast method [32–35]. The SRMs with x = 1 underwent a complete replacement
of SN with PEO, followed by rigorous stirring in acetonitrile at 65 ◦C for 48 h, casting on a
Teflon Petri dish, and drying under a nitrogen gas atmosphere at room temperature. The
SRMs with x = 0.5 were synthesized similarly. The redox mediators were characterized
using conventional techniques, such as impedance spectroscopy (IS), FT-IR, XRD, XPS,
SEM, UV-vis, DSC, and TGA, which are described in the Supplementary Information
(cf. Table S3) [3,47]. Table S4 lists the equipment used for the measurements.

3. Results and Discussion

Impedance spectroscopy is a tool used to study the electrical transport properties of
an electrolyte [48,49]. A complex impedance plot, widely known as the Nyquist plot, helps
to deduce bulk resistance (Rb) and, thereby, the electrical conductivity of the electrolyte.
Figure 1 shows Nyquist curves of the SRM [(1 − x)SN: xPEO]-LiX-Co salts along with
their liquid counterparts (LRMs) at 25 ◦C. Here, x = 0, 0.5, and 1, and X = TFSI− and
Triflate−. In this figure, region (I) indicates a linear trend in the low-frequency domain
because of the blocking-electrode effect, and region (II) corresponds to a semi-circle in the
high-frequency domain because of the ionic diffusion effect [48,49]. The Nyquist curve can
be fitted using an equivalent circuit [49], Rs,I + (Rb∥C1)I + C2,II, where the notations have
their usual meaning. For example, Rs stands for series resistance due to leads, Rb for bulk
resistance, C1 for chemical capacitance, and C2 for double-layer capacitance. The LRMs
exhibited nearly identical and perfect trends: a linear curve in region (I) and a semi-circle
in region (II). Having a plastic crystal phase, the SRMs with x = 0 had a semi-circle similar
to those of SN-LiI-I2 [21], but with a less prominent blocking-electrode effect. In addition,
the semi-circle was slightly suppressed relative to those of the LRM-based redox mediators.
The SRMs with x = 1 showed largely suppressed semi-circles, most probably because of
the semi-crystalline nature of the PEO [50]. The SRMs with x = 0.5 portrayed region (I)
only. We found a similar pattern for the (SN-PEO)-MI-I2 (M = Li+ or K+) SRMs [34,35]. This
indicated the formation of amorphous domains by the short and entangled polymer chains
induced by the plasticizing properties of succinonitrile [51,52]. Figure 1 also portrays the
anionic effect. Relative to Triflate−, TFSI− resulted in a low value of bulk resistance, as
marked by an arrow. This was associated with a smaller semi-circle and a prominent linear
trend, except for the redox mediator with x = 0.

We evaluated the σ25◦C values of liquid and solid redox mediators using the values
of the Rb, thickness, and area of the electrolyte. Table 1 lists the average values of σ25◦C.
The LRMs achieved σ25◦C ≈ 1.7 × 10−2 S cm−1 for X = TFSI− and ≈ 1.6 × 10−2 S cm−1

for X = Triflate−, as reported earlier for liquid electrolytes [42]. We recently attained σ25◦C
≈10−3 S cm−1 for SN-LiI-I2, because of the solid solvent nature of SN [21]. We achieved
similar σ25◦C values, ≈2.1 × 10−3 S cm−1 for X = TFSI− and ≈1.5 × 10−3 S cm−1 for
X = Triflate− for the SRMs with x = 0. Compared with the LRMs, these values are less
than an order of magnitude. The complete replacement of SN by PEO decreased the σ25◦C
value to ≈9.7 × 10−7 S cm−1 for X = TFSI− and ≈6.3 × 10−7 S cm−1 for X = Triflate−,
which are considerably less than three orders of magnitude. A poor σ25◦C value was
observed previously for several PEO-based solid I−/I−3 redox mediators and occurred due
to high PEO crystallinity, hindering ion transport [34,35]. The redox mediators with x = 0.5
achieved a σ25◦C value of ≈7.2 × 10−4 S cm−1 for X = TFSI− and ≈3.1 × 10−4 S cm−1 for
X = Triflate−. These values are more than two orders of magnitude higher than those of
the redox mediators with x = 1 and nearly an order of magnitude lower than those of the
redox mediators with x = 0. We found similar values (3–7 × 10−4 S cm−1) for the (PEO-SN)
Blend-MI-I2 (M = Li+ and K+) SRMs, too [34,35]. This is due to the plasticizing nature of SN,
which offers more amorphous regions for ion transport. One can note that TFSI− resulted
in a better σ25◦C value than Triflate−, specifically for the PEO-based redox mediators. This
is due to several factors, such as the large ionic size; lower values of lattice energy, donor
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numbers, and ionic mobility; and higher values of the molecular weight and dissociation
constant of TFSI− [42].
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Figure 1. Nyquist curves of SRM [(1 − x)SN: xPEO]-LiX-Co salts (x = 0, 0.5, and 1) along with
their liquid counterparts (LRMs) at 25 ◦C for anions, X = TFSI− (solid symbols), and Triflate− (open
symbols). (I) and (II) correspond to low- and high-frequency regions, respectively.

Table 1. Electrical transport properties of SRM [(1 − x)SN: xPEO]-LiX-Co salts (x = 0, 0.5, and 1;
X = TFSI− or Triflate−). LRM, ACN-based liquid counterpart.

x (Wt. Fraction)
σ25◦C (S cm−1)

Log σ − T−1 Nature
Activation Energy (eV) in Regions I and II

TFSI− Triflate− TFSI− Triflate−

0 2.1 × 10−3 1.5 × 10−3 Arrhenius 0.56 (I), 0.16 (II) 0.77 (I), 0.13 (II)
0.5 7.2 × 10−4 3.1 × 10−4 VTF 0.05 0.06
1 9.7 × 10−7 6.3 × 10−7 Arrhenius 1.07 (I), 0.36 (II) 1.22 (I), 0.44 (II)
LRM 1.7 × 10−2 1.6 × 10−2 Arrhenius 0.15 0.16

Figure 2 shows the log σ − T−1 curves of the SRM [(1 − x)SN: xPEO]-LiX-Co salts
(x = 0, 0.5, and 1; X = TFSI− or Triflate−) and their liquid counterparts (LRMs). The SRMs
with x = 0 and 1 showed a linear trend similar to the LRMs, SN-LiI-I2, and PEO-KI-I2,
revealing Arrhenius-type behavior of ion transport in the form of σ = σo exp[–Ea/kBT] with
the help of molecules or polymeric chains, where σo, Ea, and kB are the pre-exponential
factor, activation energy, and Boltzmann constant, respectively [21,32,35]. The SRMs with
x = 0.5, on the other hand, had downward curves, just like the Blend-MI-I2. This showed
Vogel–Tamman–Fulcher (VTF)-type behavior because of the formation of the amorphous
phase. The VTF-type trend is expressed as σ = σoT−½ exp[–B/kB(T − To)], where B and
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To are the pseudo-activation energy and free-volume temperature, respectively. The inset
of Figure 2 exhibits a linear log(σT½) – (T − To)−1 curve for SRMs with x = 0.5. We
summarized the nature of redox mediators in Table 1. We also evaluated the values of Ea
and B from the slopes of the linear curves of redox mediators and listed them in Table 1
for comparison. In this table, regions I and II correspond to the temperatures before and
after the melting temperature of SRMs with x = 0 and 1. Both the SRMs, x = 0 and 1,
possessed Ea-values of more than 0.3 eV in the solid-state region (region-I), making them
useless for device applications [53]. In contrast, the SRMs with x = 0.5 possessed quite
a low B-value ≈ 0.06 eV, which was similar to those of Blend-MI-I2 [34,35]. Table 1 also
shows lower activation energy values for the TFSI−-based redox mediators. As mentioned
earlier, this is due to the several beneficial properties of TFSI−.
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FT-IR spectroscopy is a tool for understanding matrix–salt interactions [3,34,35]. Inter-
estingly, all the ingredients of the solid and liquid redox mediators are IR-active. Figure 3
shows the FT-IR spectra of SRM [(1 − x)SN: xPEO]-LiX-Co salts with x = 0, 0.5, and 1 and
their liquid counterparts (LRMs) for X = TFSI− and Triflate−. This also shows vibrational
peaks of the matrices, solvent, and ionic salts [3,54]. The vibrational peaks of TFSI− with
their assignments are as follows: 513 and 571 cm−1 (δa,SO2), 602 cm−1 (δa,SO2), 654 cm−1

(δa,SO2), 739 cm−1 (νs,SNS), 789 cm−1 (νa,SNS), 1059 cm−1 (νa,SNS; free), 1136 cm−1 (νs,SO2;
free), 1197 cm−1 (νa,CF3; free), 1228 cm−1 (νs,CF3; paired), 1333 cm−1 (νa,SO2; paired), and
1353 cm−1 (νa,SO2; free) [55,56]. Triflate− showed its presence through the peaks 521 cm−1
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(δa,SO3), 576 cm−1 (δa,SO3), 641 cm−1 (δa,SO3), 766 cm−1 (δs,CF3), 1032 cm−1 (νs,SO3; free),
1156 cm−1 (νa,CF3; free), 1165 cm−1 (νa,CF3; paired), 1226 cm−1 (νs,CF3; free), 1258 cm−1

(νa,SO3; paired), 1272 cm−1 (νa,SO3; free), and 1300 cm−1 (paired) [57–59]. The cobalt salts
have peaks of TFSI− as well as a bpy ring structure (616, 767, 1229, 1453, and 1470 cm−1 [60]).
Here, we used the notations ν for stretching, δ for bending, s for symmetric, and a for
asymmetric mode. It is worth mentioning that the peak position of free ions remains unal-
tered with a change in the concentration of ionic salt [55,56]. We also noticed that several
modes of TFSI− merge with those of cobalt salts. Those of Triflate− exhibited overlapping
in several modes with those of TFSI−, too.
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FT-IR spectroscopy showed the least interaction between the solvent and salt for
the LRMs. This was indicated by the least change in the positions of the modes for the
solvent and salts, except at 739 cm−1 (753 cm−1 for ACN solvent) for both anions. Also,
the ion pairing peak at 1228 cm−1 is present as a shoulder, revealing a large number of
free ions for transport with the weakest ion pairing, which resulted in σ25◦C > 10−2 S cm−1

for both anions. The SRMs with x = 0 exhibited a minimal level of interaction between
the SN matrix and salt. The mediators showed a minimal change in the positions of the
modes for SN and salts. The change was noticed mainly at 769 cm−1 (762 cm−1; SN;
δCH2), 1228 cm−1 (1233 cm−1; SN; tCH2), 1443 cm−1 (1453 cm−1; ring), and 1474 cm−1

(1470 cm−1; ring) for both anions. The notations δ and t are the bending and twisting
modes, respectively. The peak at 1228 cm−1 as a shoulder depicts the presence of ion
pairs, too. The mediators therefore possessed lower σ25◦C values ≈ 10−3 S cm−1 for both
anions. The SRMs with x = 0.5 showed a slightly higher level of interaction between the
blend matrix and salt. The interaction was noticed through changes at 778 cm−1 (762 cm−1;
Blend; δCH2), 1472 cm−1 (1469 cm−1; Blend; δCH2), 2253 cm−1 (2251 cm−1; Blend; νs,C≡N),
2907 (TFSI−) or 2905 (Triflate−) cm−1 (2899 cm−1; Blend; νa,CH2), and 2981 (TFSI−) or
2980 (Triflate−) cm−1 (2975 cm−1; Blend; νa,CH2). In addition, the mediators depicted
peaks at 1227 and 1334 cm−1, revealing ion pairing. Being uncharged and the same size
as anions, coordinated ions have higher mobility in the polymeric matrix, resulting in
more amorphous regions for ion transport [55,61]. This also reduces the number of free
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ions and the polymer matrix–salt interaction [55,61]. The anionic effect was observed in
the νa,CH2 mode only. The larger size of TFSI− led to a higher blue shift in the νa,CH2
mode, indicating a higher C−H bond contraction for forming more amorphous regions
and, thereby, improving the σ25◦C value [32,34,35,62]. The SRMs with x = 1 portrayed the
highest level of interaction between the PEO matrix and salt. This was due to the changes at
780 (TFSI−) or 777 (Triflate−) cm−1 (767 cm−1; ring), 1112 (TFSI−) or 1115 (Triflate−) cm−1

(1109 cm−1; PEO; νs,COC), 1134 (TFSI−) or 1144sh (Triflate−) cm−1 (1149 cm−1; PEO; νCC),
1349 (TFSI−) or 1343 (Triflate−) cm−1 (1342 cm−1; PEO; ωs,CH2), 2872 (TFSI−) or 2860
(Triflate−) cm−1 (2861 cm−1; PEO; νs,CH2), and 2894 (TFSI−) or 2890 (Triflate−) cm−1

(2889 cm−1; PEO; νs,CH2). These clearly show the anionic effect, where TFSI− ions are
more effective for C−H bond contraction and amorphous region formation, and therefore
higher electrical conductivity. It is also noticeable that the ion pairing peaks neither were
prominent nor appeared as shoulders; in fact, they overlapped with those of the PEO.

The level of interaction between the matrix and salt in the redox mediators is observed
in the following order: LRM < x = 0 < 0.5 < 1. This order is the same for the anionic
effect, too. We quantified the matrix–salt interaction by evaluating the relative intensity,
∆I = I1105/I1196, for both anions of redox mediators, where I1105 stands for intensity at
1105 cm−1 for the νs,COC mode of PEO, and I1196 for the strongest peak at 1196 cm−1 for
the νa,CF3 mode of ionic salts. Figure 4 shows the relative intensity of LRMs and SRMs for
both anions. The LRMs and SRMs (x = 0) possessed ∆I = 0 for both anions, indicating the
least interaction between the solvent or matrix and ionic salt. The value of ∆I(X = TFSI−)
was ≈ 1.2 for the SRMs with x = 0.5 and 1, while the PEO-based SRMs with x = 0.5 and 1
had a higher value of ∆I(X = Triflate−): 1.34 and 3.4, respectively. This revealed an increase
in the level of interaction from x = 0.5 to 1, resulting in a hindrance in ion transport and
a decrease in σ25◦C value. This also demonstrated that ∆I(X = Triflate−) is greater than
∆I(X = TFSI−), indicating the anionic effect. The XRD study, discussed below, also supports
this result.
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X = TFSI− and Triflate−, along with those of their liquid counterparts (LRMs).

Figure 5 shows the XRD patterns of the SRM [(1 − x)SN: xPEO]-LiX-Co salts with
x = 0, 0.5, and 1 for X = TFSI− (solid line) and Triflate− (dotted line). Table 2 lists the
observed peaks of redox mediators with x = 0 and 1, which are small and broad as well
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as slightly shifted relative to the matrix (SN: 2θ ≈ 19.7◦ and 28.1◦; PEO: 2θ ≈ 19.2◦ and
23.3◦ [32]). The patterns of these mediators had no peaks for other ingredients. In contrast,
the redox mediators with x = 0.5 exhibited no peaks. An amorphous peak appeared
at 27.6◦ for X = TFSI− and 23.1◦ for X = Triflate−. These indicate disorder in the SN
molecules, eutectic phase formation, and amorphous phase formation in the PEO or blend
matrix [3,21,33–35,63]. For the blend-based redox mediators (x = 0.5), PEO acted as an
impurity, abolishing the crystalline structure of the SN in the presence of ions [3,33–35].
The absence of reflection peaks of the ionic salts also confirmed complete dissolution
and complexation of the salts. The anionic effect is visible for all the redox mediators,
x = 0 − 1. The redox mediator with x = 0 exhibited relatively stronger reflection peaks
of succinonitrile for X = TFSI− than Triflate−. The latter is indicative of eutectic phase
formation, as indicated by the DSC study, which is discussed later [21,63]. The redox
mediator (x = 1) had stronger reflection peaks of PEO for X = Triflate− than TFSI−, revealing
a higher level of PEO crystallinity and, thereby, a lower value of electrical conductivity. The
SEM results, discussed later, corroborate these results.
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Figure 5. XRD patterns of SRM [(1 − x)SN: xPEO]-LiX-Co salts, where x = 0, 0.5, and 1. X = TFSI−

(solid line) and Triflate− (dotted line).

Table 2. Angle (2θ) and transmittance (T) of SRM [(1 − x)SN: xPEO]-LiX-Co salts, where x = 0, 0.5,
and 1. X = TFSI− and Triflate−. I, II, and III stand for UV-A, visible, and near-IR regions, respectively.

x (Wt. Fraction)
2θ (◦) T (%) in Regions I, II, and III

TFSI− Triflate− TFSI− Triflate−

0 20.4, 28.8 19.2, 27.6 0 (I), 21.6 (II), 48.7 (III) 0 (I), 15.1 (II), 46.8 (III)
0.5 27.6 23.1 88.1 (I), 99.8 (II), 110.5 (III) 68.8 (I), 91.8 (II), 105.4 (III)
1 19.5, 24 19.4, 23.6 49.6 (I), 78.9 (II), 99.9 (III) 45.4 (I), 71.9 (II), 93.3 (III)

X-ray photoelectron spectroscopy is a tool used to study the interaction between
ingredients at the surface [47,64–68]. Figure S2 shows the survey spectra of SRM [(1 − x)SN:
xPEO]-LiX-Co salts (x = 0, 0.5, and 1; X = TFSI− and Triflate−). The survey spectrum was
corrected to fix the C 1 s peak at 284.6 eV [64–66]. The survey spectra depicted S 2p, C
1 s, N 1 s, O 1 s, and F 1 s elements for all redox mediators. However, only the redox



Polymers 2024, 16, 1436 9 of 18

mediators with x = 0 exhibited Ti 2p peaks. The presence of this peak can be attributed to
the enhanced penetration of SN-based electrolytes into the pores of the TiO2 layer and the
creation of a remarkably thin film on TiO2, facilitated by the solid solvent characteristic
of SN. The SEM image demonstrates the infiltration and development of a thin coating
of SN-based electrolyte on the TiO2 substrate, as described in the next paragraph. The
TiO2 substrate is anticipated to exhibit a substantial accumulation of PEO-based redox
mediators (x = 0.5 and 1), hence impeding the examination of the electrolyte/TiO2 interface.
The peak’s position, intensity, and width (full width at half maximum) were determined
through the fitting of the smoothed and baseline-corrected spectrum. Figures S3–S5 depict
the best-fit plots of different elements of SRMs with x = 0, 0.5, and 1, respectively. The
left and right columns are for SRMs, with X = TFSI− and Triflate−, respectively. Figure 6
shows smoothed and baseline-corrected XPS spectra of the S 2p, C 1 s, N 1 s, O 1 s, and F
1 s elements for the SRM [(1 − x)SN: xPEO]-LiX-Co salts with x = (a) 0, (b) 0.5, and (c) 1,
where X = TFSI− and Triflate−. Figure 6a also portrays the spectra of the Ti 2p element.
The peaks can be assigned in light of previously reported studies [47,64–68]. The SRMs
depicted a small-height S 2p peak because of the −SO2

− group at ≈168.2 eV for the spin
of 3/2, associated with a shoulder peak at ≈169.8 eV for the spin of ½. The area of the
C 1 s core level is the most complex. This area showed a standard mid-height peak at
284.6 eV for the alkyl (−C−C−) group associated with a strong peak at ≈286 eV for the
bpy ring or −C−C−O− group, a small-height peak at ≈288.6 eV for the −C≡N group,
and a distinctive small-height peak at ≈292 eV for the –CF3 group. The N 1 s spectrum
depicted a small-height broad peak consisting of two deconvoluted peaks because of anions
at ≈398 eV and the bpy ring at ≈400 eV. The Ti 2p spectrum of the TiO2 layer exhibited two
strong and distinctive peaks at ≈458.2 eV and ≈464 eV because of the spin-orbit-coupling
phenomenon. The SRMs with x = 0 portrayed two O 1 s core-level strong distinctive peaks
at ≈529.8 eV and ≈532 eV because of the −SO2

− group in the anions. The PEO-based
SRMs (x = 0.5 and 1) exhibited the strongest O 1 s peak with deconvolution of ≈531 eV
and ≈532 eV because of the spin-orbit-coupling phenomenon. The redox mediators also
showed a strong F 1 s core-level distinctive peak at ≈688.6 eV because of the –CF3 group of
anions. We divided the intensity by the width to make the ratio dimensionless. Figure 7
plots the intensity/width (=R) against the peak position for all redox mediators with x = 0,
0.5, and 1. The solid symbols represent redox mediators with X = TFSI−, and open symbols
denote redox mediators with X = Triflate−. This figure demonstrates a shift either in the
ratio (∆R = RTFSI − RTriflate; cf. Figure S6) or peak position (∆P = Peak PositionTFSI − Peak
PositionTriflate; cf. Figure S7) or both, revealing an anionic effect. The level of shift differed
depending on the composition and element. For example, the SRMs with x = 0 showed ∆R
< 0, except for O 1 s, where ∆R > 0, too; the redox mediators with x = 0.5 depicted ∆R > 0,
except for O 1 s and F 1 s, where ∆R < 0; and the redox mediators with x = 1 exhibited
both positive and negative ∆R. At F 1 s, the negative shift was minimum for x = 0.5 and
maximum for x = 0. The SRMs with x = 0 showed ∆P > 0 for S 2p, C 1 s, O 1 s, and F 1 s
core levels, and ∆P < 0 for N 1 s. The redox mediators with x = 0.5 exhibited ∆P ≥ 0 for S
2p, C 1 s, and F 1 s core levels, and ∆P < 0 for N 1 s and O 1 s. The redox mediators with
x = 1 depicted ∆P ≥ 0 for all core levels.

The mesoporous TiO2 layer was subjected to impregnation with a solid redox mediator,
[(1 − x)SN: xPEO]-LiX-Co salts, with x = 0, 0.5, and 1, and X = TFSI− or Triflate−. Figure 8
shows SEM images of the surface of the impregnated mesoporous TiO2. The pores of
mesoporous TiO2 were penetrated by redox mediators with x = 0 due to the solid solvent
feature of SN. On the other hand, it was observed that the redox mediators with x = 0.5
and 1 failed to effectively impregnate the pores of the mesoporous TiO2, as evidenced by
the subpar photovoltaic performance [69]. PEO-containing redox mediators (x = 0.5 and 1)
exhibited fibril-like structures due to the presence of polymeric chains of PEO [10,34,35].
Succinonitrile, as a solid solvent and plasticizer, exerted significant influence over the fibril
architectures [34,35]. A similar trend may be observed in the case of SRMs, where the
surface smoothness exhibited a reduction from x = 0.5 to 1, as well as from X = TFSI−
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to Triflate−. These findings suggest a rise in the crystallinity of PEO within the range of
x = 0.5 to 1, as well as from X = TFSI− to Triflate−. This observation is supported by the
transmittance spectra of the redox mediators (x = 0, 0.5, and 1; X = TFSI− to Triflate−),
which are described below.
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Figure 8. SEM images for the surface of SRM [(1 − x)SN: xPEO]-LiX-Co salts with x = 0, 0.5, and 1,
infiltrated in the mesoporous TiO2. X = (a) TFSI− and (b) Triflate−. Scale bar, 1 µm.

Figure 9 shows the transmittance spectra of SRM [(1 − x)SN: xPEO]-LiX-Co salts (x = 0,
0.5, and 1) for X = TFSI− and Triflate−. We can divide the spectra into three regions: I
(UV-A; 350 nm), II (visible; 555 nm), and III (near-IR; 900 nm). Table 2 summarizes the
transmittance of the SRMs, which can be compared with those of their liquid counterparts
(LRMs): 13.9% (I), 99.9% (II), and 99.7% (III) for X = TFSI−, and 3.3% (I), 99.9% (II), and
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101.9% (III) for X = Triflate−. The SRMs with x = 0 and 1 had poor transmittance values;
however, blending SN and PEO largely improved the transmittance. This is due to a
decrease in PEO crystallinity because of the plasticizing properties of the SN [35]. Table 2
portrays the anionic effect, too, where TFSI− led to better transmittance than Triflate−.
This is due to a decrease in PEO crystallinity, as pointed out by the DSC results, which are
discussed below.
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Figure 10 shows the DSC curves of the SRM [(1 − x)SN: xPEO]-LiX-Co salts, where
x = 0, 0.5, and 1, and X = TFSI− and Triflate−. The SRMs with x = 0 portrayed two
endothermic peaks marked by Tpc and Tm for crystal-to-plastic-crystal phase transition
temperature and melting temperature, respectively. Table 3 lists the values of Tpc and Tm
for comparison. For the SN matrix, Tpc = –38.4 ◦C and Tm = 57.7 ◦C [21,63]. It is worth
mentioning that the area of Tm-peak corresponds to the heat enthalpy or crystallinity of
the redox mediator [21,32]. We observed that the position and area of Tm-peak decreased
for the SRMs with x = 0 relative to the pure SN matrix. This is indicative of a decrease in
the crystallinity of succinonitrile [21]. The Tpc-peak showed a position similar to that of
the pure matrix, as observed earlier for the SN-LiI-I2 redox mediator, however, with an
increase in the area, most probably because of the SN–ionic salt interaction [21,63]. The
anionic effect is also noticeable for SRMs with x = 0. For example, TFSI− resulted in a
broad Tm-peak, which is indicative of the disordered plastic crystalline nature of SN. In
contrast, Triflate− yielded multiplets at higher temperatures with a larger area, indicating
eutectic phase formation along with the disordered plastic crystal phase of SN. TFSI−

also resulted in the area (40.9) of the Tpc-peak being less than that for Triflate− (139.9),
which is indicative of less crystallinity and, thereby, higher electrical conductivity in the
TFSI−-based redox mediator. The SRMs with x = 1 had a Tm-peak with values of only
63.8 ◦C for X = TFSI− and 65.2 ◦C for X = Triflate−, which are less than the Tm-value of
the PEO matrix (65.7 ◦C [32]). The area of the Tm-peak was also less than that of the PEO
matrix, revealing a decrease in PEO crystallinity. These DSC curves also exhibited the
anionic effect via a decrease in the position and area of the Tm-peak for X = TFSI−, revealing
a decrease in PEO crystallinity and, thereby, an increase in electrical conductivity [32–35].
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The SRMs with x = 0.5 possessed negligibly small and broad Tm-peaks with values of only
4 ◦C for X = TFSI− and 7.8–26 ◦C for X = Triflate−. These values, as well as the peak area,
are less than those of the PEO-SN blend matrix (Tm ≈ 30.1 ◦C [32]), indicating a decrease
in PEO crystallinity. The anionic effect was visualized at the Tm-peak position and area.
TFSI− led to lower values of Tm and a smaller area compared to Triflate−, resulting in
lower PEO crystallinity and, thereby, a higher σ25◦C value. These results are also consistent
with the findings of the TGA investigation, which are discussed below.
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Table 3. Tm, Tm-area, and Tpc of SRM [(1 − x)SN: xPEO]-LiX-Co salts with x = 0, 0.5, and 1. X = TFSI−

and Triflate−.

x (Wt. Fraction)
Tm (◦C) Tm-Area (a.u.) Tpc (◦C)

TFSI− Triflate− TFSI− Triflate− TFSI− Triflate−

0 47 41 and 45.8 15.6 43.2 −37.8 −40
0.5 4 7.8 and 26 2.4 17.5 - -
1 63.8 65.2 92.7 160.4 - -

Figure 11 shows the TGA curves of the SRM [(1 − x)SN: xPEO]-LiX-Co salts with x = 0,
0.5, and 1 for X = TFSI− and Triflate−. The initial plateau region of the curve corresponds
to the thermal stability of the SRM, which is ≈75 ◦C for x = 0, 125 ◦C for x = 0.5, and
200 ◦C for x = 1. These values are similar to those of the pure matrices [32]. The SRMs with
x = 0 and 1 exhibited one-step dropping due to the decomposition of the matrix, while
the mediators with x = 0.5 showed two-step dropping due to the decomposition of the SN
and PEO matrices [3,32]. These curves also portrayed an anionic effect via the degradation
phenomenon. TFSI− resulted in more rapid degradation compared to Triflate−, particularly
for SRMs with x = 0.5 and 1. This is because TFSI−-based redox mediators have lower
PEO crystallinity.
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As mentioned earlier, an SRM with σ25◦C > 10−4 S cm−1 and Ea < 0.3 eV is required to
regenerate dye molecules faster at the TiO2/dye/electrolyte interface and, thereby, inhibit
back-electron transfer [6–19]. Faster dye regeneration via the faster oxidation of ionic
species results in a higher photocurrent and cell efficiency. This also results in faster ionic
species regeneration. However, the higher mass of metal ions, e.g., Co2+/Co3+, slows
down their diffusion in DSSCs, which decreases the concentration of metal ions at the
TiO2/dye/electrolyte interface, resulting in poor cell efficiency [69,70]. Hence, it is im-
perative to enhance the porosity of the mesoporous TiO2 film in order to accommodate
a greater number of ionic species at the interface [70]. It is also necessary to have TiO2
pores that are water-free because water changes the surface of TiO2 and decreases cell
efficiency [4,71]. In the present scenario, due to their superior electrical transport and
optical properties, the DSSCs with TFSI−-based SRMs are expected to perform better than
those with Triflate−-based SRMs. However, porosity at the TiO2/dye/electrolyte interface
needs to be optimized by utilizing a mixture of large and small anatase TiO2 nanoparti-
cles [69,70,72–74]. Therefore, we will perform DSSC fabrication and characterizations in
the future.

4. Conclusions

We studied the electrical transport properties of SRM [(1 − x)SN: xPEO]-LiX-Co salts
(x = 0, 0.5, and 1; X = TFSI− and Triflate−), and the results were compared with those of their
acetonitrile-based liquid counterparts (LRMs). The LRMs exhibited σ25◦C ≈ 10−2 S cm−1.
The SRMs achieved σ25◦C ≈ 10−3 S cm−1 for x = 0, >10−4 S cm−1 for x = 0.5, and
≈10−6 S cm−1 for x = 1. In these redox mediators, σ25◦C(TFSI−) > σ25◦C(Triflate−) and
Ea(TFSI−) < Ea(Triflate−). FT-IR spectroscopy showed the interaction and, thereby, the
anionic effect in the following order: LRM < 0 < 0.5 < 1. The XRD study exhibited an
increase in PEO crystallinity from x = 0.5 to 1, which was more for Triflate− ions. The
XPS study showed a shift in the intensity/width ratio and peak position of the elements
because of the anionic effect. The SEM images depicted an increase in surface roughness
from x = 0.5 to 1, which was higher for Triflate− ions. The transmittance showed the
following orders: LRM = 0 (= 0%) << 1 << 0.5 in the UV-A region, 0 << 1 << LRM ≈ 0.5
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in the visible region, and 0 << 1 < 0.5 < LRM in the near-IR region. Only the SRMs with
x = 0.5 showed higher transmittance in the UV-A, visible, and near-IR regions. In addition,
the transmittance was higher for the TFSI− ion-based redox mediators. The DSC study
exhibited the lowest Tm-peak area for x = 0.5 and the highest peak area for x = 1. The SRMs
had a lower peak area for TFSI− ions. The TGA study revealed the thermal stability of
SRMs, ≈75 ◦C for x = 0, 125 ◦C for x = 0.5, and 200 ◦C for x = 1, and degradation was faster
for TFSI− ion-based redox mediators. Various studies on [(1 − x)SN: xPEO]-LiX-Co salts
(x = 0, 0.5, and 1) have demonstrated similar trends despite different anions (X = TFSI− and
Triflate−). However, the electrical transport properties of SRMs with X = TFSI− were better
than those of SRMs with X = Triflate−. Owing to superior its electrical transport and optical
properties, the SRM with x = 0.5 and X = TFSI− can be utilized for DSSC and tandem solar
cell applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16101436/s1, Figure S1: Chemical structure of (a) ionic
salts and (b) matrices; Figure S2. XPS survey spectra of solid redox mediators, [(1 − x)SN: xPEO]-LiX-
Co salts (x = 0, 0.5, and 1; X = TFSI− and Triflate−); Figure S3: Best fits of XPS spectra of different
elements of solid redox mediators (x = 0; X = TFSI− and Triflate−). This figure also includes the
best fits of XPS spectra of the Ti 2p element; Figure S4: Best fits of XPS spectra of different elements
of solid redox mediators (x = 0.5; X = TFSI− and Triflate−); Figure S5: Best fits of XPS spectra of
different elements of solid redox mediators (x = 1; X = TFSI− and Triflate−); Figure S6: A plot of
∆R (= [intensity/width]TFSI − [intensity/width]Triflate) with peak position for different elements
of solid redox mediators, [(1 − x)SN: xPEO]-LiX-Co salts, where x = 0, 0.5, and 1. X = TFSI− and
Triflate−; Figure S7: A plot of ∆P (= [peak position]TFSI − [peak position]Triflate) with peak position
for different elements of solid redox mediators, [(1 − x)SN: xPEO]-LiX-Co salts, where x = 0, 0.5, and
1. X = TFSI− and Triflate−; Table S1: Abbreviations used in the article; Table S2: Chemicals used for
the preparation of liquid and solid redox mediators; Table S3: Details of characterization techniques;
Table S4: Equipment used for the measurements.
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